Oblique and Perspective Projections

CS116A
Chris Pollett
Nov. 29, 2004.

Outline

- Oblique Parallel Projections
- Perspective projections
- 3D Screen coordinates

Oblique Projections

- In a parallel projection, if the the lines of projection are not perpendicular to the viewing plane the projection is called oblique.
- For example, the right figure is being projected obliquely.

Drafting and Design

- In engineering and architecture, an oblique projection is often specified by giving two angles: α and ϕ.

- A point $\mathrm{A}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ maps under an oblique projection to $B=(x p, y p, z v p)$.
- Let C be (x,y, zvp)
- Then α is the angle ABC
- ϕ is the angle between the line L from B to C and the horizontal line of view plane.

Some Equations

- $\operatorname{So} \mathrm{xp}=\mathrm{x}+\mathrm{L} \cos \phi, \mathrm{yp}=\mathrm{x}+\mathrm{L} \sin \phi$
- $\tan \alpha=(z v p-z) / L$.
- That is, $\mathrm{L}=(\mathrm{zvp}-\mathrm{z}) * \cot \alpha$
- Let $\mathrm{L} 1=\cot \alpha$. This equals L , where $\mathrm{zvp}-\mathrm{z}=1$
- So can write:

$$
x p=x+L 1(z v p-z) \cos \phi, y p=y+L 1(z v p-z) \sin \phi
$$

This is an orthogonal projection when $\mathrm{L} 1=0$.

- Notice this is a shearing transformation in the z axis

Cavalier and Cabinet Parallel Projections

- Typical choices for ϕ are 30 or 45 degrees.
- $\tan \alpha$ is usually chosen to be 1 or 2 .
- The $(45,1)$ case is called a cavalier projection (lines perp to viewing axis retain their length)
- The $(30,2)$ case is called a cabinet projection (lines perp to viewing axis half their length)

Oblique Parallel Projection

Vector

- In graphics packages that support oblique projections the direction of projection to the view plane is specified with a parallel projection vector Vp from some particular point (x,y,z) to (xp,yp, zvp). So Vpy/Vpx = $\tan \phi$
- From this get $(x p-x) /(z v p-z)=V p x / V p y$
- Also, get (yp-y)/(zvp -z) = Vpy/Vpz

More Equations

- So x and y transform to:

$$
\begin{aligned}
& x p=x+(z v p-z) V p x / V p z \quad \text { and } \\
& y p=y+(z v p-z) V p y / V p z
\end{aligned}
$$

Clipping Window and Oblique Parallel-Projection View Volume

- View volume is set up in a similar fashion to orthogonal case.
- Specify a clipping window
- Have a near and far plane

Oblique Parallel Projection Matrix

- The matrix look like M_oblique:
$\left[\begin{array}{lcccc}1 & 0 & -\mathrm{Vpx} / \mathrm{Vpz} & \mathrm{zvpVpx} / \mathrm{Vpz} \\ 0 & 1 & -\mathrm{Vpy} / \mathrm{Vpz} & \mathrm{zvpVpy} / \mathrm{Vpz} \\ 0 & 0 & 1 & 0 & \\ 0 & 0 & 0 & 1 & \end{array}\right]$

Normalization Transformation for an Oblique Parallel Projection

- Once we have done our projection, we want to map things into our normalized cube
- To do this we compose M_ortho,norm with M_oblique

Perspective Transformation Coordinates

- To do a perspective transformation need to specify a perspective reference point in (xprp, yprp, zprp).
- Points along line from (x, y, z) to this perspective point given by:
- $x^{\prime}=x-(x-x p r p) u, y^{\prime}=y-(y-y p r p) u$ and z^{\prime}
$=\mathrm{z}-(\mathrm{z}-\mathrm{zprp}) \mathrm{u}$ where u is between 0 and 1 .

Calculating where things go

- So u =(zvp -z)/(zprp - z)
- Substituting this back get
- $x p=x *(z p r p-z v p) /(z p r p-z)+x p r p * u$ and $y p=y^{*}(z p r p-z v p) /(z p r p-z)+y p r p * u$

