More Ray Tracing, Radiosity

CS116B

Chris Pollett
Apr 25, 2004.

Outline

- Space Subdivision
- Camera simulation
- Anti-aliased Ray-tracing
- Radiosity

Space Subdivision Method

- In this method, the entire scene is enclosed within a cube and this cube is divided into smaller cubes.This may be done uniformly (all cells same size) or adaptively (only non-empty cell divided).

$$
\begin{aligned}
& \text { Pixel } \\
& \text { Ray }
\end{aligned}
$$

- One can determine the cell a ray enters and the one it leaves.
- From this one can figure out which cells it passes through.
- One keeps a pre-computed list of which surfaces live on each cell.
- Now one only does intersection only with the surfaces lying in cells on the path of the ray.

Simulating Camera Focusing effect

- To model a convex camera lens, we need to specify a focal length f and a lens radius r. We assume that the lens is to be positioned in front of the projection plane.

- The camera apertures can be described with f -stops numbers $\mathrm{n}=\mathrm{f} / 2 \mathrm{r}$.
- The thin lens equation from optics gives: $1 / \mathrm{d}+1 / \mathrm{d} _\mathrm{i}=1 / \mathrm{f}$. This equation is used to determine what light focuses at a point on the image plane.

More on Camera Focusing

- To make a point at distance d from the lens be in focus we position the image plane at the position d_{i}.
- Points at a distance $d^{\prime}>d$, will be in focus at a position in front of the image plane; and points at a distance $\mathrm{d}^{\prime}<\mathrm{d}$ will be in focus behind the image plane.
- On the image plane itself these points will project to a small circle called the circle of confusion with radius given by $2 \mathrm{r}_{\mathrm{c}}=\left|\mathrm{d}^{\prime}-\mathrm{d}\right| * \mathrm{f} / \mathrm{n} * \mathrm{~d}$.
- We can choose the camera parameters to minimize this circle if we want a deeper field of view.

Anti-aliased Ray-tracing

- What corresponds to a single pixel at the front of the view frustrum corresponds to a larger region on the the back of the frustrum.
- One way to slightly compensate for this is to supersample each view plane pixel. i.e., divide it into subpixels and ray-trace corners of those subpixels.
- If an adaptive technique is used, then we might further split into sub-subpixels those sub-pixels whose four-corners are sufficient different.

Distributed Ray Tracing

- Another technique to get a more accurate intensity value of a pixel, is to subdivide the pixel into sub-pixels as before, but now we add a random jitter noise to each ray we shoot out.
- This is the basic idea of distributed ray tracing.

Radiosity

- Our basic lighting model is relatively weak at modeling radiant energy transfer in a scene.
- The radiosity model can be used to get a more realistic approximation.
- Remember from physics, we have that the radiant energy of a photon is given by $\mathrm{E}_{\text {photon }}=h f$, where f is frequency of the photon and h is Planck's constant $6.62 \times 10^{-34} \mathrm{~J}$.s.
- Summing over all photons and frequencies gives a total radiant energy E.
- The change in this with respect to time is called the radiant power or flux. $\Phi=\mathrm{dE} / \mathrm{dt}$.
- The radiant flux per unit surface area (the radiosity) is given by $\mathrm{B}=$ d Φ / dA.
- Finally, the intensity I is the radiant flux in a given direction.

The Basic Radiosity Model

- Imagine we split the scene into surface area patches P_{1}, \ldots, P_{k} with corresponding radiosities B_{i}.
- Our goal is to find the average brightness of each patch.
- The radiosity equation says $B_{i}=E_{i}+R_{i} B_{i n}$.
- Here $\mathrm{B}^{\mathrm{in}}{ }_{\mathrm{i}}$ is the light shining on P_{i}. This is equal to $\sum_{\mathrm{j}} \mathrm{F}_{\mathrm{i}, \mathrm{j}} \mathrm{B}_{\mathrm{j}}$ where $F_{i, j}$ is called the form factor.
- E_{i} and R_{i} are respectively the emissivity and reflectivity of the patch.
- Given the $\mathrm{E}_{\mathrm{i}}, \mathrm{R}_{\mathrm{i}}$, and $\mathrm{F}_{\mathrm{i}, \mathrm{j} \text {. }}$ we want to solve the linear equations for the B_{i} 's.
- Let $\mathbf{M}=\mathrm{R}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}, \mathrm{j}}$. Then $\mathbf{B}=\mathbf{E}(\mathbf{I}-\mathbf{M})^{\mathbf{- 1}}$.
- We will discuss ways to avoid having to calculate the inverse of I-M next day.

More on Form Factors

- Form factors satisfy a number of useful properties:
$-\quad \sum_{i} \mathrm{~F}_{\mathrm{ij}}=1$ for all j (Conservation of energy)
$-\quad A_{i} F_{i j}=A_{j} F_{j i}$ (uniform light reflection)
- $\quad \mathrm{F}_{\mathrm{ii}}=0$ (only plane patches)
- Next day, we will also describe how to calculate form factors.

