Transformations

CS116A
Chris Pollett
Oct 13, 2004.

Outline

 Two Dimensional Composite
Transformations

e Other Two-dimensional Transformations

e Raster Methods for Geometric
Transformations

Two Dimensional Composite
Transtormations

* One can perform a sequence of
transformations using a composite
transformation matrix.

e Basically, this 1s this a matrix that results
from taking the product of the individual
matrices:

P'=M_2M_1P
P'=MP

Composite 2D-Translations

Let T(t_{Ix},t _{ly}) and T(t_{2x},t {2y}) be
two translation matrices.

To calculate the result of both transformations

could do:
newP = T(t_{2x}, t_{2y}) [T(t_{1x}, t_{1y}) P]
Zl’(t_{ZX}, t:{2_y}) T(t_{IX_}, t_{_ly})] P

0 O0t2x 0 O0tlx - 00 t2x+t 1x
0 1 t2y 0 1 tly 01 t2y+t ly
0O 1 1 0 1 1 01 1

= T(t_2x}+t_(1x), t_{2y}+ t_{1y}) P.

Composite 2D-Rotations

e A similar thing happens as a result of two
rotations:

newP = R(0_2) (R(6_1) P)
= (R(6_2)R(O_1)) P
= R(0_2+60_1)P

Composite 2D Scalings

e For scalings something slightly different
happens:

s 2x

0

* 50 S(s_12x},S_12y}) S(s_11x},s_11y}) =

0 0

0 s2y 0

0 1

S_
0
0

Ix 0
s ly
0

= o O

s Ix*s 2x 0

0 0

S(s_{2x}*s_{1x}, s_{2y}*s_{1y})

0

0 s ly*s 2y O

1

General 2D Pivot-Point Rotation

Suppose we want to rotate by an angle 0
about some point (x,y). How do we do 1t?
First, do T(-x, -y)= T-1(x,y) to move (x,y) to
the origin

e Then do a rotation R(0)

* Finally ,undo our translation using T(X,y)
e So have R(x,y,0) = T(x,y) R(O)T(-x,-y) =

cos O -sin 0O x(1-cos 0)+y sin 0
sin® cos0O y(l-cosB)+xsinB
0 0 1

General 2D Fixed Point Scaling

* We might similarly want to do a scaling
with respect to some fixed point:

S(X, ¥, S_X, s_y) = T(x,y) S(x,y) T(-x,-y)

— S X 0 x(1-s_x)

0 S_y y(l-s_y)
0 0 1

General 2D Scaling Directions

We might also want to scale with respect to
some direction other than the x and y axis.

To do this we rotate to the direction we
want to scale in R(0)

Then we scale S(s_1,s_2)
Then we rotate back R1(0) = R(-0).

This give R1(0) S(s_1,s_2) R(0)
You should work out the matrix.

Matrix Concatenation Properties

In the previous slides we have been using the
following useful property of matrices:
M3IM2M_1=M_3M_2)M_1
=M 3 (M 2M._1)
This property is called associativety and holds
even 1f the matrices are not square.

In fact, in previous slides one matrix (the column
vector for the point) was not square.

Note: in general, M_2 M_1=\= M_1 M_2

General 2D Composite
Transformations and
Computational Efficiency

A 2D Transformation representing any combination of
rotations/ scaling/ translations can be written as:

rs_XX
IS_yX
0

IS_XY

1S yy
0

trs_x
trs_y
1

e (Can show need a maximum of 4 mults, 4 adds / coordinate
to do any such transformation

* Note 1f have an angle 0, we can calculate sin, cos once and
rs’s and trs’s once and then use these coefficients over and

Oover

2D Rigid-Body Transformations

* A rigid body transformation consists of only
rotations and translations.

e Matrix looks like:

r XX r_Xxy tr X
r yX r yy tr y
0 0 1

e For an object, all of its edge lengths and angles
will be preserved by such a transformation

Other 2D Transformations

 Some graphics packages support additional
kinds of 2D transformations;
e For example:

— Reflection
— Shear

Reflections

* Retlections about either x or y axis.

Qe 1 0O O
— X-axis: 0 a6
0 0 1
5 -1 0O O ;
. 0 1 O
— y-axis: o 0 1

0 O
— Both axes together:| o -1 o
0 1

More Reflections

e Reflections about an arbitrary line can be
achieved using reflections combined with
translations and rotations.

Shear

* A shear causes an effect like the following:

A

/'

> >

e That 1s, we take a system of coordinates and tilt
over one of the axes. Matrix for x-axis shear looks
like: [g« o]

Raster Methods for Geometric
Transtformations

Many of the transformations we have considered can be
carried out rapidly by raster systems without having to
multiply each point by a matrix.

One common useful raster operation is a block transfer
(aka bitblt or pixblt).

This allows us to move a rectangular block of pixel values
from one position to another in the frame. It can be used to
do translations rapidly.

Rotations by 90 or 180 degrees for rectangular regions can
also be calculated rapidly. Can generalize to other angles.

Similarly, there are tricks for scaling.

