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1. For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, 

assuming that the algorithm to solve the problem takes f(n) microseconds. 

 
1 seconds 1 minute 1 hour 1 day 1 month 1 year 1 century 

loglogn 2^2^1000000 2^2^(6x10
7
) 2^2^(3.6x10

9
) 2^2^(8.64x10

10
) 2^2^(2.6x10

12
) 2^2^(3.15x10

13
) 2^2^(3.15x10

15
) 

2logn 2^500000 2^(3x10
7
) 2^(1.8x10

9
) 2^(4.32x10

10
) 2^(1.3 x10

12
) 2^(1.58x10

13
) 2^(1.58x10

15
) 

N 1000000 6x10
7
 3.6x10

9
 8.64x10

10
 2.6x10

12
 3.15x10

13
 3.15x10

15
 

n
2
logn 344 2316 16052 73124 374175 1247898 11592507 

n
5/2

 251 1291 6645 23692 92353 250912 1583152 

3
n
 12 16 20 22 26 28 32 

 Solution: 

1 second=1000000 microseconds; 1 minute=60 s; 1 hour=60 minutes; 1 day=24 hours; 1 month=30 days; 1 year=365 days; 1 

century=100 years  

 A: loglogn=1000000 ->log(logn)=1000000 -> logn=2^1000000 -> n=2^2^1000000 

 B: 2 logn=1000000 -> logn=500000 -> n=2^500000 

 C: n=1000000;  

others: write a program to solve these question: e.g for n
2
logn=1000000, if n=344, n

2
logn<1000000; if n=345, 

n
2
logn>1000000; so the max number is 344. This is my Python program below. 

 import math 

a=[] 

a.append(1000000)    # 1 second 

a.append(a[0]*60) # 1 minutes 

a.append(a[1]*60) # 1 hour 

a.append(a[2]*24) # 1 day 

a.append(a[3]*30) # 1 month 

a.append(a[3]*365) # 1 year 

a.append(a[5]*100) # 1 century 

print(a)    #these values is the answer for n 

i=0 

for i in range(0,7): 

  for n in range(1,100000000): 

   # you can choose different formula to get other answer 

   if n*n*math.log(n,2) > a[i]: 

   #if math.sqrt(math.pow(n,5)) > a[i]: 

   #if math.pow(3,n) > a[i]: 

    print(i+1,n-1) 

    break 

 

 

 

 

 



2. Illustrate the operation of the Insertion-Sort algorithm from book on the array A=⟨5,4,3,2,1⟩ and A=⟨42,13,54,19,21⟩. 
The red number indicates A[j], the green number indicates that the number need to shift 1 position to right. 

Solution: 

a) A=<5,4,3,2,1> 

5 4 3 2 1 

 At first, j=2, so key=a[j]=4. compare with a[i=j-1] -> a[1],  which is 5. Since  key<a[1], so shift a[1] to a[2] and replace 

a[1] with key. 

  

4 5 3 2 1 

j=3, key=a[3 ]=3. Key compare with a[2]= 5. Since key<a[2], shift a[2] to a[3]. Then key compare a[1]=4. Since 

key<a[1], shift a[1] to a[2]. Finally, replace a[1] with key. 

   

3 4 5 2 1 

j=4, key=a[4 ]=2. Key compare with a[3]= 5. Since key<a[3], shift a[3] to a[4]. Then key compare with a[2]= 4. Since 

key<a[2], shift a[2] to a[3]. Then key compare a[1]=3. Since key<a[1], shift a[1] to a[2]. Finally, replace a[1] with key. 

 

2 3 4 5 1 

j=5, key=a[5 ]=1. Key compare with a[4]= 5. Since key<a[4], shift a[4] to a[5]. Then key compare with a[3]= 4. Since 

key<a[3], shift a[3] to a[4]. Then key compare with a[2]= 3. Since key<a[2], shift a[2] to a[3]. Then key compare a[1]=2. 

Since key<a[1], shift a[1] to a[2]. Finally, replace a[1] with key. 

 

1 2 3 4 5 

j>a.length, the program end. 

 

b) A=<42,13,54,19,21> 

42 13 54 19 21 

At first, j=2, so key=13, compare with a[i=j-1] -> a[1],  which is 42. Since  key<a[1], so shift a[1] to a[2] and replace a[1] 

with key. 

 

13 42 54 19 21 

j=3, key=a[3 ]=54. Key compare with a[2]= 42. Since key>a[2], exit while loop. Replace a[2+1] with key. 

 

13 42 54 19 21 

 

j=4, key=a[4 ]=19. Key compare with a[3]= 54. Since key<a[3], shift a[3] to a[4]. Then key compare with a[2]= 42. 

Since key<a[2], shift a[2] to a[3]. Then key compare a[1]=13. Since key<a[1], exit while loop. Finally, replace a[1+1] 

with key. 

 

 

 

 

 



 

 

 

 

13 19 42 54 21 

j=5, key=a[5 ]=21. Key compare with a[4]= 54. Since key<a[4], shift a[4] to a[5]. Then key compare with a[3]= 42. 

Since key<a[3], shift a[3] to a[4]. Then key compare with a[2]= 19. Since key>a[2], exit while loop. Finally, replace 

a[2+1] with key. 

 

13 19 21 42 54 

j>a.length, the program end. 

 

 

 

3. Use mathematical induction to show that when n is an exact power of 4, the solution of the recurrence relation  

T(n)=� 8											��		 = 4						
4� 
��� + 2										��		 = 4�, ���	� > 1	�	

 

is T(n)=nlog2n. 

Solution: 

Base case: k=1,n=4 

    LHS: T(4)=8 

    RHS: T(4)=4log24=4x2=8 

    So, LHS=RHS, so the base case is true. 

Inductive case:  

    Assume the statement hold up to k,  

    So, n=4
k
, T(n)=4� 
��� + 2	 = 	����	, so LHS(n)=RHS(n) 

    And try to prove  it is true for k+1: 

    when 4
k+1

=4x4
k
=4n,  

    so, we need to prove : LHS(4n)=RHS(4n) 

    LHS(4n)=4� 
��� � + 2(4n) 
            =4�(	) + 8	, since T(n)=nlog2n 

        =4nlog2n+8n 

    RHS(4n)=4nlog24n 

                   =4n(log24+log2n) 

                   =4n(2+log2n) 

         =4nlog2n+8n 

   So, LHS(4n)=RHS(4n), the statement hold for k+1. 

Conclusion: 

Since the statement hold in base case and inductive case, the statement is true. 

 

 

 

 



 

 

4. Problem 2.3 out of the book (make sure this is in your own words and you don't look on the internet!). 

Correctness of Horner’s rule: 

 Y=0 

 For i= n downto 0 

  Y=ai+x.y 

Solution: 

 

a) In terms of O-notation, what is the running time of this code fragment for Horner’s rule? 

From the codes, we can see there is a for loop, which i form n to 0, so the running time should be O(n). 

 

b) Write pseudocode to implement the naïve polynomial-evaluation algorithm that computes each term of the 

polynomial from scrath. What is the running time of this algorithm? How does it compare to Horner’s rule? 

y=0 

for i=0 to n 

        z=1  // X
0
=1 

        for j=1 to i   //z=X
i
    

               z*=x 

        y+=a[i]*z 

  

  The running time of this codes is O(n
2
) , because it has two for loop. It is much slow than Horner’s rule. 

 

c) Consider the following loop invariant: 

 

 = ! "�#$#%&�
�'($#%)

�()
 

  Initialization:  

Before the for loop: y=0. 

At the beginning of the loop, i=n. From the formula, we get 

 = ∑ "�#�#%&�'%�() , we also get y=0.  

It shows that the loop invariant holds prior to the first iteration of the loop. 

  Maintenance: 

   Assume the loop invariant hold at i=j: 

     = ∑ "�#+#%&��'(+#%)�() 	 
     

   Then, at i=j-1 

     (, − 1) = "+ + &∑ "�#+#%&��'(+#%)�()  

        = ", + ∑ "�+,+1&�+1	−(,+1)�=0   

             = ",&0 + ",+1&1 +",+2&2 +⋯+ "	&	−,  

                                                                                   = ∑ "�+,&�	−(,)�=0  

   So, the loop invariant also holds in induction case. 



 

 

  Termination: 

   When program exits the for loop, i=-1, then 

    	
 = ! "�#$#%&�

�'($#%)

�()
 

= ! "�'%#%&�
�'('%#%)

�()
 

= !"�&�
�

�()
 

   So, the loop invariant also holds. 

d) Conclude by arguing that the given code fragment correctly evaluates a polynomial characterized by coefficients 

a0,a1,……, an. 

        According to the c) part, we have proved that form the beginning to the end of the program, the codes are 

compute the value of y is the same as the polynomial function. So, it correctly evaluates a polynomial characterized by 

coefficients a0,a1,……, an. 

  


