Types of Splines

CS116B

Chris Pollett
Feb 7, 2005.

Outline

- Spline Representations
- Cubic-Spline Interpolation

Spline Representations

- Last day we said how to represent a spline using its parametric cubic ($\mathrm{x}(\mathrm{u}), \mathrm{y}(\mathrm{u})$) where u is in $[0,1]$, the endpoint values $(x(0), y(0))$, (x (1), $\mathrm{y}(1))$ and derivatives at the endpoints ($\left.\mathrm{x}^{\prime}(0), \mathrm{y}^{\prime}(0)\right)$ and ($\mathrm{x}^{\prime}(1)$, $\left.\mathrm{y}^{\prime}(1)\right)$. Here $\mathrm{x}(\mathrm{u})$ looks like: $\mathrm{a}_{\mathrm{x}}{ }^{*} \mathrm{u}^{3}+\mathrm{b}_{\mathrm{x}}$ ${ }^{*} u^{2}+c_{x}^{*} u+d_{x}$. and $y(u)$ is similar.
- Today we'll look at different ways to represent this same equations

Other Representations

- Note could write $x(u)$ as:
$\left[u^{3} u^{2} u 1\right]\left[a_{x} b_{x} c_{x} d_{x}\right]^{t}=\mathbf{U} \cdot \mathbf{C}$ (the little t is for transpose)
- One can also write \mathbf{C} as $\mathbf{M}_{\text {spline }} \cdot \mathbf{M}_{\text {geom }}$ where $\mathbf{M}_{\text {spline }}$ is a the boundary values on the spline and $\mathbf{M}_{\text {geom }}$ contains a 4×4 matrix based on the coordinates of the control points.
- Thus, $\mathrm{x}(\mathrm{u})$ is sometimes written as $\mathbf{U} \cdot \mathbf{M}_{\text {spline }}$ $\cdot \mathbf{M}_{\text {geom }}$ which is called the basis matrix.
- Finally, sometimes see splines represented in terms of coordinates of control points as $\mathrm{x}(\mathrm{u})=\Sigma^{3}{ }_{\mathrm{k}=0} \mathrm{~g}_{\mathrm{k}} \cdot \mathrm{BF}_{\mathrm{k}}\{\mathrm{u}\}$ where BF_{k} are called blending functions.

Spline Surfaces

- The splines discussed so far were 2D. Can also specify surfaces.
- To do this need to specify sets of orthogonal spline curves using a mesh of control points.
- Might have an equation like:

$$
\mathrm{P}(\mathrm{u}, \mathrm{v}):=\Sigma_{\mathrm{i}, \mathrm{j}} \mathrm{p}_{\mathrm{i}, \mathrm{j}} \mathrm{BF}_{\mathrm{i}}(\mathrm{u}) \mathrm{BF}_{\mathrm{j}}(\mathrm{v})
$$

Trimming Spline Surfaces

- Sometimes in CAD applications it is useful to be able to trim out sections from a spline surface.
- Some graphics packages have facilities to generate trimming curves to support this

Cubic-Spline Interpolation Methods

- Rather than using general splines of arbitrary degree, cubic splines are often used to design objects because they are reasonably flexible and can be computed and stored efficiently.
- Consider the curve
- One wants to pe able to approxinfate this curve with cubic splines.

More on Cubic Spline Interpolation

- Between each pair of control points p_{k}, p_{k+1} we will try to find a best approximating cubic spline. $(\mathrm{x}(\mathrm{u}), \mathrm{y}(\mathrm{u}), \mathrm{z}(\mathrm{u}))$ where $\mathrm{x}(\mathrm{u}), \mathrm{y}(\mathrm{u}), \mathrm{z}(\mathrm{u})$ are cubics in u.
- To do this we need to set enough boundary conditions at the endpoints of a segment so this spline is uniquely determined.
- Next few slides discuss different ways to do this

Natural Cubic Splines

- In these kind of spline, if have $\mathrm{n}+1$ control points then we specify n cubic splines.
- We specify the values of the spline, its first and second derivative, at each of its endpoints.
- We require adjacent splines to have matching values at the endpoints.
- To complete the description usual set the first and second derivative of p_{0} and p_{n} to be 0 .

Hermite Interpolation

- Natural splines are hard to locally update
- For Hermite splines we specify the value of the tangent at each control point rather than say that this value must be equal among adjacent curves.
- For example, if want to specify curve P between two points $\mathrm{p}_{\mathrm{k}}, \mathrm{p}_{\mathrm{k}+1}$, would use equations:
$\mathrm{P}(0)=\mathrm{p}_{\mathrm{k}}$
$\mathrm{P}(1)=\mathrm{p}_{\mathrm{k}+1}$
$P^{\prime}(0)=D p_{k}$ Here Dp_{k} is some fixed value like 4 . $P^{\prime}(1)=\mathrm{Dp}_{\mathrm{k}+1}$

More on Hermite Interpolation

Nnow $\mathbf{P}(\mathrm{u})=\mathbf{a} \mathrm{u}^{3}+\mathbf{b} \mathbf{u}^{2}+\mathbf{c u}+\mathbf{d}$ for $0<=\mathbf{u}<=1$

- That is $\mathbf{P}(u)=\left[u^{3} u^{2} u 1\right][\mathbf{a} \text { b c d }]^{t}$
- Taking the derivative we have $\mathbf{P}^{\prime}(\mathrm{u}):=$ [$\left.3 \mathbf{u}^{2} 2 \mathbf{u} 10\right]\left[\begin{array}{l}\text { b } \\ \text { c d }\end{array}{ }^{\mathbf{t}}\right.$
- Substituting values 0 and 1 for u in the above gives us the matrix equation:

Yet More on Hermite Interpolation

- So $\mathbf{M}_{\mathbf{H}}$ is:

$$
\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

- $\mathbf{P}(\mathrm{u})=\left[\mathrm{u}^{3} \mathrm{u}^{2} \mathrm{u} 1\right] \mathbf{M}_{\mathrm{H}}\left[\mathbf{p}_{\mathrm{k}} \mathbf{p}_{\mathrm{k}+1} \mathrm{Dp}_{\mathrm{k}} \mathbf{D} \mathbf{p}_{\mathrm{k}+1}\right]^{\mathrm{t}}$
- From which we can calculate the blending functions:

$$
\begin{aligned}
& \mathbf{P}(u)=\mathbf{p}_{k}\left(2 u^{3}-3 u^{2}+1\right)+\mathbf{p}_{k+1}\left(-2 u^{3}+3 u^{2}\right)+\mathbf{D}_{\mathbf{p}_{k}}\left(u^{3}-2 u^{2}\right. \\
& +\mathrm{u})+\mathbf{D} \mathbf{p}_{k+1}\left(\mathrm{u}^{3}-\mathrm{u}^{2}\right) \\
& \mathbf{P}(\mathrm{u})=\mathbf{p}_{\mathbf{k}} \mathrm{H}_{0}(\mathrm{u})+\mathbf{p}_{\mathrm{k}+1} \mathrm{H}_{1}(\mathrm{u})+\mathbf{D}_{\mathbf{p}_{\mathbf{k}} \mathrm{H}_{2}(\mathrm{u})+\mathbf{D} \mathbf{p}_{\mathbf{k}+1} \mathrm{H}_{3}(\mathrm{u})}
\end{aligned}
$$

