Polyhedra

CS116B Chris Pollett Jan 26, 2005.

Outline

- Polyhedra
- OpenGL Functions
- Curved Surfaces

Introduction

- We want to be able to draw complicated 3D objects
- Typically ,will use a **boundary representation** (B-rep).
 - This will be made of polygons or splines
- Alternatively, can use **space-partitioning representations** (octrees)
- Today, we are going to start with the simplest kind of 3D object and discuss how we can represent them

Polyhedra

- We will most often use polygon representations.
- Have a lists of point vertices. Then have a list of polygon facets (usually triangles or quadrilaterals) based on these vertices.
- Most graphics packages have commands for drawing simple polyhedra (3D objects whose faces are made of polygons) as these are easy to represent using polygon facets

OpenGL Polygon Fill-Area Functions

• We could draw polygons in polyhedra ourselves:

glBegin(GL_POLYGON);
//list points with glVertex
glEnd();

• Can also use GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, etc

GLUT Regular Polyhedron Functions

- It is often easier to draw polyhedra using GLUT commands:
 - glutWireTetrahedron();
 - glutSolidTetrahedron();
 - glutWireCube(edgeLength); //edgeLength //is a double
 - glutSolidCube(edgeLength);
 - glutWireOctahedron(); //unit size
 - glutSolidOctahedron();
 - glutWire/SolidDodecahedron();
 - glutWire/SolidIcosahedron();

Curved Surfaces

- For curved surfaces we can either use a parametric or nonparametric form for the surface.
- Next day we will consider such representations for Sphere/Ellipsoids, etc.