# More Line and Some Circle Algorithms 

CS116A

Chris Pollett
Sep1, 2004.

## Introduction

- Parallel Line Algorithms
- Frame Buffer Values
- Circles
- Midpoint Circle Algorithm


## Parallel Line Algorithms

How to draw lines if we have multiple processor?
Adapt Bresenham. Assume $0<\mathrm{m}<1$

- If have $p$ processors, we partition line into $p$ segments.
- The change in width of a segment will $\Delta x \_p=(\Delta x+p-$ $1) / \mathrm{p}$. The $\mathrm{p}-1$ comes from overlapping 1 pixel at end of segments.
- The change in height of a segment will be $\Delta y \_p=m \Delta x \_p$


## More Parallel Line Alg's

- The start position of the $k$ th partition will be ( $\mathrm{x}-\mathrm{k}, \mathrm{y} \_\mathrm{k}$ ) where $\mathrm{x}_{-} \mathrm{k}=\mathrm{x} \_0+\mathrm{k} \Delta \mathrm{x} \_\mathrm{p}$ and $\mathrm{y}_{-} \mathrm{k}=\mathrm{y}_{-} 0$ $+\operatorname{round}\left(k \Delta y \_p\right)$
- The decision parameter $p \_k$ also needs to be determined for each interval. Recall $p_{-} k=$ $\Delta \mathrm{x}\left(\mathrm{d} \_\right.$lower-d_upper $)=2 \Delta \mathrm{y}^{*} \mathrm{x}$ - $\mathrm{k}+2 \Delta \mathrm{x} \mathrm{y}_{-}\{\mathrm{k}+1\}$ $+2 \Delta y+2 \Delta x(2 b-1)$.
- Note $\Delta x, \Delta y, b$ are constant and the only other variables are $x_{-} k, y_{-} k$ so $p_{-} k$ can be set up without having to calculate $\mathrm{p} \_\mathrm{m}$ for $\mathrm{m}<\mathrm{k}$


## Frame Buffer Values

Final stage for line segment implementation is to set the frame-buffer color values. That is, actually set bits in memory as opposed to 2D arrays. Also can do with incremental operations.
Suppose screen from $(0,0)$ to (x_\{max $\}, y_{-}\{\max \}$ ). Assume only dealing with black and white.
Then the frame buffer pixel address for $(\mathrm{x}, \mathrm{y})$ is:

$$
\operatorname{Addr}(\mathrm{x}, \mathrm{y})=\operatorname{Addr}(0,0)+\mathrm{y}\left(\mathrm{x} \_\{\max \}+1\right)+\mathrm{x}
$$

So incrementally, $(\mathrm{x}+1, \mathrm{y})$ will be at $\operatorname{Addr}(\mathrm{x}+1, \mathrm{y})=$ Addr( $\mathrm{x}, \mathrm{y}$ ) +1

## More Frame Buffer

And ( $\mathrm{x}+1, \mathrm{y}+1$ ) will be at $\operatorname{Addr}(\mathrm{x}, \mathrm{y})+\mathrm{x} \_\{\max \}+2$
So above op's can be done with only adds. To store more than one bit of color depth same idea and can still use adds.

## Circles

Recall equation of a circle:

$$
\left(\mathrm{x}-\mathrm{x} \_\mathrm{c}\right)^{\wedge} 2+\left(\mathrm{y}-\mathrm{y} \_\mathrm{c}\right)^{\wedge} 2=\mathrm{r}^{\wedge} 2 .
$$

So we could calculate ( $\mathrm{x}, \mathrm{y}$ ) on circle using

$$
y=y_{-} c+/-\left(r^{\wedge} 2-\left(x-x \_c\right)^{\wedge} 2\right)^{\wedge}\{1 / 2\}
$$

This would be slow because would have to do too many calculations per step.
Another way is to use the equations:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x} \_\mathrm{c}+\mathrm{r} \cos \phi \\
& \mathrm{y}=\mathrm{y} \_\mathrm{c}+\mathrm{r} \sin \phi
\end{aligned}
$$

Problem is points are determined by changing $\phi$ and so plot some areas closer together than others

## More Circles

- Want to exploit the symmetry of circles.
- First, if angle $0<=\phi<=$ pi/4 then slope of the radius line will be between 0 and 1 .
- Notice if can plot circle in this region can extend to whole circle



## Midpoint Circle Algorithm

Now we adapt Bresenham to circles:
Let $f_{-}\{$circ $\}=x^{\wedge} 2+y^{\wedge} 2-r^{\wedge} 2$
Then $\mathrm{f}_{-}\{\operatorname{circ}\}<0$ if $(\mathrm{x}, \mathrm{y})$ is within the circle,
Then $f \_\{\operatorname{circ}\}=0$ if $(x, y)$ is on the circle,
And then $\mathrm{f}_{\mathrm{L}}\{\operatorname{circ}\}>0$ if $(\mathrm{x}, \mathrm{y})$ is outside the circle

Given we have plotted (x_k,y_k) want to determine which is close to the circle ( $\mathrm{x}-\mathrm{k}+1, \mathrm{y} \mathrm{k}-1$ ) or ( $\mathrm{x} \_\mathrm{k}+1, \mathrm{y}, \mathrm{k}$ ).

## More Circle Algorithm

To choose we apply f_\{circ\} to midway between these two points. So p_k=f_\{circ\}(x_k+1, y_k$1 / 2$ ). If $p_{-} k<0$ then the midpoint is inside the circle so should plot ( $\mathrm{x} \_\mathrm{k}+1, \mathrm{y}_{-} \mathrm{k}$ ). Otherwise, should plot ( $\mathrm{x} \_\mathrm{k}+1, \mathrm{y} \_\mathrm{k}-1$ ).
Can compute $p_{-}\{k+1\}$ from $p_{-} k$ as $p_{-} k+2\left(x_{-} k+1\right)$ $+\left[\left(\mathrm{y} \_\{\mathrm{k}+1\}\right)^{\wedge} 2-\left(\mathrm{y} \_\mathrm{k}\right)^{\wedge} 2\right]-\left(\mathrm{y} \_\{\mathrm{k}+1\}-\mathrm{y} \_\mathrm{k}\right)+1$.
Here $y_{-}\{\mathrm{k}+1\}$ is either $y_{-} k$ or $y_{-} k-1$ depending on the sign of $\mathrm{p}_{-} \mathrm{k}$
Can show p_0 should be f_\{circ $\}(1, r-1 / 2)=5 / 4-r$.

