
Two Dimensional Viewing
Functions and Clipping

CS116A
Chris Pollett

Nov. 10, 2004.

Outline

• OpenGL 2D Viewing
• Types of Clipping Algorithms
• 2D point clipping

OpenGL 2D Viewing

• OpenGL designed for 3D.
• Some 3D viewing routines can be adapted.
• Core library does support a viewport

function
• GLU provides 2D clipping function
• GLUT allows one to manipulate display

windows

OpenGL Projection Mode

• OpenGL does not support a separate viewing
coordinate system

• Set clipping window as part of projection
transformation.

• To specify projection transformation, first get into
the correct matrix mode:
glMatrixMode(GL_PROJECTION);
For good measure can also set identity matrix:
glLoadIdentity();

GLU Clipping Window

• To specify the clipping window do:
gluOrtho2D(xwmin, xwmax, ywmin, ywmax);

• Coordinates are doubles.
• For 3D the effect of the above is to project

out the z-axis.
• Has no effect on 2D scenes except to map to

normalized coordinates.
• For OpenGL these have range between -1,1.

OpenGL Viewport Function

• To specify the viewport use:
glViewport(xvmin, yvmin, vpWidth, vpHeight);

• xvmin, yvmin specify the position of the lower left
corner of the viewport relative to the bottom of the
display window.

• vpWidth, vpHeight give width and height.
• To get the info about the currently active viewport

can use:
glGetIntegerv(GL_VIEWPORT, vpArray);

• vpArray is a four element array.

GLUT Display Windows
• As we have already been using, GLUT is used to manipulate display

windows for the programs we have been writing.
• To start up GLUT:

glutInit(&argc, argv);
• Then to set up the display window:

glutInitWindowPosition(xTopLeft, yTopLeft);
glutInitWindowSize(dwWidth, dwHeight);
glutCreateWindow(“Title”);

• The windowing system can choose to ignore info passed by GLUT
• At this point window is not yet displayed.

Display Mode and Color

• Next we set the display window parameters with:
glutInitDisplayMode(mode);
We’have already seen case where mode was

GLUT_SINGLE | GLUT_RGB
• To set the background color:

glClearColor(red, green, blue, alpha);
or in index mode:
glClearIndex(index);

Window IDs

• When create a window can obtain its ID:
windowID = glutCreateWindow(“my window”);

• IDs start at 1.
• Can use ID to get rid of a display window:

glutDestroyWindow(windowID);
• Can use ID to set active display

glutSetWindow(windowID);
• To get active window:

currentWindowID = glutGetWindow();

Repositioning and Resizing the
Window

• To move the active window to a new position:
glutPositionWindow(x, y);

• To change its size:
glutReshapeWindow(width, height);

• To make the window fullscreen:
glutFullScreen();

• To set a callback which will be called whenever
the position or size of display is changed:
glutReshapeFunc(myfunc);

Managing Multiple Displays
• Glut has many function for manipulating the window. For example:

glutIconifyWindow(); //shrink window to an icon
glutSetWindowTitle(“new title”);

// make window front window
glutSetWindow(windowID);
glutPopWindow();

//make window back window
glutSetWindow(windowID);
glutPushWindow();

glutHideWindow() //take window offscreen
glutShowWindow() // put onscreen / de-iconify

Subwindows

• One can create a subwindow of a display with:
subwindowID = glutCreateSubWindow(windowID,

xBottomLeft, yBottomLeft, width, height);
• Subwindow IDs can be used much like usual IDs

but effect will be within the window the
subwindow belongs to.

• One cannot iconify subwindows

Yet More Glut

• The shape of the cursor can be set with:
glutSetCursor(shape); /* example shape’s:

GLUT_CURSOR_UP_DOWN,
GLUT_CURSOR_CYCLE, GLUT_CURSOR_WAIT,
GLUT_CURSOR_DESTROY */

• To set the display callback use:
glutDisplayFunc(myDisplayFunc);

• To force GLUT to call your function:
glutPostRedisplay();

• Finally, to get windows displayed and start the
event loop call:
glutMainLoop();

GLUT…

• Sometimes it is useful to have a callback that is
called even if there are no events to be processed.

• To set such a function in GLUT:
glutIdleFunc(myIdleFunc);

• To query state parameters of GLUT:
glutGet(param);
Examples: GLUT_WINDOW_X,

GLUT_WINDOW_WIDTH

Clipping Algorithms
• A clipping algorithm is a procedure for eliminating a portion of a

picture outside of a specified region.
• Such an algorithm is most often used as final portion of viewing

pipeline before image displayed to device
• There are many techniques for clipping depending on what kind of

object is being clipped:
– Point Clipping
– Line Clipping
– Fill-area Clipping
– Curve Clipping
– Text Clipping

2D Point Clipping Algorithm

• Suppose clipping region is given by xwmin,
xwmax, ywmin, ywmax.

• Given a point (x,y) check if the inequalities:
xwmin <= x <= xwmax
and
ywmin <= y <= ywmax hold.
If not clip.

• This algorithm can be applied to scenes with
particle systems like clouds lor smoke.

