
More Antialiasing, 2D
Transformations, Matrices, and

Homogeneous Coordinates

CS116A
Chris Pollett
Oct 11, 2004.

Outline

• Line Intensity Issues
• Antialiasing Area Boundaries
• OpenGL Antialiasing Functions
• OpenGL Query Functions
• OpenGL Attribute Groups
• 2D Transformations
• Matrices and Homogeneous Coordinates
• Inverse Transformations

Line Intensity Issues
• Consider the two lines:

• Although they both have the same number of pixels, the second is
(2)^{1/2} longer.

• If you use antialiasing this problem is compensated for automatically
because the diagonal line will be drawn darker.

Antialiasing Area Boundaries

One can also smooth fill regions using
antialiasing techniques:
– At the boundary of the object one adjusts the

pixel intensity according to the fraction of the
pixel that is interior to the object.

Surface boundary

Pink subpixels are entirely
within region-- intensity set
according to the number of
such subpixels

Pixel subdivided
into 4 subpixels

Other Antialiasing Fill
Techniques

Pitteway and Watkinson have a technique which is a
variation on Bresenham Algorithm.
– Recall if |m| <1, we are choosing between (x_k+1, y_k)

and (x_k+1, y_k+1) to be the next pixel to plot.
– If we add 1-m to the decision variable p we get a new

decision variable p' equal to
[m(x_k+1) +b] - (y_k +.5) + (1-m)

– One can now choose between points depending on if <
1-m or not.

– This p' also gives the area of the intersection of the
current pixel with the line.

– Have to tweak this idea if have two lines intersect
within a pixel

OpenGL AntiAliasing Functions

Antialiasing can be activated using:

glEnable(primitiveType);

where primitiveType is one of
GL_POINT_SMOOTH, GL_LINE_SMOOTH,
GL_POLYGON_SMOOTH.

To use this, one also needs to set up blending:
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA)

OpenGL Query Functions
Query functions are used to determine the current

state of the OpenGL state machine.
One should use the appropriate OpenGL get function

according to the type of the state variable one
wants to find out about:
glGetBooleanv() glGetFloatv()
glGetIntegerv() glGetDoublev()

For example, to get an array with the current floating
point color settings one could call:
glGetFloatv(GL_CURRENT_COLOR, colorValues);

Some useful flags are: GL_POINT_SIZE,
GL_POINT_SIZE_RANGE, GL_LINE_WIDTH,
GL_CURRENT_RASTER_POSITION,etc.

OpenGL Attribute Groups

• OpenGL state parameters are arranged into groups
called attribute groups. For example, one has the
point-attribute group, the line attribute group, and
the polygon attribute group.

• One can use the OpenGL server attribute stack to
push and pop such groups of settings.

• For example, glPushAttrib(GL_POINT_BIT |
GL_LINE_BIT | GL_POLYGON_BIT);

• To retrieve use: glPopAttrib().

2D Transformations

Given a 2D figure. One might want to:
– translate it
– rotate it
– scale it

Translations

If the coordinates for P are (x,y) and for the
translation T are (t_x, t_y). The new point
will be: (x+t_x, y + t_y). Written using the
matrix:

T

P

P'

x'

y'

x

y

t_x

t_y= +

Rotations

To do a rotation need to specify:
– A base point for the rotation
– An angle to rotate

The matrix for a rotation about the origin looks like:

P

φ

cosφ - sinφ

sinφ cosφ

Scaling

• Scalings are used to stretch the figure in
either the x or y direction.

• For example a point (x,y) could be stretch to
be (x' , y') via the maps x' = s_x*x and y' =
s_y*y.

• The matrix for a scaling looks like:
s_x - 0

0 s_y

Matrices and Homogeneous
Coordinates

• So far we could represent the effect of the operations we have on a
point with an equation like:
newP = M P + T

where M is a 2 x 2 matrix and everything else is a 2D column vector.
• It is more convenient if we want to do sequences of operations to have

all our operations done using matrix multiplication
• To get this to work we need to use homogeneous coordinates for

points in 2D. A point (x,y) is mapped to the point (x, y, 1) in
homogeneous coordinates.

• We say to 3D vectors v1=(x1,y1,z1) and v2=(x2,y2,z2) represent the
same 2D point if there is an h such that (x1, y1, z1) = (h*x2, h*y2,
h*z2).

Matrices in Homogeneous
Coordinates

Translation:

Rotation:

Scaling:

1 0 t_x

0 1 t_y

0 1 1

cosφ -sinφ 0

sinφ cosφ 0

0 0 1

s_x 0 0

0 s_y 0

0 0 1

Inverse Transformations

• Each of the operations discussed today can
be undone.

• For example, the inverse of the translation T
of the last slide, T-1, can be undone using
the matrix:

1 0 -t_x

0 1 -t_y

0 1 1

