
Dithering and Rendering

CS116B
Chris Pollett

Apr 18, 2004.

Outline

• Dithering Techniques
• Constant-Intensity Surface Rendering
• Gouraud Surface Rendering
• Phong Surface Rendering
• Fast Phong Surface Rendering

Dithering Techniques
• Last day, we talked about using dithered noise with intensity values to

get halftones without reducing resolution.
• Another method to do dithering is called ordered dithering.
• In this method, a dither matrix Dn is used.

D2=
3 1
0 2 D3=

7 2 6
4 0 1
3 8 5

Dn=
4Dn/2 + D2(1,1)Un/2 4Dn/2 + D2(1,2)Un/2

4Dn/2 + D2(2,1)Un/2 4Dn/2 + D2(2,2)Un/2

• Here Un is the n x n all 1’s matrix.

• Given a pixel (x,y) and a intensity 0 <= I <= n2. We calculate
j = (x mod n) +1, k = (y mod n) +1 and check if

I > Dn(j,k). If yes, turn the pixel on, else off.

Still More Dithering
• Another dithering technique is called error diffusion.
• In this technique, the error between an input intensity and the selected

intensity of a pixel position is spread out to the pixels to the right and
below the current pixel position.

• Suppose I is intensity value in image at (i,j) and I’ is the intensity we
can display at this location. Then we compute E=I-I’ and add to
intensities of neighbors: (i+1,j), (i-1, j+1), (i, j+1), (i+1, j+1); the
values a*E, b*E, c*E, d*E. Here we want a+b+c+d <=1. For
example, could use a= 7/16, b= 3/16, c= 5/15, d= 1/16.

• One problem with this technique is that it can cause ‘ghosts’ on parts
of the image to show up.

Constant-Intensity Surface
Rendering

• We want to use our lighting model to compute
intensity values for points on our surfaces.

• Constant surface-rendering or flat surface
rendering is probably the fastest way to do this:
– We assign the same color to all points in a projected

surface.
• It is a reasonable approximation when:

– The polygon is one face of a polyhedron and is not a section of a
curved-surface approximation mesh.

– All light sources are far enough away that N.L is approximately
constant across the surface.

– The viewing position is far enough so that V.R is approximately
constant across the surface. R being the reflected light vector; V
being the viewing vector.

Gouraud Surface Rendering

• We process each polygon in the scene in the
following way:

1. Determine the average unit normal vector at each
vertex of the polygon (to do this we average the
polygon normals of polygons containing this vertex).

2. Apply the lighting model to get an intensity of this
vertex.

3. Linearly interpolate the vertex intensities over the
projected area of the polygon.

Example of Step 3

• I4= (y4-y2)/(y1-y2)I1 + (y1-y4)/(y1-y2)I2
• Could calculate I5 similarly.
• From this, Ip=(x5-xp)/(x5-x4)I4 + (xp-x4)/(x5-x4)I5
• These numbers can be computed incrementally

along the scan-line. And similarly, could be
incrementally updated between scan-lines.

1

2

3

P 54

Phong Surface Rendering

• A more accurate but slower way to do
interpolation is to interpolate the normals across
the surface.

• This is called Phong-surface rendering.
• In this procedure, we:

– determine the average unit normal vector at each vertex
of the polygon.

– linearly interpolate the vertex normal over the projected
area of the polygon.

– apply an illumination model to positions along scan
lines so as to calculate pixel intensities using the
interpolated normals.

Fast Phong Surface Rendering

• Recalculating intensities for each pixel in the
Phong set-up is slow.

• So instead we try to approximate these
calculations using a truncated Taylor-series
expansion and by limiting the polygons to be
triangles.

• Let N = Ax+By +C be the normal calculated for
position (x,y). Where A,B,C is determined from
the 3 vertex normals Nk, k=1,2,3.

• Idiff(x,y) = L.N/(|L||N|)
= [(L.A)x+ (L. B)y + (L. C)]/(|L|| Ax+By +C|)

More Fast Phong

• This last expression can be written as:
Idiff(x,y) = [ax+by+c]/[dx2+exy + fy2 + gx+hx+i]1/2

for example a = L.A/|L|
• Taylor expanding, this we can write this as:

Idiff(x,y) = T5x2 + T4xy + T3y2 + T2x +T1y +T0 where the
constant Ti can be found in the book.

• Can do similar tricks to approximate the specular
intensity.

