Quadrics et al

CS116B
Chris Pollett
Jan 31, 2005.



Outline

e Quadric Surfaces
e SuperQuadrics
* OpenGL



Quadrics Surfaces

e Quadrics are a frequently used class of
surfaces.

* They include spheres, ellipsoids, torii,
paraboloids, and hyperboloids.

* They get their name because they are
described by second degree equations.




=

* The sphere of radius r can be described as those
points satisfying the equation: x>+y?+z?=r?. (non-
parametric equation)
It can also be described as those points satistying:
X(,0) =r*cos @*cos 0, -mw/2 <= <= /2
y(,0) =1*cos p*sin 0, -t <=0 <=7
z(,0) =r*sin O

I wrote Xx,y,z as above to emphasize we have a mapping
from (@,0) to (r*cos @*cos 0, r*cos ¢*sin 0, r*sin 0)

Spheres




A

Ellipsoid

Can view as a squashed sphere.

More, formally, we have three radii: r,, r,, r, and
the ellipsoid 1s described by those points
satisfying:

(x/1 )+ (y/r)* + (z/r,)* = 1.

A sphere 1s an ellipsoid where r,=r

=T.,.

y o Z

The parametric equations for an ellipsoid are:
X(,0) =r_x*cos @p*cos 0, -m/2 <= @ <=mn/2
y(,0) =r_y*cos @*sin 0, -t <=0 <=

z(¢,0) =r_z*sin O



@ Torus

e Basically, a fancy word for a doughnut

* Can make a torus by rotating a circle along a
perpendicular circle of some fixed radius:

7Z-ax1s

NN
N RN

y-axis

—

r_axial

* One can do this with the equations:

(y—1raxial.)2+22:r2 OF X=(I i +17COS ) *COS B, y=(I,y5+1%COS
@)*sin 0, z=r*sin .



SuperQuadrics

* These are generalizations of quadrics.

* We add some additional parameters to the
quadric equations which allows us to tweak
the basic shapes.

 The equations will generally not be
quadratic in these new parameters.



Superellipse

* A superellipse (a 2D object) 1s given by the
equation:
(x/1,)?s +(y/r,)*s =1 or
X=r,cos® 0, y=r1,8m° 0

* Figure below shows different s>=1




Superellipsoid

* A superellipsoid is a generalization of
a superellipse to 3D.

e Equations are:

[(X/rx)2/5_2 + (y/ry)2/5_2]s_2/s_2 + (Z /rZ)Z/S_l =1

or
x =1, *cos*-! p*cos’- 0,
y =r1,*cos*! p*sin®-= 9,
z =r,*sins-! @



GLUT Quadrics

We now discuss how to draw quadrics using
GLUT.
To begin, for spheres the functions are:
glutWireSphere(r, nLongitudes, nLatitudes);
or
glutSolidSphere(r, nLongitudes, nLatitudes);

Obviously, r 1s the radius (it 1s a double)

nLongitudes is the number of circles through both
poles to be used in the sphere.

nLatitudes is the number of circles parallel to the
equator to be used in the sphere.



More Glut Quadrics

Cones can be drawn with:
glutWireCone(rBase, height, nLongitudes, nLatitudes);
or
glutSolidCone(rBase, height, nLongitudes, nLatitudes);
Torii can be drawn with:
glutWireTorus(rCrossSection, rAxial, nConcentrics, nRadialSlices);
or
glutSolidTorus(rCrossSection, rAxial, nConcentrics, nRadialSlices);
rCrossSection is the r of before, rAxial 1s r_axial.

nConcentrics - num circles centered on z axis. nRadialSlices -circles
used in the axial rotation



Famous GLUT Surface

* One of the first surfaces to be modeled (by
hand) as a polygon mesh in a computer
graphics system was a teapot (Martin

Newell 1975).

e This teapot still exists and can be drawn
using:

glutWireTeapot(size); or glutSolidTeapot(size);



GLU Quadrics

 GLU provides slightly more flexible functions for

drawing quadrics.

* Basic sequence of calls looks like:

GLUquadric *spherel;
spherel = gluNewQuadric();

gluQuadricDrawStyle(spherel, GLU_LINE); // wireframe
gluSphere(spherel, r, nLongitudes, nLatitudes);

* Some draw styles are GLU_POINT (just points),
GLU_SILHOUETTE (wireframe less shared edge

for coplanar facets) and GLU_F

L (like solid)



More GLU Quadrics

* Some other quadrics available are:

— gluCylinder(name, rBase, rTop, height,
nLongitudes, nLatitudes);

— gluDisk(name, rInner, rOuter, nRadii, nRings);
//can use for flat disks with or without a hole

— gluPartialDisk(name, rInner, rOuter, nRadii,
nRings, startAngle, sweepAngle);



More GLU Quadric functions

Once we are done with a quadric we can reclaim its memory with:
gluDeleteQuadric(name);

We can define the front and back direction for the facet’s normal
vectors with:

gluQuadricOrientation(name, normal VectorDirection);
//GLU_INSIDE

//GLU_OUTSIDE
gluQuadricNormals(name, generationMode);
// GLU_NONE, GLU_FLAT, GLU_SMOOTH.

Finally,we can define a callback that is called if an error occurs during
the draw of the quadric with:

gluQuadricCallback(name, GLU_ERROR, function);



