
Physical Modeling and Surface
Detection

CS116B
Chris Pollett

Mar. 14, 2005.

Outline

• Particle Systems
• Physical Modeling and Visualization
• Classification of Visible Surface Detection

Algorithms
• Back Face Detection
• The Depth Buffer Method

Particle Systems

• It is often useful to describe an object as a
collection of disjoint pieces.

• Such an object is called a particle system.
• Particle systems can be useful for modeling things

like smoke, fluids, explosions, grass, etc.
• As an example, to create fireworks, start with a

collection of particle spheres drawn at some single
fixed point. Shoot the particles out from this point
in different, random directions and add gravity.

Physical Modeling

• Non-rigid objects, such as rope, cloth,etc, can be
modeled with physically based modeling
techniques.

• For instance, a cloth might be modeled as a grid of
mass points connected by strings.

• Force equation for such a spring given F = kx. Can
model how mass points move when other forces
like gravity are applied. Then one can texture map
polygons faces of grid of mass points to draw the
final object.

Visualization of Data Sets

• Scalar Fields -- function from several dimensions
into one. For example, f(x,y) or f(x,y,z).
– To draw f(x,y) can use elevation grid
– To draw f(x,y,z) can use pseudo-color methods and

assign ranges of values for field different color values.
– To draw can use contour plots of f(x,y) =c or f(x,y,z)=c

for different c’s. 2D-case gives isolines; 3d case gives
iso-surfaces.

Representing Vector Fields

• Functions which take a vector and return a
vector.

• F(x,y,z) or F(x,y).
– can draw lines and arrows attached to points

(x,y,z), or (x,y).
– Can use field lines

Representing Tensors

• A tensor of type (p, q) on Rn takes p row vectors
of length n and q column vectors of length and
outputs a scalar. Alternatively, can think of as
taking q column vectors and outputting p row
vectors of length n. Map must be linear in each
argument.

• Used in talking about materials (stress tensor),
fluid dynamics, relativity, etc.

• To draw one can output tensor contractions of the
tensor or can use different colored scalar or vector
representations superimposed on the same scene.

Classification of Visible Surface
Detection Algorithms

• Algorithms for determining which surfaces
would be visible on the screen can be
broken into two broad categories:
– Object space methods -- these compare objects

or parts of objects to figure out who is in front
of who.

– Image space methods -- these compute
visibility point by point at each pixel value on
the projection plane.

Back Face Detection
• A point (x,y,z) is said to be behind a polygon surface if Ax + By + Cz

+D <0 where A,B,C,D determine the plane of the polygon.
• If this point is along the line of sight to the surface, then we must be

looking at the back of the polygon.
• Said another way, if N is the normal to the polygon and Vview is the

viewing vector from the camera position, then the polygon is a back
face if Vview·N >0.

• If the object has been converted to projection coordinates, then our
viewing direction is parallel to the z axis and only need to consider z
component of N. So a polygon is a back iff the z component of N, C
above, is less than 0.

The Depth Buffer Method

• This method compares surface depth values
throughout a scene for each pixel position
on the projection plane.

• It works for non planar surfaces, but is
usually implemented for polygon surfaces.

• Sometimes called z-buffer method.

Algorithm

• Let depthBuff(x,y) := 1.0, frameBuff(x,y) = backgndColor; //assume 1.0=far
• Process each polygon in scene one at a time.

– for each project (x,y) pixel position of a polygon, calculate the depth z.
– If z<depthBuff(x,y) compute surface color of that polygon, set

depthBuff(x,y) =z;
• frameBuff(x,y) =surfColor(x,y);

(x,y)

More Algorithm

• At (x,y), depth is calculated from the plane
equation as: z= -(Ax+By+D)/C.

• We want to be able to quickly compute adjacent
points on a scan-line. So given z, to calculate
depth at (x+1, y) could compute z’= z- A/C

• New x’ values along an edge of a polygon
(changing y value by -1) given by x’ = x - 1/m,
where m is the slope of the line.

• For this x’ get: z’ = z +(A/m+ B)/C.
• The above thus describes how to quickly compute

along a scan line, then how to move to next line.

