Yet More Parameter Attributes--Curve, OpenGL, Fill

> CS116A Chris Pollett Sep22, 2004.

Introduction

- Curve Attributes
- OpenGL Point Attribute Functions
- OpenGL Line Attribute Functions
- Fill-area attributes

Curve Attributes

What attributes are available is similar to the line case:

- color
- width
- dot-dash patterns
- pen and brush options

However, different techniques are sometimes used for rendering curves

Curve Display Techniques

To display circles, conics, etc. of varying thicknesses:

- Can use horizontal or vertical spans of pixels as in the line case. This can be used circles, conics, etc.
- Can fill in area between two parallel curves. This works well for circles, but have to be careful when do for ellipses.
- Pixel mask and pen techniques the work same as in line case.

OpenGL Point Attribute Functions

- We now begin to discuss how various state attributes are specified in OpenGL. We begin with points.
- To specify the size of a point in OpenGL we use the function:

glPointSize(size);

OpenGL Line Attribute Functions

- The command for drawing a line with a pattern is glLineStipple(repeatFactor, pattern);
- repeatFactor is the number of times each pixel in the pattern should be repeated before going to the next pixel.
- The pattern is a 16 bit hex number Ex: 00FF.
- Finally have to use glEnable(GL_LINE_STIPPLE);/glDisable(GL_LI NE_STIPPLE); to enable disable the line pattern mode.

Example code fragment

```
glClear(GL COLOR BUFFER BIT);
glEnable(GL_LINE_STIPPLE);
glColor3f(1.0, 0.0, 0.0);
glBegin(GL LINES);
    glLineStipple(1,0x000F);
    glLineWidth(5.0);
    glVertex2f(100.0,50.0);
    glVertex2f(40.0, 200.0);
glFlush();
glEnd();
glDisable(GL LINE STIPPLE);
```

More Line Effects.

- Can also have lines that smoothly transition from one color to another color.
- Here's how:

glShadeModel(GL_SMOOTH); glBegin(GL_LINES); glColor3f(0.0, 0.0, 1.0); glVertex2i(50, 50); glColor3f(1.0, 0.0, 0.0); glVertex2i(250, 250); glEnd();

• The shade model GL_FLAT would cause the line to be drawn with the second endpoint color.

Fill-areas

Many graphics packages limit fill regions to polygons as can describe with a set of linear equations. Paint programs on the other hand allow more complicated fill regions circles, ellipses and things with curved boundaries.

There are two common fill techniques:

- scan horizontally and figure out which line segments are in our region
- start at some interior position and spread to the boundary.

Fill Area Attributes: Fill Style

- A basic fill-area attribute is the display style of the interior of the figure.
 - Possible types include: hollow, solid, patterned.
- Patterns are described by specifying a mask that is to be applied to the display area.
- Some systems allow one to specify an initial position from which to start applying the mask.
- If the fill pattern is rectangular then the process of filling the region is called *tiling* and the fill pattern is called a *tiling pattern*.

Implementing Fill Styles

- Fix a starting point for pattern (xp, yp).
- When at a point on a scan line that is in the fill area figure out which pixel position in the pattern we should be at. If it is on then draw that pixel, else don't.

Color-Blended Fill Regions

- It is also possible to combine a fill pattern with the background color in various ways:
- A pattern can be combined with background colors using a *transparency factor*. This could be used to say how much of the background should be mixed with the object color.
- Another technique is to mix the fill pattern with background according to some logical operations. For instance, AND, OR, XOR.

Soft-Fill or Tint-Fill

- Used to soften fill colors at object borders that have been blurred to antialias the edge.
- Done by letting **F** be the foreground color and **B** be the background color. Would fill with color $\mathbf{P} = t\mathbf{F} + (1 - t)\mathbf{B}$, where *t* is between 0 and 1.
- This technique can be generalized to blend more than one color.