
Beta splines, rational splines and
computations

CS116B
Chris Pollett

Feb. 16, 2005.

Outline

• Beta Splines
• Rational Splines
• Conversion Between Spline Representations
• Displaying Splines

Beta Splines
• Beta-splines are a generalization of B-splines except we now have a

geometric continuity conditions on the derivatives.

• Zeroth order continuity (G0) is the condition that Pj-1(uj)= Pj(uj). 1st
order (G1) continuity is that b*P’j-1(uj)= P’j(uj) and 2nd order (G2)
continuity is that b2*P’’j-1(uj) + c*P’j-1(uj)= P’’j(uj).

• Here b>0 is called the bias and c is called the tension.

uj-1

uj

uj+1

Pj-1(u) Pj(u)

Example

• Large values of c tend to make the curve
hug its control graph more.

b=1 b>>1

High b tends to
flatten curve to
the right

Cubic Periodic Beta-Spline
Matrix Rperesentation

• Again, in the cubic case there is a matrix
representation for Beta splines, MBeta=

• The B-spline matrix is the special case where b=1
and c=0.

-2b3 2(c + b3 + b2+b) -2(c+b2+b+1) 2
 6b3 -3(c+2b3 + 2b2) 3(c+2b2) 0
-6b 6(b3+b) 6b 0
2b3 c + 4(b2 + b) 2 0

Rational Splines

• A rational funtion is a ratio of two polynomials.
• A rational spline is thus somehow (not exactly)

the ratio of two splines.
• For example, to define a rational B-spline we use

the equation:
P(u) = ∑n

k=0ωkpkBk,d(u)/∑n
k=0ωkBk,d(u)

where ωk is a weighting factor affecting how close the
curve is to the control point.

Advantages of Rational Splines

• Can give an exact representation of the
different conic sections with rational splines

• They are invariant with respect to the
perspective viewing transformations.
– So to change the perspective only need to apply

the perspective transformation to the control
points.

Representations of rational
splines

• Most graphics packages:
– use non-uniform control points. So get NURBS

(nonuniform rational B-splines).
– Use homogeneous coordinates representations.
– Otherwise,rational splines constructed in a similar way

to usual B-splines.
• As an example, if d=3, {0,0,0,1,1,1} and ω0= ω2=1 and
ω1=r/(1-r)
 P(u) = (∑n

k=0p0B0,3(u)+[r/(1-r)] p1B1,3(u)+p2B2,3(u))/(B0,3(u)+[r/(1-r)]
B1,3(u)+B2,3(u))

• When r>1/2 get hyperbola,when r=1/2 get a parabola,
r<1/2 get an ellipse, when r=0 get a straight line.

Conversion Between Spline
Representations

• Sometimes it is useful to be able to convert from
one kind of spline to a different kind.

• For example, to convert from a B-spline
representation to an equivalent Bezier spline one.

• Suppose have equations: P(u) = UMspline1Mgeom1
and P(u) = UMspline2Mgeom2.

• They represent the same curve if they are equal.
Solving for Mgeom2 gives M-1

spline2Mspline1Mgeom1.
• Here Mspline2,spline1=M-1

spline2Mspline1 does not
depend on the control points. The book gives for
Bezier curve to B-spline conversions.

Displaying Splines

• To display a spline curve involves evaluating the
parametric polynomial splines for different values
of u.

• So it is useful to know some efficient way to
evaluate polynomials.

• A first trick is to use Horner’s rule: To evaluate
polynomials like a*u^3+b*u^2+c*u+d compute:
((a*u+b)*u +c)*u +d.

More on displaying splines
• x(u), y(u), z(u) must be calculated for successive values of u. Let’s call

these uk.
• We assume uk+1= uk + δ.
• Then xk+1 =p(uk+ δ) and Δxk = xk+1 - xk =p(uk+ δ)- p(uk) for some

polynomial p.
• Δxk is called a forward difference. It will in general be a deg(p)-1

polynomial in uk.

• Now we could in turn compute the forward difference of Δxk. This
would be a deg(p)-2 polynomial and allow us to compute successive
values of Δxk. Can keep going till get degree 0 polynomial, then have
completely determined the problem.

