# OpenGL Transformations, Start of 3D transformations 

CS116A

Chris Pollett
Oct 18, 2004.

## Outline

- OpenGL Raster Transformations
- Transformations Between 2D Coordinates
- Geometric Transformations in 3D


## OpenGL Raster Transformations

- Copying pixels from one buffer area to another can be accomplished with glCopyPixel(xmin, ymin, width, height, GL_COLOR);
- GL_COLOR says what is to be copied (color values)
- Copied to refresh buffer at same loc


## More OpenGL Raster Transformations

- To read into an array:
glReadPixels(xmin, ymin, width, height, GL_RGB, GL_UNSIGNED_BYTE, colorArray);
- To do a 90 degree rotation could rearrange rows and columns of array, then place back to refresh buffer at current raster position
glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, colorArray);


## Yet more OpenGL Raster Transformations

- To scale an area use:
glPixelZoom(sx,sy);
where sx and sy are any nonzero floating-point values. (Negative values cause reflections.
- Then use glCopyPixels or glDrawPixels to get/draw the pixels with the given scaling.


## Transformations Between 2D Coordinates

- Want to be able to switch between one coordinate system and another:



## How to do 2D coordinate transformations

- If want to go from xy system to $x$ ' $y^{\prime}$
- First translate origin of $x$ 'y' system to origin of $x y$ system with $\mathbf{T}(-x 0,-y 0)$ :

$$
\left[\begin{array}{llll}
1 & 0 & -\mathrm{x} 0 & \\
0 & 1 & -\mathrm{y0} & \\
0 & 0 & 1 &
\end{array}\right]
$$

- Then rotate result $\mathbf{R}(-\theta)$ so
xy coordinate now usual coordinates:
$\left[\begin{array}{llll}\cos \theta & \sin \theta & 0 & \\ -\sin \theta & \cos \theta & 0 & \\ 0 & 0 & 1 & \end{array}\right]$


## Another method for 2Dcoordinate transformations

- Pick a vector $\mathbf{V}$ specifying the direction of the $y$ ' axis.
- Then $\mathbf{v}=\mathbf{V} / \mathbf{V} \mathbf{V}=\left(\mathbf{v}_{-} \mathbf{x}, \mathbf{v}_{-} \mathbf{y}\right)$ is a unit vector in this direction
- So $\mathbf{u}=\left(\mathbf{v} \_\mathbf{y},-\mathbf{v}_{-} \mathbf{x}\right)$ will complete the coordinate system
- Transformation can be written as:

$$
\left[\begin{array}{cccc}
\mathrm{v}-\mathrm{y} & -\mathrm{v}-\mathrm{x} & 0 & \\
\mathrm{v}-\mathrm{x} & \mathrm{v}_{1} \mathrm{y} & 0 & \\
0 & 0 & 1 &
\end{array}\right]
$$

- Finally, a translation by a point $\mathbf{P 0}$ can make this general


## Geometric Transformations in 3D

- Many of the kinds of transformations done for 2D can be extended to 3D transformations
- For example, 3D translations are like 2D translation except now also can move in $z$ direction.
- For rotations things are a bit more complicated. Can build up out of rotations around the three coordinate axes.
- We also will use homogeneous coordinates for 3D transformations. Thus, will use $4 \times 4$ matrices to describe operations.


## 3D Translations

- As an example of what 3D transformations look like consider matrix for a translation

$$
\left[\begin{array}{lllc}
1 & 0 & 0 & \mathrm{t}-\mathrm{x} \\
0 & 1 & 0 & \mathrm{t}-\mathrm{y} \\
0 & 0 & 1 & \mathrm{t} z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

