
Line Clipping

CS116A
Chris Pollett

Nov. 15, 2004.

Outline

• 2D Line Clipping
• Cohen-Sutherland Line Clipping
• Liang-Barsky Line Clipping
• Nicholl-Lee-Nicholl Clipping

Line Clipping

• Above clipping example shows some possibilities for what
can happen to a line when we clip.

• A first step in clipping is to get rid of line segments that do
not cross the clipping window at all.

• One can do a first pass at this by doing point tests on
endpoints of the line segment. If both points outside any
one of the four boundaries then eliminate the line.

Parametric Line Segments and
Edge Intersection

• One can represent a line segment with two
equations:
x = x0 + u(xend -x0)
y = y0 + u(yend -y0)

• Then one can check if the segment crosses xwmin
boundary by plugging xwmin into the x equation
and seeing if the value for u is between 0 and 1. If
crosses then use this value of u to get a shorter line
segment and process against other borders.

• Above idea allows one to do somewhat inefficient
clipping

Cohen-Sutherland Line Clipping

• Popular clipping algorithm.
• Each line endpoint is given a four-bit code:

– Bit 0 -- Left , Bit 1 --Right, Bit 2 -- Bottom, Bit
3 -- Top

• The bit being on indicates point is outside
that boundary

0000

1000 1010

0010

011001000101

0001

1001

More Cohen-Sutherland

• A line segment is completely inside the clipping
region if both its codes are 0000. These segments
are just saved

• Any segment both of whose endpoints share a 1 in
same bit position is outside of the region and are
clipped. One can check this by ANDing.

• All other segments must be checked as before to
see where intersect

Liang-Barsky Line Clipping

• Consider:
x = x0 + u*dx
y = y0 + u*dy where dx = xend-x0 and dy =yend-y0

• Want values:
xwmin <= x0 + u*dx <= xwmax
ywmin <= y0 + u*dx <= ywmax

• Can rewrite these conditions as: u*p_k <= q_k
where k=1,2,3,4 and p_1 = -dx, p_2 = dx, p_3 = -
dy, p_4 = dy and q_1 = x0 - xwmin, q_2 = xwmax
-x0, q_3 = y0 - ywmin, q_4 = ywmax - y0

More Liang-Barsky
• Note if p_k = 0 for any k line must be parallel to

one of the boundaries and problem is easy.
• Note if p_k < 0 line proceeds from inside to

outside given boundary following u until u*p_k =
q_k. If p_k >0 line proceeds from outside to inside

• For k such that p_k < 0 we compute r_k =
q_k/p_k. Let u1 = max of these r_k and 0.

• For k such that p_k > 0 we compute r_k = q_k/p_k
again. Let u2 = min of these r_k and 1.

• If u_1 > u_2 then the line is outside the clipping
window. Otherwise, u1 and u2 can be used to get
intersection

Nicholl-Lee-Nicholl Line
Clipping

• Does the least number of comparisons and
divisions.

• Unlike other two doesn’t extend well to 3D.
• The algorithm:

– Does a region testing like C-S to see if line
segment can be easily accepted or rejected

– If not, we set up additional regions to do
testing.

More NLN Clipping

• Consider four lines shot from the P0 endpoint of
a line segment P0-Pend through each of the four
corners of clipping region.

• Determine which of these four new regions Pend
lives in by comparing slopes of P0Pend with those
of four other lines.

• Now use the at most two boundary edges to do
clipping

p0 p0

p0

Line Clipping using
NonRectangular Polygon Clip

Windows
• Can add additional edges to a concave

clipping regions to make it into a set of
convex ones.

• Then can use an extension of Liang-Barsky
to clip in these convex regions

