Beta splines, rational splines and computations

CS116B

Chris Pollett
Feb. 16, 2005.

Outline

- Beta Splines
- Rational Splines
- Conversion Between Spline Representations
- Displaying Splines

Beta Splines

- Beta-splines are a generalization of B-splines except we now have a geometric continuity conditions on the derivatives.

- Zeroth order continuity $\left(G^{0}\right)$ is the condition that $P_{j-1}\left(u_{j}\right)=P_{j}\left(u_{j}\right)$. 1st order $\left(\mathrm{G}^{1}\right)$ continuity is that $\mathrm{b}^{*} \mathrm{P}^{\prime}{ }_{\mathrm{j}-1}\left(\mathrm{u}_{\mathrm{j}}\right)=\mathrm{P}_{\mathrm{j}}{ }_{\mathrm{j}}\left(\mathrm{u}_{\mathrm{j}}\right)$ and 2 nd order $\left(\mathrm{G}^{2}\right)$ continuity is that $b^{2 *} P^{\prime}{ }_{j-1}\left(u_{j}\right)+c^{*} P^{\prime}{ }_{j-1}\left(u_{j}\right)=P^{\prime}{ }_{j}\left(u_{j}\right)$.
- Here $\mathrm{b}>0$ is called the bias and c is called the tension.

Example

- Large values of c tend to make the curve hug its control graph more.

Cubic Periodic Beta-Spline Matrix Rperesentation

- Again, in the cubic case there is a matrix representation for Beta splines, $\mathbf{M}_{\text {Beta }}=$

- The B-spline matrix is the special case where $\mathrm{b}=1$ and $\mathrm{c}=0$.

Rational Splines

- A rational funtion is a ratio of two polynomials.
- A rational spline is thus somehow (not exactly) the ratio of two splines.
- For example, to define a rational B-spline we use the equation:
$\mathbf{P}(\mathrm{u})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \omega_{\mathrm{k}} \mathbf{p}_{\mathrm{k}} \mathrm{B}_{\mathrm{k}, \mathrm{d}}(\mathrm{u}) / \sum_{\mathrm{k}=0}^{\mathrm{n}} \omega_{\mathrm{k}} \mathrm{B}_{\mathrm{k}, \mathrm{d}}(\mathrm{u})$
where ω_{k} is a weighting factor affecting how close the curve is to the control point.

Advantages of Rational Splines

- Can give an exact representation of the different conic sections with rational splines
- They are invariant with respect to the perspective viewing transformations.
- So to change the perspective only need to apply the perspective transformation to the control points.

Representations of rational splines

- Most graphics packages:
- use non-uniform control points. So get NURBS (nonuniform rational B-splines).
- Use homogeneous coordinates representations.
- Otherwise, rational splines constructed in a similar way to usual B-splines.
- As an example, if $d=3,\{0,0,0,1,1,1\}$ and $\omega_{0}=\omega_{2}=1$ and $\omega_{1}=r /(1-r)$

$$
\begin{gathered}
\mathbf{P}(\mathrm{u})=\left(\sum _ { k = 0 } ^ { \mathrm { n } } \mathrm { B } _ { 1 , 3 } \left(\mathbf{u} \mathbf{p}_{0} \mathrm{~B}_{0,3}\left(\mathrm{u}(\mathrm{u})+[\mathrm{r} /(1-\mathrm{r})] \mathbf{p}_{1} \mathrm{~B}_{1,3}(\mathrm{u})+\mathbf{p}_{2} \mathrm{~B}_{2,3}(\mathrm{u})\right) /\left(\mathrm{B}_{0,3}(\mathrm{u})+[\mathrm{r} /(1-\mathrm{r})]\right.\right.\right. \\
\hline
\end{gathered}
$$

- When $r>1 / 2$ get hyperbola, when $r=1 / 2$ get a parabola, $\mathrm{r}<1 / 2$ get an ellipse, when $\mathrm{r}=0$ get a straight line.

Conversion Between Spline Representations

- Sometimes it is useful to be able to convert from one kind of spline to a different kind.
- For example, to convert from a B-spline representation to an equivalent Bezier spline one.
- Suppose have equations: $\mathbf{P}(\mathbf{u})=\mathbf{U} \mathbf{M}_{\text {spline1 }} \mathbf{M}_{\text {geom } 1}$ and $\mathbf{P}(\mathbf{u})=\mathbf{U M}_{\text {spline2 }} \mathbf{M}_{\text {geom2 }}$.
- They represent the same curve if they are equal. Solving for $\mathbf{M}_{\text {geom2 }}$ gives $\mathbf{M}^{-1}{ }_{\text {spline2 }} \mathbf{M}_{\text {spline1 }} \mathbf{M}_{\text {geom } 1}$.
- Here $\mathbf{M}_{\text {spline2,spline1 }}=\mathbf{M}^{-1}{ }_{\text {spline2 }} \mathbf{M}_{\text {spline1 }}$ does not depend on the control points. The book gives for Bezier curve to B -spline conversions.

Displaying Splines

- To display a spline curve involves evaluating the parametric polynomial splines for different values of u.
- So it is useful to know some efficient way to evaluate polynomials.
- A first trick is to use Horner's rule: To evaluate polynomials like $a^{*} u^{\wedge} 3+b^{*} u^{\wedge} 2+c^{*} u+d$ compute: $\left(\left(a^{*} u+b\right) * u+c\right)^{*} u+d$.

More on displaying splines

- $\quad \mathrm{x}(\mathrm{u}), \mathrm{y}(\mathrm{u}), \mathrm{z}(\mathrm{u})$ must be calculated for successive values of u . Let's call these u_{k}.
- We assume $u_{k+1}=u_{k}+\delta$.
- Then $\mathrm{x}_{\mathrm{k}+1}=\mathrm{p}\left(\mathrm{u}_{\mathrm{k}}+\delta\right)$ and $\Delta \mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}+1}-\mathrm{x}_{\mathrm{k}}=\mathrm{p}\left(\mathrm{u}_{\mathrm{k}}+\delta\right)$ - $\mathrm{p}\left(\mathrm{u}_{\mathrm{k}}\right)$ for some polynomial p .
- $\Delta \mathrm{x}_{\mathrm{k}}$ is called a forward difference. It will in general be a $\operatorname{deg}(\mathrm{p})-1$ polynomial in u_{k}.
- Now we could in turn compute the forward difference of $\Delta \mathrm{x}_{\mathrm{k}}$. This would be a $\operatorname{deg}(\mathrm{p})-2$ polynomial and allow us to compute successive values of $\Delta \mathrm{x}_{\mathrm{k}}$. Can keep going till get degree 0 polynomial, then have completely determined the problem.

