
Subdivision, OpenGL Splines

CS116B
Chris Pollett

Feb. 21, 2005.



Outline

• Subdivision Methods
• OpenGL Spline Functions



Subdivision and Bezier Curves

• Want to repeatedly split curve sections in half, do
enough times, then draw straight lines between
very close together sections.

• To subdivide, let P be the curve with control points
and p0 ,p1 , p2 , and p3. That is, P(0)=p0 and
P(1)=p1. Want to split curve in two parts about
P(.5) into two curves P1 and P2.



More Subdivisions

• What are the control points for these two new
curves?

• Endpoints have to match curve implies, p1,0=p0,
p1,3=P(.5)=1/8(p0 +3p1 +3 p2 + p3) = p2,0 and
p2,3=p1.

• The two curves and must be of equal slope at the
meeting point and the first derivative conditions
imply: p1,1=1/2(p0 +p1), p2,2=1/2(p2 +p3), and
p1,2= 1/4(p0 +2p1 + p2), p2,1= 1/4(p1 +2p2 + p3)

• Note by reusing how we compute these, we can
speed up computation of these values.



OpenGL Bezier-Spline Curves

• The general sequence to specify Bezier curve
parameters looks like:
glMapl*(GL_MAP1_VERTEX_3, uMin, uMax, stride,

nPts, *ctrlPts);
glEnable(GL_MAP1_VERTEX_3);

and can be deactivated with
glDisable(GL_MAP1_VERTEX_3);
Here * is f or d. uMin and uMax are the high and low

knot values. 0 and 1 for Bezier curves. nPts is the
number of control points in the spline. stride -says how
to step through the control point array, ctrlPts is the
control point array. VERTEX_4 could be used for
homogeneous coordinates.



More Open Spline Curves

• To evaluate points between the range we then use
glEvalCoord1*(uValue).

• To generate evenly spaced values can use:
glMapGrid1*(n, u1, u2);
glEvalMesh1(mode, n1, n2);
where n controls the number of spaces between u1 and

u2. Here mode is GL_POINT or GL_LINE and n1 and
n2 give integers that correspond to u1 and u2.



OpenGL Bezier-Spline Surfaces

• To get a surface we use the functions:
glMap2*(GL_MAP2_VERTEX_3, uMin, uMax, uStride,

nuPts, vMin, vMax, vStride, nvPts, *ctrlPts);
glEnable(GL_MAP2_VERTEX_3);

and to disable

glDisable(GL_MAP_VERTEX_3);

To evaluate points use
glEvalCoord2*(uVal, vVal); or
glEvalCoord2*v(uvArray);



More OpenGL Bezier Spline
Surfaces

• Can generate evenly spaced grids using
glMapGrid2*(nu, u1, u2, nv, v1, v2);
glEvalMesh(mode, nu1, nu2, nv1,nv2);



GLU B-Spline Curves

• The basic idea for setting up a B-spline is
illustrated by the following code fragment:
GLUnurbsObj *curveName;
curveName = gluNewNurbsRenderer();
gluBeginCurve(curveName);

gluNurbsCurve(curveName, nknots, *knotvector,
stride, *ctrlpts, degParam, GL_MAP1_VERTEX_3);

glEndCurve(curveName);
To delete the curve use:
gluDeleteNurbsRenderer(curveName);



GLU B-spline Surfaces
• Similar:

GLUnurbsObj *surfName;
surfName = gluNewNurbsRenderer();
gluNurbsProperty(surfName, property1, value1);
//GLU_NURBS_MODE, GLU_NURBS_TESSELLATOR
//GLU_DISPLAY_MODE, GLU_OUTLINE_POLYGON
…
gluBeginSurface(surfName);

gluNurbsSurface(surfName, nuknots, *uknotvector, nvKnots,
vKnotVector, ustride, vStride, &ctrlpts[0][0][0], uDegParam, vDegParam
GL_MAP2_VERTEX_3);

glEndSurface(surfName);


