3D transformations

CS116A Chris Pollett Oct 18, 2004.

Outline

- 3D Rotations
- 3D Scaling

3D Rotations

• Easiest to describe such rotations in terms of rotations about the coordinate axes:

• Standard convention is to do these rotations counterclockwise along the axis looking into origin

Coordinate Axes Rotations

- z-axis rotations:
 - $x' = x \cos\theta y \sin\theta$

$$y' = y \sin \theta + y \cos \theta$$

z' = z

• This gives the matrix $R_z(\theta)$: $\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Other coordinates

- To figure out the rotations about the other axes we can cyclically permute the variables using: x-> y > z -> x
- So a rotation about the x-axis is given by:
 y' = y cos θ z sin θ
 z' = y sin θ + z cos θ
 - x' = x
- What is the corresponding matrix?
- What is the matrix for a rotation about the y axis?

General 3D Rotations

- A useful special case is when line we want to rotate about is parallel to one of the coordinate axes. In which case:
 - Translate object so that the rotation axis coincides with the parallel coordinate axis
 - Perform the rotation
 - Translate back.
- For example, if the parallel axis were the x axis, the sequence of matrices might look like: $R(\theta) = T^{-1}R_x(\theta) T$

More on general 3D rotations

- If the axis of rotation is not parallel to one of the coordinate axes, the procedure is a little more complicated:
 - Translate the object so that the rotation axis passes through the coordinate origin
 - Rotate the object so that the axis of rotation coincides with the z-coordinate axes. To do this:
 - rotate around x-axis until point is in xz-plane
 - rotate around y-axis until point is aligned with z-axis
 - Perform the specified rotation
 - Perform the inverses of the first two steps.

Some attempts at pictures

3D Scaling

• Matrix for 3D scaling in xyz and directions looks like:

	0 sy	0 0	0	
0	0 0	s_z	0	
_	0	0	Ĩ	

- To preserve the shape of the original figure you can do a so-called uniform scaling by setting s_x=s_y=s_z.
- To do a scaling respect to some point can do: T(x,y,z) S(s_x, s_y, s_z) T(-x, -y, -z)
- What is the inverse of this?