Transformations

CS116A

Chris Pollett
Oct 13, 2004.

Outline

- Two Dimensional Composite Transformations
- Other Two-dimensional Transformations
- Raster Methods for Geometric Transformations

Two Dimensional Composite Transformations

- One can perform a sequence of transformations using a composite transformation matrix.
- Basically, this is this a matrix that results from taking the product of the individual matrices:

$$
\begin{aligned}
& \mathbf{P}^{\prime}=\mathbf{M} _\mathbf{2} \mathbf{M _ 1} \mathbf{P} \\
& \mathbf{P}^{\prime}=\mathbf{M} \mathbf{P}
\end{aligned}
$$

Composite 2D-Translations

- Let $\mathrm{T}\left(\mathrm{t} _\{1 \mathrm{x}\}, \mathrm{t}\{1 \mathrm{y}\}\right)$ and $\mathrm{T}\left(\mathrm{t} _\{2 \mathrm{x}\}, \mathrm{t} _\{2 \mathrm{y}\}\right)$ be two translation matrices.
- To calculate the result of both transformations could do:

$$
\begin{aligned}
& \text { newP = } T\left(\mathbf{t}_{-}\{\mathbf{2 x}\}, \mathrm{t}_{-}\{\mathbf{2 y}\}\right)\left[\mathbf{T}\left(\mathbf{t} _\{\mathbf{1 x}\}, \mathrm{t}_{-}\{\mathbf{1} \mathbf{y}\}\right) \mathbf{P}\right] \\
& =\left[T\left(t_{-}\{\mathbf{2 x}\}, \mathrm{t}_{-}\{\mathbf{2 y}\}\right) \mathrm{T}_{\left.\left(\mathbf{t}_{-}\{\mathbf{1 x}\}, \mathrm{t}_{-}\{\mathbf{1} \mathbf{y}\}\right)\right]} \mathrm{P}\right. \\
& =\left[\begin{array}{lll}
0 & 0 & t-2 x \\
0 & 1 & t-2 y \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & t-1 x \\
0 & 1 & t \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & t 2 x+t 1 x \\
0 & 1 & 1 \\
0 & 1 & 1-2 y+1 \\
0 & 1 & 1
\end{array}\right] \\
& \left.\left.=T\left(t _2 x\right\}+t _(1 x), t_{-}\{\mathbf{2 y}\}+t_{-}\{\mathbf{1}\}\right\}\right) P .
\end{aligned}
$$

Composite 2D-Rotations

- A similar thing happens as a result of two rotations:

$$
\begin{aligned}
\text { new } \mathbf{P} & =\mathbf{R}\left(\theta _2\right)\left(\mathbf{R}\left(\theta _1\right) \mathbf{P}\right) \\
& =\left(\mathbf{R}\left(\theta _2\right) \mathbf{R}\left(\theta _1\right)\right) \mathbf{P} \\
& =\mathbf{R}\left(\theta _2+\theta _1\right) \mathbf{P}
\end{aligned}
$$

Composite 2D Scalings

- For scalings something slightly different happens:

$$
\left[\begin{array}{ccc}
\text { s_2x } & 0 & 0 \\
0 & \text { s_2y } & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\text { s_1x } & 0 & 0 \\
0 & \text { s_1y } & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
s_{-} 1 x^{*} s_{-} 2 x & 0 & 0 \\
0 & \text { s_1y*s_2y } & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- So $\left.\mathbf{S (s _ \{ \mathbf { 2 x } \} , \mathbf { s } _ \{ \mathbf { 2 y } \})} \mathbf{S (s} \mathbf{s}\{\mathbf{1 x}\}, \mathbf{s}^{\prime}\{\mathbf{1} \mathbf{y}\}\right)=$ S(s_\{2x\}*s_\{1x\}, s_\{2y\}*s_\{1y\})

General 2D Pivot-Point Rotation

- Suppose we want to rotate by an angle θ about some point (x, y). How do we do it?
- First, do $\mathbf{T}(-\mathbf{x},-\mathbf{y})=\mathbf{T}^{-\mathbf{1}}(\mathbf{x}, \mathbf{y})$ to move (x, y) to the origin
- Then do a rotation $\mathbf{R}(\boldsymbol{\theta})$
- Finally ,undo our translation using $\mathbf{T}(\mathbf{x}, \mathbf{y})$
- So have $\mathbf{R}(\mathbf{x}, \mathbf{y}, \boldsymbol{\theta})=\mathbf{T}(\mathbf{x}, \mathbf{y}) \mathbf{R}(\boldsymbol{\theta}) \mathbf{T}(-\mathbf{x},-\mathbf{y})=$

$$
\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x(1-\cos \theta)+y \sin \theta \\
\sin \theta & \cos \theta & y(1-\cos \theta)+x \sin \theta \\
0 & 0 & 1
\end{array}\right]
$$

General 2D Fixed Point Scaling

- We might similarly want to do a scaling with respect to some fixed point:

$$
\begin{aligned}
& \mathbf{S}\left(\mathbf{x}, \mathbf{y}, \mathbf{s}_{-} \mathbf{x}, \mathbf{s}_{-} \mathbf{y}\right)=\mathbf{T}(\mathbf{x}, \mathbf{y}) \mathbf{S}(\mathbf{x}, \mathbf{y}) \mathbf{T}(-\mathbf{x},-\mathbf{y}) \\
& =\left[\begin{array}{ccc}
s_{x} x & 0 & x\left(1-s_{x}\right) \\
0 & s_{s} & y\left(1-s_{-} y\right) \\
0 & 0 & 1-
\end{array}\right]
\end{aligned}
$$

General 2D Scaling Directions

- We might also want to scale with respect to some direction other than the x and y axis.
- To do this we rotate to the direction we want to scale in $\mathbf{R}(\boldsymbol{\theta})$
- Then we scale $\mathbf{S}\left(\mathbf{s} _\mathbf{1 , s} _\mathbf{2}\right)$
- Then we rotate back $\mathbf{R}^{-1}(\theta)=\mathbf{R}(-\theta)$.
- This give $\mathbf{R}^{-1}(\boldsymbol{\theta}) \mathbf{S}\left(\mathbf{s} _\mathbf{1}, \mathbf{s} _\mathbf{2}\right) \mathbf{R}(\boldsymbol{\theta})$
- You should work out the matrix.

Matrix Concatenation Properties

- In the previous slides we have been using the following useful property of matrices:

$$
\begin{aligned}
& \text { M_3 M_2 M_1 = (M_3 M_2) M_1 } \\
& \text { = M_3 (M_2 M_1) }
\end{aligned}
$$

- This property is called associativety and holds even if the matrices are not square.
- In fact, in previous slides one matrix (the column vector for the point) was not square.
- Note: in general, M_2 M_1 =\= M_1 M_2

General 2D Composite Transformations and Computational Efficiency

- A 2D Transformation representing any combination of rotations/ scaling/ translations can be written as:

- Can show need a maximum of 4 mults, 4 adds / coordinate to do any such transformation
- Note if have an angle θ, we can calculate sin, cos once and rs's and trs's once and then use these coefficients over and over

2D Rigid-Body Transformations

- A rigid body transformation consists of only rotations and translations.
- Matrix looks like:
- For an object, all of its edge lengths and angles will be preserved by such a transformation

Other 2D Transformations

- Some graphics packages support additional kinds of 2D transformations;
- For example:
- Reflection
- Shear

Reflections

- Reflections about either x or y axis.
- x-axis:
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
-y-axis: $\quad\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
- Both axes together: $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$

More Reflections

- Reflections about an arbitrary line can be achieved using reflections combined with translations and rotations.

Shear

- A shear causes an effect like the following:

- That is, we take a system of coordinates and tilt over one of the axes. Matrix for x -axis shear looks like:

$$
\left[\begin{array}{ccc}
1 & \operatorname{sh}_{-} \mathrm{x} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Raster Methods for Geometric Transformations

- Many of the transformations we have considered can be carried out rapidly by raster systems without having to multiply each point by a matrix.
- One common useful raster operation is a block transfer (aka bitblt or pixblt).
- This allows us to move a rectangular block of pixel values from one position to another in the frame. It can be used to do translations rapidly.
- Rotations by 90 or 180 degrees for rectangular regions can also be calculated rapidly. Can generalize to other angles.
- Similarly, there are tricks for scaling.

