More Splines, Bezier Splines

CS116B

Chris Pollett
Feb 9, 2005.

Outline

- Cardinal Splines
- Kochanek-Bartels Splines
- Bezier Spline Curves
- Bezier Surfaces

Cardinal Splines

- Similar to Hermite Splines except now we don't explicitly give the value of the derivatives at the endpoints.
- Instead, we calculate it from the coordinates of the two adjacent control points.
- That is:

$$
\begin{aligned}
& \mathrm{P}(0)=\mathrm{p}_{\mathrm{k}} \\
& \mathrm{P}(1)=\mathrm{p}_{\mathrm{k}+1} \\
& \mathrm{P}^{\prime}(0)=1 / 2(1-\mathrm{t})\left(\mathrm{p}_{\mathrm{k}+1}-\mathrm{p}_{\mathrm{k}-1}\right) \\
& \mathrm{P}^{\prime}(1)=1 / 2(1-\mathrm{t})\left(\mathrm{p}_{\mathrm{k}+2}-\mathrm{p}_{\mathrm{k}}\right)
\end{aligned}
$$

- Here t is called the tension and is a fixed constant. When $t=0$, Cardinal Splines called Catmull-Rom splines or Overhauser splines.
- Same idea as with Hermite splines can be used to find matrix and generating polynomials.

Kochanek-Bartels Splines

- These are a generalization of Cardinal Splines to allow for discontinuous derivatives across boundaries.
- Conditions this time are:

$$
\begin{aligned}
& \mathrm{P}(0)=\mathrm{p}_{\mathrm{k}} \\
& \mathrm{P}(1)=\mathrm{p}_{\mathrm{k}+1} \\
& \mathrm{P}^{\prime}(0)_{\text {in }}=1 / 2(1-\mathrm{t})\left((1+\mathrm{b})(1-\mathrm{c})\left(\mathrm{p}_{\mathrm{k}-} \mathrm{p}_{\mathrm{k}-1}\right)+(1-\mathrm{b})(1+\mathrm{c})\left(\mathrm{p}_{\mathrm{k}+1}-\mathrm{p}_{\mathrm{k}}\right)\right) \\
& \mathrm{P}^{\prime}(1)_{\text {out }}=1 / 2(1-\mathrm{t})\left((1+\mathrm{b})(1+\mathrm{c})\left(\mathrm{p}_{\mathrm{k}+1}-\mathrm{p}_{\mathrm{k}}\right)+(1-\mathrm{b})(1-\mathrm{c})\left(\mathrm{p}_{\mathrm{k}+2}-\mathrm{p}_{\mathrm{k}+1}\right)\right)
\end{aligned}
$$

- $\quad b$ is called the bias and adjusts the curvature at each end.
- c controls the continuity. If nonzero, curve will be discontinuous.

Bezier Spline Curves

- Another kind of spline curve.
- Bezier curves have several useful properties and are widely implemented in graphics systems.
- They work with arbitrarily many control points but most graphics packages limit the number to four.

Bezier Curve Equations

- Assume have $\mathrm{n}+1$ control points $\mathrm{p}_{\mathrm{k}}=\left(\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{k}}, \mathrm{z}_{\mathrm{k}}\right)$.
- The Bezier curve is given by:
$\mathrm{P}(\mathrm{u})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}} \mathrm{BEZ} \mathrm{K}_{\mathrm{k}, \mathrm{n}}(\mathrm{u})$ for u in $[0,1]$
- Here $\operatorname{Bez}_{\mathrm{k}, \mathrm{n}}(\mathrm{u})=\mathrm{C}(\mathrm{n}, \mathrm{k}) \mathrm{u}^{\mathrm{k}}(1-\mathrm{u})^{\mathrm{n}-\mathrm{k}}$ where $\mathrm{C}(\mathrm{n}, \mathrm{k})$ is n!/(k!n-k!)
- Since $C(n, k)=(n-k+1) / k * C(n, k-1)$ can show: $\mathrm{BEZ}_{\mathrm{k}, \mathrm{n}}(\mathrm{u})=(1-\mathrm{u}) \mathrm{BEZ}_{\mathrm{k}, \mathrm{n}-1}(\mathrm{u})+\mathrm{uBEZ} \mathrm{k}_{\mathrm{k}-1, \mathrm{n}-1}(\mathrm{u})$ where $\mathrm{BEZ}_{\mathrm{k}, \mathrm{k}}(\mathrm{u})=\mathrm{u}^{\mathrm{k}}$, and $\mathrm{BEZ}_{0, \mathrm{k}}(\mathrm{u})=(1-\mathrm{u})^{\mathrm{k}}$.

Properties of Bezier Curves

- The curve connects with the first and last point. i.e., $\mathbf{P}(0)=\mathbf{p}_{\mathbf{0}}$ and $\mathbf{P}(1)=\mathbf{p}_{\mathbf{n}}$.
- The value of the derivatives at the endpoints can be calculated from the control points.

$$
\begin{aligned}
& \mathbf{P}^{\prime}(0)=-n \mathbf{p}_{0}+n \mathbf{p}_{\mathbf{1}} \\
& \mathbf{P}^{\prime}(1)=-\mathrm{n} \mathbf{p}_{\mathrm{n}-1}+\mathrm{n} \mathbf{p}_{\mathrm{n}}
\end{aligned}
$$

That is the slope of curve is along the between last two pairs of points.

- The second derivative can be calculated using:

$$
\begin{aligned}
& \mathbf{P}^{\prime \prime}(0)=\mathrm{n}(\mathrm{n}-1)\left[\left(\mathbf{p}_{\mathbf{2}}-\mathbf{p}_{\mathbf{1}}\right)-\left(\mathbf{p}_{\mathbf{1}}-\mathbf{p}_{\mathbf{0}}\right)\right] \text { and } \mathbf{P}^{\prime} ’(1)=\mathrm{n}(\mathrm{n}-1)\left[\left(\mathbf{p}_{\mathrm{n}-\mathbf{2}^{-}}\right.\right. \\
& \left.\left.\mathbf{p}_{\mathrm{n}-\mathbf{1}}\right)-\left(\mathbf{p}_{\mathbf{n}-1}-\mathbf{p}_{\mathbf{n}}\right)\right]
\end{aligned}
$$

- Lastly, $\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{BEZ}_{\mathrm{k}, \mathrm{n}}(\mathrm{u})=1$. So contained with hull of points.

Design Techniques for Bezier

Example of convex hull property

Curves

- If make first and last control points the same get a closed curve
- Can generate complicated curves by piecing together several degree four curves and matching at the endpoints.
- Note it is easy to make two adjacent curves C1 and C2 first derivative continous (C^{1}): one puts $\mathbf{p}_{\mathbf{n}-} \mathbf{p}_{\mathrm{n}-1}$ of C 1 and $\mathrm{p}_{1-}-\mathrm{p}_{0}$ of C 2 all on the same line.
- Can use our equation for the second derivative to obtain even C^{2} continuity.

Cubic Bezier Curves

- If have four control point case get a cubic curve.
- The four blending functions are:
$\mathrm{BEZ}_{0,3}=(1-\mathrm{u})^{3}$
$\mathrm{BEZ}_{1,3}=\mathrm{u}^{*}(1-\mathrm{u})^{2}$
$\mathrm{BEZ}_{2,3}=\mathrm{u}^{2 *}(1-\mathrm{u})$
$\mathrm{BEZ}_{3,3}=\mathrm{u}^{3}$

Bezier Matrix

$$
\mathrm{P}(\mathrm{u})=\left[\mathrm{u}^{3} \mathrm{u}^{2} \mathrm{u}^{1} 1\right] \mathrm{M}_{\mathrm{Bez}}\left[\mathrm{p}_{0} \mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}\right]
$$

Where

$$
\mathbf{M}_{\mathrm{Bez}}=\left[\begin{array}{cccc}
& & & \\
-1 & 3 & -3 & 1 \\
3 & 6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Bezier Surfaces

As with other Spline can generalize Bezier Curves to Bezier Surfaces:

$$
\mathrm{P}(\mathrm{u}, \mathrm{v})=\sum_{\mathrm{j}=0}^{\mathrm{m}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{j}, \mathrm{k}} \mathrm{BEZ}_{\mathrm{j}, \mathrm{~m}}(\mathrm{v}) \mathrm{BEZ}_{\mathrm{k}, \mathrm{n}}(\mathrm{u})
$$

