Yet More Maze, Yet More
Design Patterns

CS151
Chris Pollett
Nov. 16, 2005.



Outline

More on Maze Game
AbstractFactory Pattern
Factory Method Pattern
Prototype Pattern



More on Maze Game

e Last day, we said the Maze Game was built out of classes:

MapSite-- extended by Door, Wall, Room. It is an interface which
supports clone(), enter(Maze m), and draw.

Room -- has four MapSite’s on it and each MapSite is associated
with 1 or 2 rooms. A Room has a number, and has constants for
ROOM_COLOR and PLAYER COLOR. It has accessor methods:
getRoomNumber, getl.ocation, 1sInRoom. It has mutators:
setRoomNumber, setLLocation, setInRoom, setSide(dir, site). The
function enter(Maze m) allows one to set a room as the current
room of the Maze m.

A Maze has 1 or more Room’s

SimpleMazeGame is used to drive the whole game



Still more on Maze Game

* Door -- implements MapSite and has methods
1sOpen, setOpen, setRooms(rl, r2) getOrientation,
setOrientation, enter(Maze maze) (works 1f open
otherwise plays a ding sound)

e Wall -- implements MapSite. Trying to enter a
Wall causes a ‘hurts’ sound to be played.

 The SimpleMazeGame has two methods
createMaze() and createLargeMaze. The first
creates a 1x2 maze, the latter a 3x3 maze.



Adding Interest

We want to make the game more interesting. So we want to support
different themes.

We will make Harry Potter theme by making a HarryPotterX XX class
where XXX i1s a subclass of Door, Wall, or Room.

Similarly, we will make SnowWhite XXX where XXX 1is a subclass of
Door, Wall, or Room.

The theme affects things like what audio clip is played when switching
rooms, the color of a Room, the color of a Walls,etc.

Now to use these themes we could awkwardly add to
SimpleMazeGame methods createHarryPotterMaze()
createLargeHarryPotterMaze(), createSnowWhiteMaze(),
createLargeSnowWhiteMaze().

Instead we’ll try to use a different design patterns, such as: abstract
factory, factory method, prototype, and builder.



AbstractFactory Pattern

AbstractFactony

AbsfrecfProductd - create ProductAf)
AbsfractProducts : creafeProduciB()

-

ConcreteFactoryl

ConcreteFactory2

EbstractProductt - createProduct &0
AbstractProductB : createProductB{)

EbhstractProductt : createProdoct 00
AbstractProductP : createProductB{)

1 Client
AbstractProductA
ProduciA2 ProduciAl

AbstractProductB

ProduciB2 ProduciB1




More on Abstract Factory

We will create a class MazeFactory (our AbstractFactory) which
supports makeMaze, makeWall, makeRoom, makeDoor.

We create concrete subclasses HarryPotterMazeFactory and
SnowWhiteMazeFactory, which create concrete Wall, Door, and
Room objects of the given theme.

Our client, which will be the Maze, only uses the MazeFactory
interface to make Wall’s, Door’s, and Room’s.

We’ll have a MazeGameAbstractFactory which can build a complete
maze using a supplied MazeFactory’s methods. That is,
MazeGameAbstractFactory will have the two methods:
createMaze(MazeFactory fac) or createLLargeMaze(MazeFactory fac)



Factory Method Pattern

Another way to solve this same problem is to use the Factory Method
pattern that we’ve discussed earlier.

We could make a class MazeGameCreator which has methods
createMaze, createLargeMaze. makeMaze, makeWall, makeRoom,
makeDoor.

Then we could subclass this into HarryPotterMazeGameCreator and
only override makeWall, makeDoor, makeRoom.

Thus, the actual rooms in the Maze are determined by the base class
but how these rooms look is determined by the subclass.

Similarly, we could create a subclass SnowWhiteMazeGameCreator.

What theme a game uses then depends on which MazeGameCreator 1s
used.



Prototype Pattern

One drawback of the factory patterns is that we need to
subclass both products and factories when we create a new
theme.

If there are many themes then this can become unflexible.
Instead, can use a prototype pattern.

In the pattern, we have an abstract class Prototype (Maze,
Wall, Door) which 1s Cloneable. Create concrete
subclasses (HarryPotterWall). A Client
(MazeProtoTypeFactory) creates new instances by cloning
the particular concrete prototypes that have been placed on
it.

MazeGameAbstractFactory sets the prototypes on this
factory then creates the maze.



