Polyhedra

CS116B
Chris Pollett
Jan 26, 2005.

Outline

- Polyhedra
- OpenGL Functions
- Curved Surfaces

Introduction

- We want to be able to draw complicated 3D objects
- Typically , will use a boundary representation (B-rep).
- This will be made of polygons or splines
- Alternatively, can use space-partitioning representations (octrees)
- Today, we are going to start with the simplest kind of 3D object and discuss how we can represent them

Polyhedra

- We will most often use polygon representations.
- Have a lists of point vertices. Then have a list of polygon facets (usually triangles or quadrilaterals) based on these vertices.
- Most graphics packages have commands for drawing simple polyhedra (3D objects whose faces are made of polygons) as these are easy to represent using polygon facets

OpenGL Polygon Fill-Area Functions

- We could draw polygons in polyhedra ourselves:
glBegin(GL_POLYGON);
//list points with glVertex
glEnd();
- Can also use GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, etc

GLUT Regular Polyhedron Functions

- It is often easier to draw polyhedra using GLUT commands:
- glutWireTetrahedron();
- glutSolidTetrahedron();
- glutWireCube(edgeLength); //edgeLength
//is a double
- glutSolidCube(edgeLength);
- glutWireOctahedron(); //unit size
- glutSolidOctahedron();
- glutWire/SolidDodecahedron();
- glutWire/SolidIcosahedron();

Curved Surfaces

- For curved surfaces we can either use a parametric or nonparametric form for the surface.
- Next day we will consider such representations for Sphere/Ellipsoids, etc.

