Types of Splines

CS116B Chris Pollett Feb 7, 2005.

Outline

- Spline Representations
- Cubic-Spline Interpolation

Spline Representations

- Last day we said how to represent a spline using its parametric cubic (x(u), y(u)) where u is in [0,1], the endpoint values (x(0), y(0)), (x (1), y(1)) and derivatives at the endpoints (x'(0), y'(0)) and (x'(1), y'(1)). Here x(u) looks like: a_x*u³ + b_x*u² + c_x*u + d_x. and y(u) is similar.
- Today we'll look at different ways to represent this same equations

Other Representations

- Note could write x(u) as: $[u^3 u^2 u 1][a_x b_x c_x d_x]^t = U \cdot C$ (the little t is for transpose)
- One can also write C as $M_{spline} \cdot M_{geom}$ where M_{spline} is a the boundary values on the spline and M_{geom} contains a 4x4 matrix based on the coordinates of the control points.
- Thus, x(u) is sometimes written as $U \cdot M_{spline}$ • M_{geom} which is called the *basis matrix*.
- Finally, sometimes see splines represented in terms of coordinates of control points as x(u)=Σ³_{k=0} g_k •BF_k{u} where BF_k are called blending functions.

Spline Surfaces

- The splines discussed so far were 2D. Can also specify surfaces.
- To do this need to specify sets of orthogonal spline curves using a mesh of control points.
- Might have an equation like: $P(u,v) := \sum_{i,j} p_{i,j}BF_i(u)BF_j(v)$

Trimming Spline Surfaces

- Sometimes in CAD applications it is useful to be able to trim out sections from a spline surface.
- Some graphics packages have facilities to generate **trimming curves** to support this

Cubic-Spline Interpolation Methods

- Rather than using general splines of arbitrary degree, cubic splines are often used to design objects because they are reasonably flexible and can be computed and stored efficiently.
- Consider the curve

p2 ...

More on Cubic Spline Interpolation

- Between each pair of control points p_k, p_{k+1} we will try to find a best approximating cubic spline.
 (x(u), y(u), z(u)) where x(u), y(u), z(u) are cubics in u.
- To do this we need to set enough boundary conditions at the endpoints of a segment so this spline is uniquely determined.
- Next few slides discuss different ways to do this

Natural Cubic Splines

- In these kind of spline, if have n+1 control points then we specify n cubic splines.
- We specify the values of the spline, its first and second derivative, at each of its endpoints.
- We require adjacent splines to have matching values at the endpoints.
- To complete the description usual set the first and second derivative of p_0 and p_n to be 0.

Hermite Interpolation

- Natural splines are hard to locally update
- For Hermite splines we specify the value of the tangent at each control point rather than say that this value must be equal among adjacent curves.
- For example, if want to specify curve P between two points p_k , p_{k+1} , would use equations:

 $P(0)=p_k$

 $\mathbf{P}(1) = \mathbf{p}_{k+1}$

 $P'(0) = Dp_k$ Here Dp_k is some fixed value like 4. $P'(1) = Dp_{k+1}$

More on Hermite Interpolation

Nnow $P(u) = au^3 + bu^2 + cu + d$ for $0 \le u \le 1$

- That is $P(u) = [u^3 u^2 u \ 1][a b c d]^t$
- Taking the derivative we have P'(u) :=
 [3u² 2u 1 0] [a b c d]^t
- Substituting values 0 and 1 for u in the above gives us the matrix equation:

$$\begin{bmatrix} p_k \\ p_{k+1} \\ p_k \\ p_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Call the inverse matrix $M_{H.}$ Can solve now for **a b c d** by taking $M_{H.}$

Yet More on Hermite Interpolation

• So M_H is:

- $\mathbf{P}(u) = [u^3 u^2 u \ 1] \mathbf{M}_{H} [\mathbf{p}_k \mathbf{p}_{k+1} \mathbf{D} \mathbf{p}_k \mathbf{D} \mathbf{p}_{k+1}]^t$
- From which we can calculate the blending functions: $P(u) = p_{k}(2u^{3} - 3u^{2} + 1) + p_{k+1}(-2u^{3} + 3u^{2}) + Dp_{k}(u^{3} - 2u^{2} + u) + Dp_{k+1}(u^{3} - u^{2})$ $P(u) = p_{k}H_{0}(u) + p_{k+1}H_{1}(u) + Dp_{k}H_{2}(u) + Dp_{k+1}H_{3}(u)$