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Introduction
Today we’re going to talk about
• Fill Areas

– Types of Polygons
– Splitting Concave Polygons
– Splitting Convex Polygons into Triangles
– Inside-Outside Tests
– Polygon Tables
– Plane Equations
– Front and Back Faces
– OpenGL

• Vertex Arrays
• Pixel Arrays



Types of Polygons

• Polygons are sequences of three or more non-
collinear vertices in the place. Ex. ((1,2), (2,3), 
(3,2))

• Notice join last point back to first. Usually require 
edges to have at most vertices in common

(2,3)

(3,2)

(1,2)



Polygon Classifications

• Look at interior angle formed by adjacent 
edges. If this angle is always less than 180 
then polygon called convex, otherwise 
concave.

Concave

Convex



Identifying Concave Polygons

• Fill algorithms for convex regions easier, so 
would like an easy algorithm for identifying 
concave regions.

• If region is convex then the cross-product of 
adjacent edges will always be of the same 
sign.

• Make sure to use edges not vertices. E_k 
given by V_{k+1} - V_k.



Splitting Concave Polygons 
Example

E_1 = (1, 0, 0) E_2=(1,1,0)
E_3 = (1, -1, 0) E_4=(0,2,0)
E_5 = (-3, 0, 0) E_6 =(0, -2, 0)

E_1 x E_2 = (0, 0, 1) E_2 x E_3 = (0, 0, -2)
E_3 x E_4 = (0, 0, 2) E_4 x E_5 = (0, 0, 6)
E_5 x E_6 = (0, 0, 6) E_6 x E_1 = (0, 0, 2)

Since E_2 x E_3 is negative, split the polygon along 
the line of vector E_2. Use line equation  to figure 
where intersect other polygon edge to split 
polygon into two pieces



Splitting Convex Polygons into 
Triangles

• Since triangles are sometimes easier to draw 
could then split convex polygon into 
triangles. To do this make any sequence of 
three consecutive vertices a new triangle. 
Then delete the middle vertex from the 
original list of vertices.



Inside-Outside Tests

• To do filling often want to know what is the inside 
and what is the outside region of a figure.

• Odd-Even rule: let (x,y) be the point we are 
trying to determine if it is inside or outside of an 
object. Draw a line between this point and a 
distant point P. If the number of edges of the 
polyline it crosses is odd then it is an interior 
point.

• Nonzero Winding Number Rule: Draw a line 
between  a (x,y) and P. Now add sum of signs of 
cross-products of this line with the lines it crosses. 
If sum is nonzero then is an interior point.  



Polygons Tables

• Typically polygons are used in rendering 
3D objects. To do this it is convenient to 
arrange data into  three tables: A list of 
vertices. A list of edges specified as pairs of 
elements from the first list. A list of 
polygons specified as sequence of elements 
from the edge list.



Plane Equations

• In a 3D scene each polygon will live in some 
plane. So useful to know a little about planes. 
General equation is:

Ax+ By+Cz+D =0

• Can write as: (A/D)x+(B/D)y+(C/D)z = -1
• Let A’ =(A/D), define B’ and C’ similarly. Then 

given three points can solve for these values.
• A normal to the place is the vector (A,B,C)



Front and Back Faces

• The side of a polygon that faces into the 
interior of a 3D object called a back face. 
Other side called front face.

• Given a polygon, let Ax+By+Cz+D=0 be its 
plane. Then a point (x,y,z) is behind the 
plane if for Ax+By+Cz+D <0. If >0 then in 
front of plane.



OpenGL

• Can draw rectangles with:
int vertex1[] = {200, 100};
int vertex2[] = {50, 250};
glRectiv(vertex1, vertex2);

• For more general shapes easier to use glBegin,
glEnd with one of GL_POLYGON, 
GL_TRIANGLES, GL_QUADS, 
GL_TRIANGLES_STRIP, 
GL_TRIANGLES_FAN, GL_QUAD_STRIP, 
GL_QUAD_FAN



Vertex Arrays

• Useful to have a way to store list of points that 
make up an object:
typedef GLint vertex3[3];
vertex3 pt[8] = {{0,0,0},{0,1,0},{1,0,0},{1,1,0},
{0,0,1},{0,1,1},{1,0,1},{1,1,1}};

• Above could be used for a cube.
• To plot faces can make calls beginning with either

glBegin(GL_POLYGON) or
glBegin(GL_QUADS)



Vertex Arrays cont’d

• This would require many OpenGL function calls.
• To alleviate this problem use Vertex Arrays:

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3,GL_INT,0,pt);
GLubyte vertIndex[] = (6,2,3,7, 5,1,0,4, 7,3,1,5, 4,0,2,6,

2,0,1,3, 7,5,4,6);
glDrawElements(GL_QUADS, 24, GL_UNSIGNED,

vertIndex);
• Vertex arrays can be disabled with

glDisableClientState(GL_VERTEX_ARRAY);



Pixel Arrays

• Pixmaps -- rectangular arrays of colour values.
• If only have colour-depth 1 then called a bitmap.
• In OpenGL can draw this using:

glBitmap(width, height, x0, y0, xOffset, yOffset,
bitShape); //for bitmaps

glDrawPixels(width, height, dataFormat, dataType,
pixMap);// for pixmaps

• Note data format can be things like GL_RGB.
Datatype might be GL_INT



More Pixel Arrays

Example code fragment:
GLubyte bitShape[20] = {

0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00, 
0x1c, 0x00,

0xff, 0x80, 0x7f, 0x00, 0x 3e, 0x00, 0x1c, 0x00, 
0x08, 0x00};

glPixelStorei(GL_UNPACK_ALIGNMENT,1);
glRasterPos2i(30,40);
glBitmap(9, 10, 0.0, 0.0, 20.0, 15.0, bitShape);



More on Pixmaps

• If using a buffer can specify buffer to draw 
to using
glDrawBuffer(buffer); //GL_BACK

• Can read a group of pixels using
glReadPixel(xmin,ynim, width, height,

dataformat, dataType, array);
• Can set buffer to read to with

glReadBuffer(buffer)
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