Two Dimensional Viewing
Functions and Clipping

CS116A
Chris Pollett
Nov. 10, 2004.



Outline

 OpenGL 2D Viewing
e Types of Clipping Algorithms
e 2D point clipping



OpenGL 2D Viewing

OpenGL designed for 3D.
Some 3D viewing routines can be adapted.

Core library does support a viewport
function

GLU provides 2D clipping function

GLUT allows one to manipulate display
windows



OpenGL Projection Mode

* OpenGL does not support a separate viewing
coordinate system

* Set clipping window as part of projection
transformation.

* To specity projection transformation, first get into
the correct matrix mode:
glMatrixMode(GL_PROJECTION);
For good measure can also set identity matrix:
glloadldentity();



GLU Clipping Window

To specity the clipping window do:

gluOrtho2D(xwmin, xwmax, ywmin, ywmax);
Coordinates are doubles.

For 3D the effect of the above is to project
out the z-axis.

Has no effect on 2D scenes except to map to
normalized coordinates.

For OpenGL these have range between -1,1.



OpenGL Viewport Function

To specity the viewport use:

glViewport(xvmin, yvmin, vpWidth, vpHeight);
xvmin, yvmin specity the position of the lower left
corner of the viewport relative to the bottom of the
display window.
vpWidth, vpHeight give width and height.
To get the info about the currently active viewport
can use:

glGetlntegerv(GL_VIEWPORT, vpArray);

vpArray 1s a four element array.



GLUT Display Windows

As we have already been using, GLUT is used to manipulate display
windows for the programs we have been writing.

To start up GLUT:
glutlnit(&argc, argv);

Then to set up the display window:
glutlnitWindowPosition(xTopLeft, yTopLeft);
glutlnitWindowSize(dwWidth, dwHeight);
glutCreateWindow(“Title”);

The windowing system can choose to ignore info passed by GLUT

At this point window is not yet displayed.



Display Mode and Color

* Next we set the display window parameters with:
glutInitDisplayMode(mode);

We’have already seen case where mode was
GLUT_SINGLE | GLUT_RGB

e To set the background color:
glClearColor(red, green, blue, alpha);
or in index mode:

glClearIndex(index);



Window IDs

When create a window can obtain its
windowlD = glutCreateWindow(“my window”);

s start at 1.

Can use ID to get rid of a display window:
glutDestroyWindow(windowID);

Can use ID to set active display
glutSetWindow(windowlID);

To get active window:
currentWindowlID = glutGetWindow();




Repositioning and Resizing the
Window

To move the active window to a new position:
glutPositionWindow(x, y);

To change 1ts size:
glutReshapeWindow(width, height);

To make the window fullscreen:
glutFullScreen();
To set a callback which will be called whenever
the position or size of display 1s changed:
glutReshapeFunc(myfunc);



Managing Multiple Displays

e Glut has many function for manipulating the window. For example:
glutlconifyWindow(); //shrink window to an icon
glutSetWindowTitle(“new title”);

// make window front window
glutSetWindow(windowlID);
glutPopWindow();

//make window back window
glutSetWindow(windowID);
glutPushWindow();

glutHideWindow() //take window offscreen
glutShowWindow() // put onscreen / de-iconity



Subwindows

* One can create a subwindow of a display with:

subwindowlID = glutCreateSubWindow(windowlID,
xBottomLeft, yBottomLeft, width, height);

e Subwindow IDs can be used much like usual

but effect will be within the window the
subwindow belongs to.

* One cannot 1conify subwindows



Yet More Glut

The shape of the cursor can be set with:

glutSetCursor(shape); /* example shape’s:
GLUT_CURSOR_UP_DOWN,
GLUT_CURSOR_CYCLE, GLUT_CURSOR_WAIT,
GLUT_CURSOR_DESTROY */

To set the display callback use:
glutDisplayFunc(myDisplayFunc);

To force GLUT to call your function:
glutPostRedisplay();

Finally, to get windows displayed and start the
event loop call:

glutMainLoop();



GLUT...

e Sometimes it 1s useful to have a callback that is
called even 1f there are no events to be processed.
e To set such a function in GLUT:
glutldleFunc(myldleFunc);
e To query state parameters of GLUT:

glutGet(param);

Examples: GLUT_WINDOW_X,
GLUT _WINDOW_WIDTH



Clipping Algorithms

A clipping algorithm is a procedure for eliminating a portion of a
picture outside of a specified region.

Such an algorithm is most often used as final portion of viewing
pipeline before image displayed to device

There are many techniques for clipping depending on what kind of
object is being clipped:

— Point Clipping

— Line Clipping

— Fill-area Clipping

— Curve Clipping

— Text Clipping



2D Point Clipping Algorithm

e Suppose clipping region 1s given by xwmin,
Xwmax, ywmin, ywmax.
* (Given a point (X,y) check if the inequalities:
Xwmin <= X <= Xxwmax
and
ywmin <=y <= ywmax hold.
It not clip.

e This algorithm can be applied to scenes with
particle systems like clouds lor smoke.



