
Quadrics et al

CS116B
Chris Pollett
Jan 31, 2005.

Outline

• Quadric Surfaces
• SuperQuadrics
• OpenGL

Quadrics Surfaces

• Quadrics are a frequently used class of
surfaces.

• They include spheres, ellipsoids, torii,
paraboloids, and hyperboloids.

• They get their name because they are
described by second degree equations.

Spheres

• The sphere of radius r can be described as those
points satisfying the equation: x2+y2+z2=r2. (non-
parametric equation)

• It can also be described as those points satisfying:
x(ϕ,θ) = r*cos ϕ*cos θ, -π/2 <= ϕ <= π/2
y(ϕ,θ) = r*cos ϕ*sin θ, -π <= θ <= π
z(ϕ,θ) = r*sin θ
I wrote x,y,z as above to emphasize we have a mapping

from (ϕ,θ) to (r*cos ϕ*cos θ, r*cos ϕ*sin θ, r*sin θ)

θ

ϕ

Ellipsoid

• Can view as a squashed sphere.
• More, formally, we have three radii: rx, ry, rz and

the ellipsoid is described by those points
satisfying:
(x/rx)2 + (y/ry)2 + (z/rz)2 = 1.

• A sphere is an ellipsoid where rx=ry=rz.
• The parametric equations for an ellipsoid are:

x(ϕ,θ) = r_x*cos ϕ*cos θ, -π/2 <= ϕ <= π/2
y(ϕ,θ) = r_y*cos ϕ*sin θ, -π <= θ <= π
z(ϕ,θ) = r_z*sin θ

r_z

r_x
r_y

Torus

• Basically, a fancy word for a doughnut
• Can make a torus by rotating a circle along a

perpendicular circle of some fixed radius:

• One can do this with the equations:
(y-raxial)2+z2=r2 or x=(raxial+r*cos ϕ)*cos θ, y=(raxial+r*cos
ϕ)*sin θ, z=r*sin ϕ.

y-axis

z-axis

r_axial

SuperQuadrics

• These are generalizations of quadrics.
• We add some additional parameters to the

quadric equations which allows us to tweak
the basic shapes.

• The equations will generally not be
quadratic in these new parameters.

Superellipse

• A superellipse (a 2D object) is given by the
equation:
(x/rx)2/s +(y/ry)2/s =1 or
x= rxcoss θ, y= rysins θ

• Figure below shows different s>=1

Superellipsoid

• A superellipsoid is a generalization of
a superellipse to 3D.

• Equations are:
[(x/rx)2/s_2 + (y/ry)2/s_2]s_2/s_2 + (z/rz)2/s_1 =1
or
x = rx*coss_1 ϕ*coss_2 θ,
y = ry*coss_1 ϕ*sins_2 θ,
z = rz*sins_1 ϕ

GLUT Quadrics

• We now discuss how to draw quadrics using
GLUT.

• To begin, for spheres the functions are:
glutWireSphere(r, nLongitudes, nLatitudes);
or
glutSolidSphere(r, nLongitudes, nLatitudes);

• Obviously, r is the radius (it is a double)
• nLongitudes is the number of circles through both

poles to be used in the sphere.
• nLatitudes is the number of circles parallel to the

equator to be used in the sphere.

More Glut Quadrics
• Cones can be drawn with:

glutWireCone(rBase, height, nLongitudes, nLatitudes);
or
glutSolidCone(rBase, height, nLongitudes, nLatitudes);

• Torii can be drawn with:
glutWireTorus(rCrossSection, rAxial, nConcentrics, nRadialSlices);
or
glutSolidTorus(rCrossSection, rAxial, nConcentrics, nRadialSlices);

• rCrossSection is the r of before, rAxial is r_axial.
• nConcentrics - num circles centered on z axis. nRadialSlices -circles

used in the axial rotation

Famous GLUT Surface

• One of the first surfaces to be modeled (by
hand) as a polygon mesh in a computer
graphics system was a teapot (Martin
Newell 1975).

• This teapot still exists and can be drawn
using:
glutWireTeapot(size); or glutSolidTeapot(size);

GLU Quadrics

• GLU provides slightly more flexible functions for
drawing quadrics.

• Basic sequence of calls looks like:
GLUquadric *sphere1;
sphere1 = gluNewQuadric();
gluQuadricDrawStyle(sphere1, GLU_LINE); // wireframe
gluSphere(sphere1, r, nLongitudes, nLatitudes);

• Some draw styles are GLU_POINT (just points),
GLU_SILHOUETTE (wireframe less shared edge
for coplanar facets) and GLU_FILL (like solid)

More GLU Quadrics

• Some other quadrics available are:
– gluCylinder(name, rBase, rTop, height,

nLongitudes, nLatitudes);
– gluDisk(name, rInner, rOuter, nRadii, nRings);

//can use for flat disks with or without a hole
– gluPartialDisk(name, rInner, rOuter, nRadii,

nRings, startAngle, sweepAngle);

More GLU Quadric functions
• Once we are done with a quadric we can reclaim its memory with:

gluDeleteQuadric(name);
• We can define the front and back direction for the facet’s normal

vectors with:
gluQuadricOrientation(name, normalVectorDirection);

//GLU_INSIDE
 //GLU_OUTSIDE
gluQuadricNormals(name, generationMode);
 // GLU_NONE, GLU_FLAT, GLU_SMOOTH.

• Finally,we can define a callback that is called if an error occurs during
the draw of the quadric with:
gluQuadricCallback(name, GLU_ERROR, function);

