3D transformations

CS116A

Chris Pollett
Oct 18, 2004.

Outline

- 3D Rotations
- 3D Scaling

3D Rotations

- Easiest to describe such rotations in terms of rotations about the coordinate axes:

- Standard convention is to do these rotations counterclockwise along the axis looking into origin

Coordinate Axes Rotations

- z-axis rotations:
$x^{\prime}=x \cos \theta-\mathrm{y} \sin \theta$
$y^{\prime}=y \sin \theta+y \cos \theta$
$\mathrm{z}^{\prime}=\mathrm{z}$
- This gives the matrix $\mathrm{R}_{\mathrm{z}}(\theta):\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
0

Other coordinates

- To figure out the rotations about the other axes we can cyclically permute the variables using: $\mathrm{x}->\mathrm{y}$ -$>\mathrm{Z}->\mathrm{X}$
- So a rotation about the x -axis is given by:

$$
\begin{aligned}
& y^{\prime}=y \cos \theta-z \sin \theta \\
& z^{\prime}=y \sin \theta+z \cos \theta \\
& x^{\prime}=x
\end{aligned}
$$

- What is the corresponding matrix?
- What is the matrix for a rotation about the y axis?

General 3D Rotations

- A useful special case is when line we want to rotate about is parallel to one of the coordinate axes. In which case:
- Translate object so that the rotation axis coincides with the parallel coordinate axis
- Perform the rotation
- Translate back.
- For example, if the parallel axis were the x axis, the sequence of matrices might look like:

$$
\mathrm{R}(\theta)=\mathrm{T}^{-1} \mathrm{R}_{\mathrm{x}}(\theta) \mathrm{T}
$$

More on general 3D rotations

- If the axis of rotation is not parallel to one of the coordinate axes, the procedure is a little more complicated:
- Translate the object so that the rotation axis passes through the coordinate origin
- Rotate the object so that the axis of rotation coincides with the z-coordinate axes. To do this:
- rotate around x-axis until point is in xz-plane
- rotate around y-axis until point is aligned with z -axis
- Perform the specified rotation
- Perform the inverses of the first two steps.

Some attempts at pictures

3D Scaling

- Matrix for 3D scaling in xyz and directions looks like:

$$
\left[\begin{array}{lllll}
\text { s_x } & 0 & 0 & 0 & \\
0 & \text { s_y } & 0 & 0 & \\
0 & 0 & \text { s_z } & 0 & \\
0 & 0 & 0 & 1 &
\end{array}\right]
$$

- To preserve the shape of the original figure you can do a so-called uniform scaling by setting s_x=s_y=s_z.
- To do a scaling respect to some point can do: $\mathbf{T}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mathbf{S}\left(\mathbf{s}_{-} \mathbf{x}, s_{-} \mathbf{y}, s_{-} \mathbf{z}\right) \mathbf{T}(-\mathbf{x},-\mathbf{y},-\mathbf{z})$
- What is the inverse of this?

