More Line and Some Circle Algorithms

> CS116A Chris Pollett Sep1, 2004.

Introduction

- Parallel Line Algorithms
- Frame Buffer Values
- Circles
- Midpoint Circle Algorithm

Parallel Line Algorithms

How to draw lines if we have multiple processor? Adapt Bresenham. Assume 0<m<1

- If have p processors, we partition line into p segments.
- The change in width of a segment will $\Delta x_p = (\Delta x + p 1)/p$. The p-1 comes from overlapping 1 pixel at end of segments.
- The change in height of a segment will be Δy_p=mΔx_p

More Parallel Line Alg's

- The start position of the *k*th partition will be (x_k,y_k) where x_k = x_0 +k∆x_p and y_k = y_0 + round(k∆y_p)
- The decision parameter p_k also needs to be determined for each interval. Recall p_k = $\Delta x(d_lower-d_upper)=2\Delta y^*x_k+2\Delta x^*y_\{k+1\}$ $+2\Delta y+2\Delta x(2b-1).$
- Note ∆x, ∆y, b are constant and the only other variables are x_k, y_k so p_k can be set up without having to calculate p_m for m<k

Frame Buffer Values

Final stage for line segment implementation is to set the frame-buffer color values. That is, actually set bits in memory as opposed to 2D arrays. Also can do with incremental operations.

Suppose screen from (0,0) to (x_{\max}, y_{\max}) . Assume only dealing with black and white.

Then the frame buffer pixel address for (x,y) is:

 $Addr(x,y) = Addr(0,0) + y(x_{max}) + 1) + x$

So incrementally, (x+1,y) will be at Addr(x+1,y)= Addr(x,y)+1

More Frame Buffer

And (x+1,y+1) will be at Addr $(x,y)+x_{\max}+2$

So above op's can be done with only adds. To store more than one bit of color depth same idea and can still use adds.

Circles

Recall equation of a circle:

 $(x-x_c)^2 + (y-y_c)^2 = r^2.$

So we could calculate (x,y) on circle using

 $y = y_c + (r^2 - (x - x_c)^2)^{1/2}$

This would be slow because would have to do too many calculations per step.

Another way is to use the equations:

 $x = x_c + r \cos \phi$

 $y = y_c + r \sin \phi$

Problem is points are determined by changing ϕ and so plot some areas closer together than others

More Circles

- Want to exploit the symmetry of circles.
- First, if angle $0 \le \phi \le pi/4$ then slope of the radius line will be between 0 and 1.
- Notice if can plot circle in this region can extend to whole circle

Midpoint Circle Algorithm

Now we adapt Bresenham to circles: Let $f_{circ} = x^2+y^2-r^2$ Then $f_{circ} < 0$ if (x,y) is within the circle, Then $f_{circ} = 0$ if(x,y) is on the circle, And then $f_{circ} > 0$ if (x,y) is outside the circle

Given we have plotted (x_k,y_k) want to determine which is close to the circle (x_k+1, y_k-1) or (x_k+1, y_k).

More Circle Algorithm

To choose we apply f_{circ} to midway between these two points. So $p_k=f_{\text{circ}}(x_{k+1}, y_{k-1/2})$. If $p_k < 0$ then the midpoint is inside the circle so should plot (x_{k+1}, y_k) . Otherwise, should plot (x_{k+1}, y_{k-1}) .

Can compute p_{k+1} from p_k as $p_{k+2}(x_{k+1}) + [(y_{k+1})^2 - (y_k)^2] - (y_{k+1} - y_k) + 1.$

Here y_{k+1} is either y_k or y_k-1 depending on the sign of p_k

Can show p_0 should be f_{circ}(1,r-1/2) = 5/4-r.