
More Java

CS151
Chris Pollett

Sept. 12, 2005.

Outline

• Apache Ant
• Lexical Elements in Java
• Variables and Types in Java

Apache Ant

• A tool for building Java projects.
• Descended from Unix make.
• make uses a file called a Makefile to

describe how to build a project.
• Ant uses a file called build.xml, which uses

the Ant XML project language.
• Ant can be extended using Java classes.
• Available from http://ant.apache.org/

Example build.xml File
<project name="MyProject" default="dist" basedir=".">
 <description>simple example build file</description>

<!-- set global properties for this build -->
<property name="src" location="src"/>
<property name="build" location="build"/>
<property name="dist" location="dist"/>
<target name="init">

<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>

</target>
<target name="compile" depends="init" description="compile the source " >

<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"/>

</target>
<target name="dist" depends="compile" description="generate the distribution" >

<!-- Create the distribution directory -->
<mkdir dir="${dist}/lib"/>
<!-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
<jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar” basedir="${build}"/>

</target>
<target name="clean" description="clean up" >

<!-- Delete the ${build} and ${dist} directory trees -->
<delete dir="${build}"/>
<delete dir="${dist}"/>

</target>
</project>

Running Ant

• To get ant to perform the tasks listed for a given
target type:
ant target <ret>

• The ant command looks in the current directly for
a build.xml file to find this target in.

• If no target is specified then ant tries to execute
the default target given by the default attribute of
the <project> tag.

Lexical Elements

• We now begin a detailed discussion of Java
starting with lexical elements.

• These are the basic building blocks of the
programming language:
– characters
– identifiers
– literals
– operators
– expressions

Character Set

• Java is written in Unicode.
• Unicode is an international 16 bit character set that

contains encodings of most language used in the
world.

• The older character encoding, ASCII (aka ISO-
8859-1), is the first 128 characters.

• Java can also be localized to accommodate
different locales.

• The default locale is U.S. English. This version
performs conversion between ASCII and Unicode
on the fly.

Identifiers

• These are used in Java to denote the names of
classes, methods, variables, etc.

• A Java identifier can begin with a letter, followed
by letters or digits.

• Letters can be letters in any Unicode alphabet. For
instance,δ.

• Letters also include (_) and ($).
• So the following are identifiers:
_myVar $a AClassName b22

Primitive Types and Literals
• Constant values of each primitive type are called literals.
• The following are the primitive types in Java:

– Boolean type: boolean.
• (true, false)

– Integer types: byte, short, int, and long
• respectively 1, 2, 4, 8 byte signed integers. No unsigned type

in Java. Ex -12, 23, etc. To write in octal begin a 0; to write in
hexadecimal begin with an 0x or 0X

– Character type: char
• Ex: A b E, \040 (Octal Ascii) \u5496 (hex Unicode), escape

sequences: \n, \”, etc.
• Character literals are written between single quotes (‘a’);

whereas, string literals (“hello”) are written between double
quotes

– Floating-points: float and double. 4 and 8 byte IEEE-754 floating
point

• 2.5 23.f 23d 48.4F 48.4D 1e-9d 1.45e10f

Operators and Expressions
• According to operator precedence (from greatest to least)

Java has the following operators:
exp++, exp--, ++exp, --exp, +exp, -exp, ~exp, !exp,

exp1*exp2, exp1/exp2, exp1%exp2, exp1+exp2,
exp1-exp2, exp1 <<exp2, exp1 >>exp2, exp1 >>>exp2,
exp1 < exp2, exp1>exp2, exp1 <= exp2, exp >=exp2,
exp1 == exp2, exp1 != exp2, exp1 & exp2, exp1 ^ exp2,
exp1| exp2, exp1 && exp2, exp1 || exp2,
exp1?exp2:exp3, var=exp, var +=exp, var -=exp,
var *=exp, var /=exp, var %=exp, var <<= exp,
var >>=exp, var >>>=exp, var &=exp, var ^=exp,
var |=exp.

• An expression is either a literal or a variable, or an operator
applied to expressions or variables. Can use ().

• Expressions are evaluated according parenthesization,
followed by operator precedence, and then from left to right.

Some Comments about these
Operators

• x/y and x%y throw an ArithmeticException when
y is 0 and x and y are of integer type.

• For float types, no exceptions are generated.
– IEEE 754-1985 has two magic numbers in addition to

the usual floating point numbers: NaN (not a number)
and infinity. For example 0.0/0.0 evaluates to NaN. 5/0
evaluates to Float.POSITIVE_INFINITY, etc.

• + can also be used to concatenate strings:
“object”+ “-” + “oriented” evaluates to “object-oriented”
“object”+ ‘-’ + “oriented” evaluates to “object-oriented”

Assignment Operators

• These are the operators +=, -=, *=, etc.
• They have the form

var op= exp
• They are equivalent to

var = (var) op (exp)
• However, var will only be evaluated once in the

original expression.
• So a[i++] += i and a[i++] = a[i++] + i will give

different results:
• For example if i=2, first gives a[2] = a[2] +3;

second gives a[2] = a[3] +4;

Variables and Types

• A type denotes the set of all legal values of that
type.

• A variable refers to a location in memory where a
value can be stored.

• Each variable is associated with a type and this
restricts what possible values it can have

• The type of a variable is specified in a variable
declaration.

Variable Declarations

• The basic format of a variable definition is
Type VarName_1 [=InitialValue_1], VarName_2

[=InitialValue_2],…
• For example,

int a, b=5, c;
• Java supports two kind of types: primitive types

and reference types. We’ve already looked at
primitive type.

• Declarations without an initial value are assigned a
default initial value. These are Integer 0; Floating-
point 0.0; char \u0000; boolean false; Reference
null.

Type Compatibility and
Conversion

• Type T1 is compatible with type T2 if a value of
type T1 can appear whenever a value of type T2 is
expected and vice versa.

• Type conversion is the conversion of values one
type into values of another type. For example,
might convert a byte to an int.

• Converting a numeric type to a type with a smaller
range is called narrowing. Ex: long a=5; byte b=
(byte)a;

• Converting a numeric type of a smaller range to
larger range is called widening.

Reference Types

• A reference type is a class type, interface type, or
an array type.

• A reference type says where a given object is
stored in memory.

• Reference types differ from C/C++ pointers in that
Java references:
– cannot do pointer arithmetic
– cannot cast to any type
– cannot be assigned arbitrary values

Garbage Collection

• The job of deallocation unreferenced object is
done by the garbage collector in Java.

• In C/C++ this has to be done by the programmer.
• Garbage collection involves examining the heap

memory space to figure out which objects are
referenced.

• One technique for determining unreferenced
objects is reference counting.

• Because this can happen at any time the
disadvantage of garbage collection is it is hard to
predict the run-time of your code.

