The Two Dimensional Viewing
Pipeline

CS116A
Chris Pollett
Nov. 8, 2004.



Outline

 The Two Dimensional Viewing Pipeline
e The Clipping Window

 Normalization and Viewport
Transformations



The Two Dimensional Viewing
Pipeline
* Clipping window -- the part of two
dimensional scene that it to be displayed
* Viewport -- window where data from
clipping window will be displayed
 Mapping between these two called 2D

Clipping Window _

____________________




More Pipeline

Construct
World-coordinate
Scene Using
Modeling-Coordinate
Transformations

_>

Convert
World
Coordinates
to
Viewing
Coordinates

Transform Viewing
Coordinates to
Normalized
Coordinates

Map Normalized
Coordinates to
Device Coordinates




The Clipping Window

* Most graphics packages support rectangular
clipping regions
 Some systems support rotated 2D viewing

frames, but usually clipping window must
be specified in world coordinates.



Viewing Coordinate Clipping
Window

Can set up a viewing coordinate system within
the world-coordinate frame.

This viewing frame provides a reference for
specifying a rectangular clipping window with any
specified orientation and position

Choose P,=(x0,y0) base position, and a vector V
that defines the y, ..., direction.

V is called the view up vector.
Alternative we could have used a rotational angle.



Getting 1into the Viewing Frame

Translate the viewing origin to the world origin.

Rotate the viewing system to align with the world
frame.

Mycve =RT
Suppose Py=(1,2) and V=(4,3). Calculate My, v

To specity clipping window now give its lower
and upper corner positions.



Clipping Window into
Normalized Viewport

* Before mapping to the actual viewport we
map into a normalized viewport of sides
between O and 1 1n each axis.

 We clip as we map into this normalized
region.
 Then we do a straightforward

transformation from the normalized
viewport to the actual viewport.



More Normalized Viewport
Mapping

e Let (xw, yw) be a point in world coordinates. To
map it into normalized viewport need:

XV _XVm_in

XV max X Vmin XWnax X Wmin

= XW - XW

min

YV YV Vmin = YV - YWnin
YVmax Y Vmin Y Wmax™Y Wmin

* Solving gives xv = s, XxW + t, and yv = s, yw + ¢,
where s, = (XV XV )/ (XW . -XW_. ), € =(XW_, -
XV .o - XW

XV ) (XW__ -XW s,and t, are
similar but with y’s instead of x’s everywhere.

min“* ¥ max max min/* Py



More Mapping

e As a matrix, this gives M

window, normviewp"*




Clipping Window into
Normalized Square

* Another approach is to map into the square
with x values between -1 and 1 and y values
between -1 and 1. Get matrix:

2/ (meax_XWmin) 0 '(meax+XWmin)/ (meax_xwmin)
Mwindow,normsquare: 0 2/(YWinax"YWmnin) “(YWimaxtY Winin) (Y WinaxY Winin)
0 0 1

e After clipping, to map to viewport one

app lle S : Evmax_xvmin)/ 2 0 (vaax+XVmin)/ 2

M . = 0 (yVmax_yVmin)/ 2 (yVmax+ yVmin)/ 2
normsquarc,vicwsquarc 0 0 {




