The Two Dimensional Viewing Pipeline

CS116A

Chris Pollett
Nov. 8, 2004.

Outline

- The Two Dimensional Viewing Pipeline
- The Clipping Window
- Normalization and Viewport Transformations

The Two Dimensional Viewing Pipeline

- Clipping window -- the part of two dimensional scene that it to be displayed
- Viewport -- window where data from clipping window will be displayed
- Mapping between these two called 2D viewing transformation

More Pipeline

The Clipping Window

- Most graphics packages support rectangular clipping regions
- Some systems support rotated 2D viewing frames, but usually clipping window must be specified in world coordinates.

Viewing Coordinate Clipping Window

- Can set up a viewing coordinate system within the world-coordinate frame.
- This viewing frame provides a reference for specifying a rectangular clipping window with any specified orientation and position
- Choose $\mathbf{P}_{0}=(\mathrm{x} 0, \mathrm{y} 0)$ base position, and a vector \mathbf{V} that defines the $y_{\text {view }}$ direction.
- V is called the view up vector.
- Alternative we could have used a rotational angle.

Getting into the Viewing Frame

- Translate the viewing origin to the world origin.
- Rotate the viewing system to align with the world frame.
- $\mathbf{M}_{\mathrm{WC}, \mathrm{VC}}=\mathbf{R T}$
- Suppose $\mathbf{P}_{\mathbf{0}}=(1,2)$ and $\mathbf{V}=(4,3)$. Calculate $\mathbf{M}_{\mathrm{WC}, \mathrm{vc}}$
- To specify clipping window now give its lower and upper corner positions.

Clipping Window into Normalized Viewport

- Before mapping to the actual viewport we map into a normalized viewport of sides between 0 and 1 in each axis.
- We clip as we map into this normalized region.
- Then we do a straightforward transformation from the normalized viewport to the actual viewport.

More Normalized Viewport Mapping

- Let (xw, yw) be a point in world coordinates. To map it into normalized viewport need:

$$
\begin{aligned}
& y v-y v_{\min }=y w-y_{\underline{m i n}} \\
& \mathrm{yv}_{\max }-\mathrm{yv}_{\text {min }} \quad \mathrm{yw}_{\max }-\mathrm{yw}_{\text {min }}
\end{aligned}
$$

- Solving gives $\mathrm{xv}=\mathrm{s}_{\mathrm{x}} \mathrm{xw}+\mathrm{t}_{\mathrm{x}}$ and $\mathrm{yv}=\mathrm{s}_{\mathrm{y}} \mathrm{yw}+\mathrm{t}_{\mathrm{y}}$ where $\mathrm{s}_{\mathrm{x}}=\left(\mathrm{xv}_{\max }-\mathrm{xv}_{\min }\right) /\left(\mathrm{xw}_{\max }-\mathrm{xw}_{\min }\right), \mathrm{t}_{\mathrm{x}}=\left(\mathrm{xw}_{\max }-\right.$ $\left.\mathrm{xv}_{\text {min }}-\mathrm{Xw}_{\text {min }} \mathrm{XV}_{\text {max }}\right) /\left(\mathrm{XW}_{\text {max }}-\mathrm{XW}_{\text {min }}\right) . \mathrm{s}_{\mathrm{y}}$ and t_{y} are similar but with y 's instead of x's everywhere.

More Mapping

- As a matrix, this gives $\mathbf{M}_{\text {window, normviewp }}$:

$$
\left[\begin{array}{ccc}
\mathrm{s}_{\mathrm{x}} & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & \mathrm{~s}_{\mathrm{y}} & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1
\end{array}\right]
$$

Clipping Window into Normalized Square

- Another approach is to map into the square with x values between -1 and 1 and y values between -1 and 1 . Get matrix:
$\mathbf{M}_{\text {window, normsquare }}=\left[\begin{array}{ccc}2 /\left(\mathrm{xw}_{\max }-\mathrm{xw}_{\min }\right) & 0 & -\left(\mathrm{xw}_{\max }+\mathrm{xw}_{\min }\right) /\left(\mathrm{xw}_{\max }-\mathrm{xw}_{\min }\right) \\ 0 & 2 /\left(\mathrm{yw}_{\max }-\mathrm{yw}_{\min }\right)-\left(\mathrm{yw}_{\max }+\mathrm{yw}_{\min }\right) /\left(\mathrm{yw}_{\max }-\mathrm{yw}_{\min }\right) \\ 0 & 0 & 1\end{array}\right]$
- After clipping, to map to viewport one applies:
$\mathbf{M}_{\text {normsquare,viewsquare }}=$

$$
\begin{array}{ccc}
\left(\mathrm{xv}_{\max }-\mathrm{xv}_{\text {min }}\right) / 2 & 0 & \left(\mathrm{xv}_{\max }+\mathrm{xv}_{\text {min }}\right) / 2 \\
0 & \left.\left(\mathrm{yv}_{\max }-\mathrm{yv}_{\text {min }}\right)^{2}\right) & \left(\mathrm{yv}_{\max }+\mathrm{yv}_{\text {min }}\right) / 2 \\
0 & 0 & 1
\end{array}
$$

