More Java

CS151
Chris Pollett
Sept. 12, 2005.

Outline

 Apache Ant
e [exical Elements in Java

e Variables and Types in Java

Apache Ant

A tool for building Java projects.
Descended from Unix make.

make uses a file called a Makefile to
describe how to build a project.

Ant uses a file called build.xml, which uses
the Ant XML project language.

Ant can be extended using Java classes.
Available from http://ant.apache.org/

Example build.xml File

<project name="MyProject" default="dist" basedir=".">
<description>simple example build file</description>
<!-- set global properties for this build -->

<property name="src" location="src"/>
<property name="build" location="build"/>
<property name="dist" location="dist"/>
<target name="init">

<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile -->
<mkdir dir="${build}"/>
</target>
<target name="compile" depends="init" description="compile the source " >
<!—-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"/>
</target>
<target name="dist" depends="compile" description="generate the distribution" >
<!-- Create the distribution directory -->
<mkdir dir="${dist}/1lib"/>
<!—-- Put everything in ${build} into the MyProject-${DSTAMP}.jar file -->
<jar jarfile="${dist}/lib/MyProject-${DSTAMP}.jar” basedir="${build}"/>
</target>
<target name="clean" description="clean up" >
<!-- Delete the ${build} and ${dist} directory trees -->

<delete dir="${build}"/>
<delete dir="${dist}"/>
</target>
</project>

Running Ant

* To get ant to perform the tasks listed for a given
target type:
ant target <ret>

e The ant command looks in the current directly for
a build.xml file to find this target in.

e If no target is specified then ant tries to execute
the default target given by the default attribute of
the <project> tag.

[.exical Elements

* We now begin a detailed discussion of Java
starting with lexical elements.

* These are the basic building blocks of the
programming language:
— characters
— 1dentifiers
— literals
— operators

— expressions

Character Set

Java is written 1n Unicode.

Unicode 1s an international 16 bit character set that
contains encodings of most language used in the
world.

The older character encoding, ASCII (aka ISO-
8859-1), 1s the first 128 characters.

Java can also be localized to accommodate
different locales.

The default locale 1s U.S. English. This version
performs conversion between ASCII and Unicode
on the fly.

Identifiers

e These are used 1n Java to denote the names of
classes, methods, variables, etc.

* A Java identifier can begin with a letter, followed
by letters or digits.

e Letters can be letters in any Unicode alphabet. For
instance,0.

o Letters also include () and ().
* So the following are 1dentifiers:

_myVar $a AClassName b22

Primitive Types and Literals

e Constant values of each primitive type are called literals.
e The following are the primitive types in Java:
— Boolean type: boolean.
e (true, false)
— Integer types: byte, short, int, and long

e respectively 1, 2, 4, 8 byte signed integers. No unsigned type
in Java. Ex -12, 23, etc. To write in octal begin a O; to write in
hexadecimal begin with an Ox or 0X

— Character type: char

e Ex: A b E,\040 (Octal Ascii) \u5496 (hex Unicode), escape
sequences: \n, \”, etc.

e Character literals are written between single quotes (‘a’);
whereas, string literals (“hello”) are written between double
quotes

— Floating-points: float and double. 4 and 8 byte IEEE-754 floating
point
e 2.5 23f 23d 48.4F 484D 1e-9d 1.45el10f

Operators and Expressions

e According to operator precedence (from greatest to least)
Java has the following operators:
exp++, exp--, ++exp, --exp, +exp, -exp, ~exp, lexp,
expl*exp2, expl/exp2, expl%exp2, expl+exp2,
expl-exp2, expl <<exp2, expl >>exp2, expl >>>exp2,
expl < exp2, expl>exp2, expl <= exp2, exp >=exp2,
expl ==exp2, expl !=exp2, expl & exp2, expl " exp2,
expll exp2, expl && exp2, expl Il exp2,
expl?exp2:.exp3, var=exp, var +=exp, var -=exp,
var *=exp, var /=exp, var %=exp, var <<= exp,
var >>=eXxp, var >>>=eXxp, var &=exp, var '=exp,
var |=exp.
* An expression 1s either a literal or a variable, or an operator
applied to expressions or variables. Can use ().

e Expressions are evaluated according parenthesization,
followed by operator precedence, and then from left to right.

Some Comments about these
Operators

 Xx/y and x%y throw an ArithmeticException when
y 1s 0 and x and y are of integer type.

e For float types, no exceptions are generated.

— IEEE 754-1985 has two magic numbers in addition to
the usual floating point numbers: NaN (not a number)

and infinity. For example 0.0/0.0 evaluates to NaN. 5/0
evaluates to Float. POSITIVE_INFINITY, etc.

e + can also be used to concatenate strings:

¢ 9

“object”+ “-” + “oriented” evaluates to “object-oriented”
“object”+ ‘-’ + “oriented” evaluates to “object-oriented”

Assignment Operators

I'hese are the operators +=, -=, *=, eftc.

T'hey have the form

var op= exp
They are equivalent to

var = (var) op (exp)
However, var will only be evaluated once in the
original expression.

So a[i++] +=1and a[i1++] = a[1++] + 1 will give
different results:
For example if 1=2, first gives a[2] = a[2] +3;
second gives a[2] = a[3] +4;

Variables and Types

A type denotes the set of all legal values of that

type.
A variable refers to a location in memory where a
value can be stored.

Each variable 1s associated with a type and this
restricts what possible values 1t can have

The type of a variable is specified in a variable
declaration.

Variable Declarations

The basic format of a variable definition is

Type VarName_1 [=InitialValue_1], VarName_2

[=InitialValue_ 2],...

For example,

int a, b=35, c;
Java supports two kind of types: primitive types
and reference types. We’ve already looked at
primitive type.
Declarations without an 1nitial value are assigned a
default initial value. These are Integer O; Floating-

point 0.0; char \u0000; boolean false; Reference
null.

Type Compatibility and
Conversion

Type T1 1s compatible with type T2 if a value of
type T1 can appear whenever a value of type T2 1s
expected and vice versa.

Type conversion is the conversion of values one
type into values of another type. For example,
might convert a byte to an int.

Converting a numeric type to a type with a smaller
range 1s called narrowing. EX: long a=5; byte b=
(byte)a;

Converting a numeric type of a smaller range to
larger range 1s called widening.

Reterence Types

e A reference type is a class type, interface type, or
an array type.

e A reference type says where a given object 1s
stored In memory.

e Reference types differ from C/C++ pointers in that
Java references:
— cannot do pointer arithmetic
— cannot cast to any type
— cannot be assigned arbitrary values

Garbage Collection

The job of deallocation unreferenced object 1s
done by the garbage collector in Java.

In C/C++ this has to be done by the programmer.

Garbage collection involves examining the heap
memory space to figure out which objects are
referenced.

One technique for determining unreferenced
objects 1s reference counting.

Because this can happen at any time the
disadvantage of garbage collection 1s it is hard to
predict the run-time of your code.

