
Perspective Projections, OpenGL
Viewing, 3D Clipping

CS116A
Chris Pollett
Dec 1, 2004.

Outline

• Perspective projections
• OpenGL Viewing
• 3D Clipping

Vanishing Points for Perspective
Projections

• A point is a perspective scene where all lines not
parallel to the view plane intersect is called a
vanishing point

• When the set of lines is parallel to one of the axes
then vanishing point is called a principle
vanishing point.

• Can have 1, 2, 3 vanishing points and we can
control this by the position of the projection plane

View Volume

• We can create a view volume by specifying
a rectangular clipping window on the view
plane.

• Bounding planes are now not parallel. Get a
shape called a pyramid of vision and can
truncate this by specifying near and far
planes to get a frustrum.

Projection Reference
Point

Perspective Projection
Transformation Matrix

• Want to use our equations for xp, yp and zp
of last day to get a matrix.

• Need to use homogeneous coordinates:
• Let xp = xh/h, and yp =yh/h where h =zprp-

z.
• Here xh and yh are obtained from x and y as
• xh = x(zprp -zvp) + xprp(zvp -z)
• yh = y(zprp - zvp) +yprp(zvp -z).

Matrix

• Now can map (x,y,z, 1) to the projected point in
homogeneous coordinates (xh,yh,zh,1) with the
matrix:

• Here sz and tz are scaling and translation factors
to go to normalized cube

 zprp - zvp 0 -xprp xprp*zprp
0 zprp-zvp -yprp yprp*zprp
0 0 sz tz
0 0 -1 zprp

Symmetric Perspective
Projection Frustrum

• The line from the projection reference point
through the center of the clipping window, and
through the view volume, is called the centerline.

• If this is perpendicular to the view plane then we
have a symmetric frustrum.

• In this case, can say have a field of view angle.
Have zprp -zvp = width*cot(theta/2)/2*aspect

Normalized Perspective-
Projection Transformation

Coordinates
• To get into our normalized cube we have already

done a scaling in z axis. To get the x and y
coordinates in range need to apply a scaling.

• The equations for these scalling are sx = 2/xwmax
-xwmin, similar for y. sz = znear+zfar/znear-zfar

and tz = 2*znear*zfar/(znear-zfar)

 sx 0 0 0
0 sy 0 0
0 0 1 0
0 0 0 1

3D Screen Coordinates

• We now want to map info to screen
coordinates.

• However, still want to keep z-info around
(now normalized between 0 and -1), so it
can be used in surface removal, etc.

• Map to viewport is thus kept as 3D and
given by:

 xvmax- xvmin/2 0 0 xvmax+ xvmin/2
0 yvmax- yvmin/2 0 yvmax+ yvmin/2
0 0 1/2 1/2
0 0 0 1

OpenGl 3D Viewing Functions

• To specify where in world coordinates to
look at a scene need to enter view matrix
mode:
glMatrixMode(GL_MODELVIEW);

• Then can do:
gluLookAt(x0, y0, z0, xref, yref, zref, Vx, Vy,

Vz);
• The last three are the direction of view-up.

OpenGL Orthogonal Projection
Function

• Must be in projection mode to set up projection
matrices. So do:
glMatrixMode(GL_PROJECTION);

• To set up an orthogonal projection can do:
glOrtho(xwmin, xwmax, ywmin, ywmax, dnear, dfar);
each parameter is a double.

• Near plane is also the view plane.
• If dfar is 55 then point with z value < -55 clipped.
• Default parameters are -1 or 1 for each of the

parameters listed above.
• No OpenGL function for oblique projections

OpenGl Symmetric Perspective-
Projection Function

• The GLU function:
gluPerspective(theta, aspect, dnear, dfar);
with each parameter a double sets up a

symmetric, perspective projection.
• The angle can be between 0 and 180.
• The aspect specifies the width/height rations

OpenGL General Perspective
Projection Function

• To specify a perspective projection can use:
glFrustrum(xwmin, xwmax, ywmin, ywmax,dnear, dfar);

• Numbers are double precision floats.
• Near and far clipping distances must be positive.
• The first four parameters say the coordinates of

the clipping window on near plane.
• The clipping window can be specified anywhere

on the near plane. So if xwmin = -xwmax and
ywmin = - ywmax then get symmetric frustrum.

• If do not invoke projection command get
orthogonal projection.

OpenGL Viewports and Display
Windows

• Finally setting the size of the viewport that
projected points will appear in is specified
in the same way as in the 2D case:
glViewport(xvmin, yvmin, xvmax, yvmax);

3D Clipping

• As in the 2D case, in the 3D there are advantages
to having normalized cube before clipping:
– All device independent transformations are carried out

before applying any clipping.
– Each clip plane is parallel to one of the 3 axes

regardless of the original shape of the view volume so
can be optimized.

• Common choice of cubes are the unit cube which
has extents between 0 and 1 and the symmetric
cube has extents between -1 and 1.

Clipping in 3D Homogeneous
Coordinates

• In homogeneous coordinates (x,y,z) gets
converted to (x,y,z, 1).

• After all our transformations and projections
might have (x_h, y_h, z_h, h) where h is not 1.
(Might happen because of perspective
transformation).

• If divided away the factor h, would lose precision,
so this is why want to do clipping in homogeneous
coordinates

3D Regions Codes

• The concept of region code used in Cohen-
Sutherland clipping can be extended to 3D.
Need to use a 6 bit number now for all the
regions:
– bit 6- far, bit 5 - near, bit 4 - top, bit 3-bottom,

bit 2 -right, bit 1 -left
• Conditions for setting bit same as in 2D

case but now have 2 extra bits to set for
each point.

Assigning Bit Values

• Suppose we have a point (x,y,z,h). Then
bit 1 =1 if h+x <0
bit 2 =1 if h-x < 0
bit 3 =1 if h+y <0
bit 4 = 1 if h-y <0
bit 5 = 1 if h+z <0
bit 6 = 1 if h-z <0

3D Point and Line Clipping

• A point is within the view volume if its region
code is 000000. So this gives us an easy way to
clip points.

• For lines, we can clip the whole line if when we
AND the endpoint codes we get a 1 in the same bit
position. We can accept the whole line if when we
OR the codes we get 000000.

• Otherwise, we need to analyze the part of the line
that needs to be saved.

More line clipping

• Suppose the endpoint of our line are:
P1=(x1,y1,z1,h1) and P2=(x2,y2,z2,h2).

• Can write points on line segment with P= P1+
(P2-P1)u for u between 0 and 1.

• Look for bits in the region code that are not the
same. Know boundary crossed, and also in which
coordinates. For example, maybe x.

• Then can solve for u to find point of intersection.
• If for instance crosed xmax = 1. Then know

intersection point x/h must equal 1. So get: u=x1-
h/((x1-h1) - (x2-h2))

3D Polygon Clipping

• Say want to intersect a tetrahedron with our view
volume.

• First check if its coordinate extents lie completely
within the view volume or if its coordinates lie
completely outside one of the clipping boundaries.

• If not, go through each edge in the object, clip and
to obtain a new vertex lists, edge lists for the
clipped object.

• Then might have to add new faces to our face list
• If object is made of triangle strips process easier

as can then use Sutherland-Hodgman

3D Curve Clipping

• First check if the coordinate extents of curved
object are completely inside the view volume.

• Then check if object is completely outside any one
of the six clipping planes.

• If this accept/reject test fails, then we locate
intesections with clipping plane.

• This involves solving simultaneous surface and
clipping plane equations.

• This can be hard so polygon patches are often
used to approximate curved surfaces

Arbitrary Clipping Planes

• Might also want to clip to arbitrary planes.
• Might be used for cross-sectional view.
• Can specify a plane with Ax+By+Cz +D =0
• Objects behind the plane, for instance point

(x,y,z) with Ax+By+Cz+D <0 are the ones
that are usually clipped.

OpenGL Optional Clipping
Planes

• One can specify additional clipping planes for a
scene than those of the view volume with:
glDouble planeCoeffs[] ={1.0, 2.0, 3.0, 4.0};
 //A=1, B,=2, C=3, D =4
glClipPlane(GL_CLIP_PLANE0, planeCoeffs);

• To use this plane can use
glEnable(GL_CLIP_PLANE0); and glDisable to
stop using

• There are also planes 1,2… Tod find out how
many use:
glGetIntegerv(GL_MAX_CLIP_PLANES,
numPlanes);

