Wireframes, Characters,
and Anti-aliasing

CS116A
Chris Pollett
Oct 6, 2004.



Introduction

OpenGL Wireframe Methods
OpenGL Front-face function

Character Attributes

— General
— OpenGL
Anti-aliasing



OpenGL Wireframe Methods

* When one draws a polygon one can choose to
display only edges
 To say how to draw polygons one uses:

— glPolygonMode(face, displayMode);

— face 1s one of: GLL_ FRONT, GL_BACK,
GL_FRONT_AND BACK

— displayMode 1s one of: GL_POINT, GL_LINE,
GL_FILL



More WireFrame

e Can combine modes by drawing twice:
glColor31(0.0, 1.0, 0.0);
glPolygonMode(GL_FRONT, GL_FILL);
/* Draw polygon */
glColor31(1.0, 0.0, 0.0);
glPolygonMode(GL_FRONT, GL_LINE);
/* Draw polygon */




3D Issues

If a polygon is in 3-space rather than xy-plane. Doing this may result
in gaps around the edges called stitching.

This 1s caused by slight differences in the scan-line fill and the line
drawing algorithm.

To fix use:
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(factorl, factor2);

— factorl is related to steepest z slope of the polygon
— factor?2 is related to constant for this steepest edge

Typically, need to experiment with these factors but a value between
.75 and 1.0 often works.



Issues with Concave Polygons

* Remember we are drawing concave polygons by
breaking them up into convex ones.

e |n wireframe mode don’t want to see interior lines



More Concave Polygons

e To avoid the previously mentioned issue can use an edge flag:
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);

glVertex3fv(vl);

glEdgeFlag(FALSE);

glVertex3fv(v2);

glEdgeFlag(TRUE);

glVertex3fv(v3);
glEnd();

e (Can also use an edge flag array with
glEnableClientState(GL_EDGE_FLAG_ARRAY);
glEdgeFlagPointer(offset, edgeFlagArray);



OpenGL Front-face function

* By default the ordering of the vertices says
whether something 1s a front or back face.

e This can also be set using:

glFrontFace(vertexOrder);

where vertexOrder 1s GL_CW (clockwise) or
GL_CCW (counterclockwise).



Character Attributes

Attributes can be set to control the way characters
are drawn to the screen.

These can be used to specify font, underlining
style, boldface, or italics.

The current color of the system’s state 1s used to
draw a character.

r

T'he character’s size can be adjusted as well. A
common unit for size 1s a point (1/72 of an inch).



Character dimensions

 Width and height are used to specity the
character body.

e Characters can extend outside this body 1if
they are kerned.
To

e

Height

Bottom



More on Characters

 Width and Height are often changed
together: HH.

 Sometimes they are changed independently:
_I—

 Sometimes orientation of a character is also
changed. So characters points 1n the
direction of some character up:

\Q/




OpenGL Character Attributes

Already saw can use glutStrokeCharacter(font,
char) or glutBitmapCharacter(f,c) to draw
characters.

Can set the font with flags like
GLUT_BITMAP_9_BY_15.

Color 1s specified by the current state

glLineWidth can be used to change the width of
lines in font.

glLineStipple can be used to affect if dashed or
not.

Chapter 5 has more effects.



Anti-aliasing

In line drawing, having to set a pixel entirely on
or off. This often causes a step-like appearance to
the line.

This distortion 1s to due to how often we can
sample the “real” line and is called aliasing.

It 1s known to avoid losing information when
sampling from a periodic object need to sample at
twice the highest frequency. (Nyquist sampling
frequency).

Supersampling, area sampling and pixel phasing
are various techniques for solving the aliasing
problem. 1.e., to do anti-aliasing.



Supersampling Straight-line
Segments

Divide each pixel on screen into subpixels.
Draw line as if 1t had these subpixels.

Vary the intensity of the actual pixels on the
screen according to how many of its subpixels
were 1 1n the given pixel.

Ex: Suppose had 9 subpixels, the line was red, the
background blue and 5 subpixels of the pixel were 1.
The pixel color would be set to: (Sred+4blue)/9

Supersampling obviously requires more time then
usual line drawing.



Subpixel Weighting Masks

* Sometimes supersampling looks better 1if weigh
some subpixels more than others when
calculating color intensities:

* Doing this 1s called using a pixel mask



Area Sampling Straight Line
Segments

* If we pretend the line has some finite width,
then a line segment has an area and one can
calculate exactly how big the intersection 1s
between this area and that of the pixel

 Then we can set the intensity accordingly.

e This 1s called area sampling.



Filtering Techniques

* One can refine the 1dea of pixel masks by
using a continuous 2D- distribution rather
than a fixed mask.

 Examples: Gaussian filter, Cone filters, etc.



Pixel Phasing

* Some raster displays support subpixel
positioning

* These systems allow one to draw a pixel
than move over a 1/4 pixel and draw a
pixel. (pixel phasing)

e This can be used to smooth lines.



