# Quadrics et al 

CS116B
Chris Pollett
Jan 31, 2005.

## Outline

- Quadric Surfaces
- SuperQuadrics
- OpenGL


## Quadrics Surfaces

- Quadrics are a frequently used class of surfaces.
- They include spheres, ellipsoids, torii, paraboloids, and hyperboloids.
- They get their name because they are described by second degree equations.


## Spheres

- The sphere of radius $r$ can be described as those points satisfying the equation: $x^{2}+y^{2}+z^{2}=r^{2}$. (nonparametric equation)
- It can also be described as those points satisfying:

$$
\begin{aligned}
& \mathrm{x}(\varphi, \theta)=\mathrm{r}^{*} \cos \varphi^{*} \cos \theta,-\pi / 2<=\varphi<=\pi / 2 \\
& \mathrm{y}(\varphi, \theta)=\mathrm{r}^{*} \cos \varphi^{*} \sin \theta,-\pi<=\theta<=\pi \\
& \mathrm{z}(\varphi, \theta)=\mathrm{r}^{*} \sin \theta
\end{aligned}
$$

I wrote $\mathrm{x}, \mathrm{y}, \mathrm{z}$ as above to emphasize we have a mapping
 from $(\varphi, \theta)$ to $\left(r^{*} \cos \varphi^{*} \cos \theta, r^{*} \cos \varphi^{*} \sin \theta, r^{*} \sin \theta\right)$


## Ellipsoid

- Can view as a squashed sphere.
- More, formally, we have three radii: $\mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}, \mathrm{r}_{\mathrm{z}}$ and the ellipsoid is described by those points satisfying:

$$
\left(\mathrm{x} / \mathrm{r}_{\mathrm{x}}\right)^{2}+\left(\mathrm{y} / \mathrm{r}_{\mathrm{y}}\right)^{2}+\left(\mathrm{z} / \mathrm{r}_{\mathrm{z}}\right)^{2}=1 .
$$

- A sphere is an ellipsoid where $r_{x}=r_{y}=r_{z}$.
- The parametric equations for an ellipsoid are:

$$
\begin{aligned}
& \mathrm{x}(\varphi, \theta)=\mathrm{r}_{-} \mathrm{x} * \cos \varphi * \cos \theta,-\pi / 2<=\varphi<=\pi / 2 \\
& \mathrm{y}(\varphi, \theta)=\mathrm{r}_{-} \mathrm{y}^{*} \cos \varphi * \sin \theta,-\pi<=\theta<=\pi \\
& \mathrm{z}(\varphi, \theta)=\mathrm{r}_{-} \mathrm{z}^{*} \sin \theta
\end{aligned}
$$

## Torus

- Basically, a fancy word for a doughnut
- Can make a torus by rotating a circle along a perpendicular circle of some fixed radius:

r_axial
- One can do this with the equations:
$\left(y-r_{\text {axial }}\right)^{2}+z^{2}=r^{2}$ or $x=\left(r_{\text {axial }}+r^{*} \cos \varphi\right)^{*} \cos \theta, y=\left(r_{\text {axial }}+r^{*} \cos \right.$ $\varphi)^{*} \sin \theta, z=r * \sin \varphi$.


## SuperQuadrics

- These are generalizations of quadrics.
- We add some additional parameters to the quadric equations which allows us to tweak the basic shapes.
- The equations will generally not be quadratic in these new parameters.


## Superellipse

- A superellipse (a 2D object) is given by the equation:

$$
\begin{aligned}
& \left(\mathrm{x} / \mathrm{r}_{\mathrm{x}}\right)^{2 / \mathrm{s}}+\left(\mathrm{y} / \mathrm{r}_{\mathrm{y}}\right)^{2 / \mathrm{s}} \text { or } \\
& \mathrm{x}=\mathrm{r}_{\mathrm{x}} \cos ^{\mathrm{s}} \theta, \mathrm{y}=\mathrm{r}_{\mathrm{y}} \sin ^{\mathrm{s}} \theta
\end{aligned}
$$

- Figure below shows different $\mathrm{s}>=1$



## Superellipsoid

- A superellipsoid is a generalization of a superellipse to 3D.
- Equations are:
or
$\mathrm{x}=\mathrm{r}_{\mathrm{x}} * \cos ^{\mathrm{s}-1} \varphi * \cos ^{\mathrm{s}_{2}}{ }^{2} \theta$,
$y=r_{y}^{*} \cos ^{\mathrm{s}-1} \varphi^{*} \sin ^{\mathrm{s}-2} \theta$,
$z=r_{z}{ }^{*} \sin ^{\mathrm{s}-1} \varphi$


## GLUT Quadrics

- We now discuss how to draw quadrics using GLUT.
- To begin, for spheres the functions are: glutWireSphere(r, nLongitudes, nLatitudes); or glutSolidSphere(r, nLongitudes, nLatitudes);
- Obviously, $r$ is the radius (it is a double)
- nLongitudes is the number of circles through both poles to be used in the sphere.
- nLatitudes is the number of circles parallel to the equator to be used in the sphere.


## More Glut Quadrics

- Cones can be drawn with:
glutWireCone(rBase, height, nLongitudes, nLatitudes);
or
glutSolidCone(rBase, height, nLongitudes, nLatitudes);
- Torii can be drawn with:
glutWireTorus(rCrossSection, rAxial, nConcentrics, nRadialSlices);
or
glutSolidTorus(rCrossSection, rAxial, nConcentrics, nRadialSlices);
- rCrossSection is the r of before, rAxial is $\mathrm{r}_{-}$axial.
- nConcentrics - num circles centered on z axis. nRadialSlices -circles used in the axial rotation


## Famous GLUT Surface

- One of the first surfaces to be modeled (by hand) as a polygon mesh in a computer graphics system was a teapot (Martin Newell 1975).
- This teapot still exists and can be drawn using:
glutWireTeapot(size); or glutSolidTeapot(size);


## GLU Quadrics

- GLU provides slightly more flexible functions for drawing quadrics.
- Basic sequence of calls looks like:

GLUquadric *sphere1;
sphere 1 = gluNewQuadric();
gluQuadricDrawStyle(sphere1, GLU_LINE); // wireframe gluSphere(sphere1, r, nLongitudes, nLatitudes);

- Some draw styles are GLU_POINT (just points), GLU_SILHOUETTE (wireframe less shared edge for coplanar facets) and GLU_FILL (like solid)


## More GLU Quadrics

- Some other quadrics available are:
- gluCylinder(name, rBase, rTop, height, nLongitudes, nLatitudes);
- gluDisk(name, rInner, rOuter, nRadii, nRings); //can use for flat disks with or without a hole
- gluPartialDisk(name, rInner, rOuter, nRadii, nRings, startAngle, sweepAngle);


## More GLU Quadric functions

- Once we are done with a quadric we can reclaim its memory with: gluDeleteQuadric(name);
- We can define the front and back direction for the facet's normal vectors with:

```
gluQuadricOrientation(name, normalVectorDirection);
    //GLU_INSIDE
    //GLU_OUTSIDE
```

gluQuadricNormals(name, generationMode);
// GLU_NONE, GLU_FLAT, GLU_SMOOTH.

- Finally,we can define a callback that is called if an error occurs during the draw of the quadric with: gluQuadricCallback(name, GLU_ERROR, function);

