
Polygon Fills as well as
Vertex and Pixel Arrays

CS116A
Chris Pollett
Sep13, 2004.

Introduction
Today we’re going to talk about
• Fill Areas

– Types of Polygons
– Splitting Concave Polygons
– Splitting Convex Polygons into Triangles
– Inside-Outside Tests
– Polygon Tables
– Plane Equations
– Front and Back Faces
– OpenGL

• Vertex Arrays
• Pixel Arrays

Types of Polygons

• Polygons are sequences of three or more non-
collinear vertices in the place. Ex. ((1,2), (2,3),
(3,2))

• Notice join last point back to first. Usually require
edges to have at most vertices in common

(2,3)

(3,2)

(1,2)

Polygon Classifications

• Look at interior angle formed by adjacent
edges. If this angle is always less than 180
then polygon called convex, otherwise
concave.

Concave

Convex

Identifying Concave Polygons

• Fill algorithms for convex regions easier, so
would like an easy algorithm for identifying
concave regions.

• If region is convex then the cross-product of
adjacent edges will always be of the same
sign.

• Make sure to use edges not vertices. E_k
given by V_{k+1} - V_k.

Splitting Concave Polygons
Example

E_1 = (1, 0, 0) E_2=(1,1,0)
E_3 = (1, -1, 0) E_4=(0,2,0)
E_5 = (-3, 0, 0) E_6 =(0, -2, 0)

E_1 x E_2 = (0, 0, 1) E_2 x E_3 = (0, 0, -2)
E_3 x E_4 = (0, 0, 2) E_4 x E_5 = (0, 0, 6)
E_5 x E_6 = (0, 0, 6) E_6 x E_1 = (0, 0, 2)

Since E_2 x E_3 is negative, split the polygon along
the line of vector E_2. Use line equation to figure
where intersect other polygon edge to split
polygon into two pieces

Splitting Convex Polygons into
Triangles

• Since triangles are sometimes easier to draw
could then split convex polygon into
triangles. To do this make any sequence of
three consecutive vertices a new triangle.
Then delete the middle vertex from the
original list of vertices.

Inside-Outside Tests

• To do filling often want to know what is the inside
and what is the outside region of a figure.

• Odd-Even rule: let (x,y) be the point we are
trying to determine if it is inside or outside of an
object. Draw a line between this point and a
distant point P. If the number of edges of the
polyline it crosses is odd then it is an interior
point.

• Nonzero Winding Number Rule: Draw a line
between a (x,y) and P. Now add sum of signs of
cross-products of this line with the lines it crosses.
If sum is nonzero then is an interior point.

Polygons Tables

• Typically polygons are used in rendering
3D objects. To do this it is convenient to
arrange data into three tables: A list of
vertices. A list of edges specified as pairs of
elements from the first list. A list of
polygons specified as sequence of elements
from the edge list.

Plane Equations

• In a 3D scene each polygon will live in some
plane. So useful to know a little about planes.
General equation is:

Ax+ By+Cz+D =0

• Can write as: (A/D)x+(B/D)y+(C/D)z = -1
• Let A’ =(A/D), define B’ and C’ similarly. Then

given three points can solve for these values.
• A normal to the place is the vector (A,B,C)

Front and Back Faces

• The side of a polygon that faces into the
interior of a 3D object called a back face.
Other side called front face.

• Given a polygon, let Ax+By+Cz+D=0 be its
plane. Then a point (x,y,z) is behind the
plane if for Ax+By+Cz+D <0. If >0 then in
front of plane.

OpenGL

• Can draw rectangles with:
int vertex1[] = {200, 100};
int vertex2[] = {50, 250};
glRectiv(vertex1, vertex2);

• For more general shapes easier to use glBegin,
glEnd with one of GL_POLYGON,
GL_TRIANGLES, GL_QUADS,
GL_TRIANGLES_STRIP,
GL_TRIANGLES_FAN, GL_QUAD_STRIP,
GL_QUAD_FAN

Vertex Arrays

• Useful to have a way to store list of points that
make up an object:
typedef GLint vertex3[3];
vertex3 pt[8] = {{0,0,0},{0,1,0},{1,0,0},{1,1,0},
{0,0,1},{0,1,1},{1,0,1},{1,1,1}};

• Above could be used for a cube.
• To plot faces can make calls beginning with either

glBegin(GL_POLYGON) or
glBegin(GL_QUADS)

Vertex Arrays cont’d

• This would require many OpenGL function calls.
• To alleviate this problem use Vertex Arrays:

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3,GL_INT,0,pt);
GLubyte vertIndex[] = (6,2,3,7, 5,1,0,4, 7,3,1,5, 4,0,2,6,

2,0,1,3, 7,5,4,6);
glDrawElements(GL_QUADS, 24, GL_UNSIGNED,

vertIndex);
• Vertex arrays can be disabled with

glDisableClientState(GL_VERTEX_ARRAY);

Pixel Arrays

• Pixmaps -- rectangular arrays of colour values.
• If only have colour-depth 1 then called a bitmap.
• In OpenGL can draw this using:

glBitmap(width, height, x0, y0, xOffset, yOffset,
bitShape); //for bitmaps

glDrawPixels(width, height, dataFormat, dataType,
pixMap);// for pixmaps

• Note data format can be things like GL_RGB.
Datatype might be GL_INT

More Pixel Arrays

Example code fragment:
GLubyte bitShape[20] = {

0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00,
0x1c, 0x00,

0xff, 0x80, 0x7f, 0x00, 0x 3e, 0x00, 0x1c, 0x00,
0x08, 0x00};

glPixelStorei(GL_UNPACK_ALIGNMENT,1);
glRasterPos2i(30,40);
glBitmap(9, 10, 0.0, 0.0, 20.0, 15.0, bitShape);

More on Pixmaps

• If using a buffer can specify buffer to draw
to using
glDrawBuffer(buffer); //GL_BACK

• Can read a group of pixels using
glReadPixel(xmin,ynim, width, height,

dataformat, dataType, array);
• Can set buffer to read to with

glReadBuffer(buffer)

	Polygon Fills as well as Vertex and Pixel Arrays
	Introduction
	Types of Polygons
	Polygon Classifications
	Identifying Concave Polygons
	Splitting Concave Polygons Example
	Splitting Convex Polygons into Triangles
	Inside-Outside Tests
	Polygons Tables
	Plane Equations
	Front and Back Faces
	OpenGL
	Vertex Arrays
	Vertex Arrays cont’d
	Pixel Arrays
	More Pixel Arrays
	More on Pixmaps

