Perspective Projections, OpenGL
Viewing, 3D Clipping

CS116A
Chris Pollett
Dec 1, 2004.



Outline

e Perspective projections
 OpenGL Viewing
e 3D Clipping



Vanishing Points for Perspective
Projections

e A point is a perspective scene where all lines not
parallel to the view plane intersect 1s called a
vanishing point

 When the set of lines 1s parallel to one of the axes
then vanishing point is called a principle
vanishing point.

e Can have 1, 2, 3 vanishing points and we can
control this by the position of the projection plane



View Volume

* We can create a view volume by specifying
a rectangular clipping window on the view
plane.

* Bounding planes are now not parallel. Get a
shape called a pyramid of vision and can
truncate this by specitying near and far
planes to get a frustrum.

Projection Reference
Point



Perspective Projection
Transformation Matrix

Want to use our equations for xp, yp and zp
of last day to get a matrix.

Need to use homogeneous coordinates:

Let xp = xh/h, and yp =yh/h where h =zprp-
Z.

Here xh and yh are obtained from x and y as
xh = xX(zprp -zvp) + Xprp(zvp -z)
yh = y(zprp - zvp) +yprp(zvp -z).



Matrix

e Now can map (x,y,z, 1) to the projected point in
homogeneous coordinates (xh,yh,zh,1) with the
matrix:

zprp-zvp 0 -Xprp Xprp*zprp
0 Zprp-zvp -yprp yprp*zprp
0 0 SZ tz

0 0 -1 zprp

e Here sz and tz are scaling and translation factors
to go to normalized cube



Symmetric Perspective
Projection Frustrum

r

e The line from the projection reference point
through the center of the clipping window, and
through the view volume, is called the centerline.

o If this 1s perpendicular to the view plane then we
have a symmetric frustrum.

e In this case, can say have a field of view angle.
Have zprp -zvp = width*cot(theta/2)/2*aspect




Normalized Perspective-
Projection Transformation
Coordinates

* To get into our normalized cube we have already
done a scaling 1in z axis. To get the x and y
coordinates in range need to apply a scaling.

0

0
0 sy
0
0 0

o= O O
— O O O

* The equations for these scalling are sx = 2/xwmax
-xwmin, similar for y. sz = znear+zfar/znear-zfar

and tz = 2*znear*zfar/(znear-zfar)



3D Screen Coordinates

e We now want to map info to screen
coordinates.

 However, still want to keep z-info around
(now normalized between O and -1), so it
can be used 1n surface removal, etc.

 Map to viewport is thus kept as 3D and
given by:

Xvmax- xvmin/2 0 0 Xvmax+ xvmin/2

0 yvmax- yvmin/2 0 yvmax+ yvmin/2
0 0 1/2 1/2
0 0 0 1




OpenGl 3D Viewing Functions

e To specity where 1n world coordinates to
look at a scene need to enter view matrix
mode:

glMatrixMode(GL_MODELVIEW);
e Then can do:
gluLookAt(x0, y0, z0, xref, yref, zref, VX, Vy,
Vz);
e The last three are the direction of view-up.




OpenGL Orthogonal Projection
Function

Must be in projection mode to set up projection
matrices. So do:

giMatrixMode(GL_PROJECTION);

To set up an orthogonal projection can do:
g]Ortho(xwmin, xwmax, ywmin, ywmax, dnear, dfar);
each parameter 1s a double.

Near plane is also the view plane.
If dfar 1s 55 then point with z value < -55 clipped.

Default parameters are -1 or 1 for each of the
parameters listed above.

No OpenGL function for oblique projections




OpenGl Symmetric Perspective-
Projection Function

e The GLU function:

gluPerspective(theta, aspect, dnear, dfar);

with each parameter a double sets up a
symmetric, perspective projection.

* The angle can be between O and 180.
* The aspect specities the width/height rations



OpenGL General Perspective
Projection Function

To specily a perspective projection can use:
glFrustrum(xwmin, xwmax, ywmin, ywmax,dnear, dfar);

Numbers are double precision floats.
Near and far clipping distances must be positive.

r

T'he first four parameters say the coordinates of
the clipping window on near plane.

rm

T'he clipping window can be specified anywhere
on the near plane. So 1f xwmin = -xwmax and
ywmin = - ywmax then get symmetric frustrum.

It do not invoke projection command get
orthogonal projection.



OpenGL Viewports and Display
Windows

e Finally setting the size of the viewport that
projected points will appear 1n 1s specified
in the same way as 1n the 2D case:

glViewport(xvmin, yvmin, Xvimax, yvmax);



3D Clipping

 Asinthe 2D case, in the 3D there are advantages
to having normalized cube before clipping:

— All device independent transformations are carried out
before applying any clipping.

— Each clip plane 1s parallel to one of the 3 axes
regardless of the original shape of the view volume so
can be optimized.

e Common choice of cubes are the unit cube which
has extents between 0 and 1 and the symmetric
cube has extents between -1 and 1.



Clipping 1n 3D Homogeneous
Coordinates

* In homogeneous coordinates (X,y,z) gets
converted to (Xx,y,z, 1).

e After all our transformations and projections
might have (x_h, y_h, z_h, h) where h 1s not 1.
(Might happen because of perspective
transformation).

e If divided away the factor h, would lose precision,
so this 1s why want to do clipping in homogeneous
coordinates



3D Regions Codes

* The concept of region code used in Cohen-
Sutherland clipping can be extended to 3D.
Need to use a 6 bit number now for all the
regions:

— bit 6- far, bit 5 - near, bit 4 - top, bit 3-bottom,
bit 2 -right, bit 1 -left

e Conditions for setting bit same as in 2D
case but now have 2 extra bits to set for
each point.



Assigning Bit Values

* Suppose we have a point (X,y,z,h). Then
bit 1 =1 1f h+x <0
bit2=11f h-x <0
bit 3 =1 if h+y <0
bit 4 = 1 if h-y <0
bit5 =1 1f h+z <0
bit6 =1 1f h-z <0




3D Point and Line Clipping

* A point is within the view volume if its region
code 1s 000000. So this gives us an easy way to
clip points.

e For lines, we can clip the whole line if when we
AND the endpoint codes we get a 1 in the same bit

position. We can accept the whole line if when we
OR the codes we get 000000.

e Otherwise, we need to analyze the part of the line
that needs to be saved.



More line clipping

Suppose the endpoint of our line are:
Pl=(x1,yl,z1,hl) and P2=(x2,y2,z2,h2).

Can write points on line segment with P=P1+
(P2-P1)u for u between 0 and 1.

Look for bits 1in the region code that are not the
same. Know boundary crossed, and also in which
coordinates. For example, maybe Xx.

Then can solve for u to find point of intersection.

If for instance crosed xmax = 1. Then know
intersection point x/h must equal 1. So get: u=x1-

h/((x1-h1) - (x2-h2))



3D Polygon Clipping

Say want to intersect a tetrahedron with our view
volume.

First check if its coordinate extents lie completely
within the view volume or if its coordinates lie
completely outside one of the clipping boundaries.

If not, go through each edge in the object, clip and
to obtain a new vertex lists, edge lists for the
clipped object.

Then might have to add new faces to our face list

If object 1s made of triangle strips process easier
as can then use Sutherland-Hodgman



3D Curve Clipping

First check if the coordinate extents of curved
object are completely inside the view volume.

Then check if object 1s completely outside any one
of the six clipping planes.

It this accept/reject test fails, then we locate
intesections with clipping plane.

This involves solving simultaneous surface and
clipping plane equations.

This can be hard so polygon patches are often
used to approximate curved surfaces



Arbitrary Clipping Planes

Might also want to clip to arbitrary planes.

Might be used for cross-sectional view.

Can specity a plane with Ax+By+Cz +D =0

Objects behind the plane, for instance point
(X,y,z) with Ax+By+Cz+D <0 are the ones
that are usually clipped.



OpenGL Optional Clipping
Planes

* One can specify additional clipping planes for a
scene than those of the view volume with:
glDouble planeCoeffs[] ={1.0, 2.0, 3.0, 4.0};
/[[A=1, B,=2, C=3, D =4
glClipPlane(GL_CLIP_PLANEQ, planeCoeffs);

e To use this plane can use
glEnable(GL_CLIP_PLANEQ); and glDisable to
stop using

e There are also planes 1,2... Tod find out how
many use:
glGetIntegerv(GL_MAX_CLIP_PLANES,
numPlanes);



