
1

Advanced Verification &
Validation Tools for Java

Johann Schumann
7/31/2009

Abstract
• As more and more Java software finds it way into areas where quality,

reliability, and software safety plays an important role, the verification and
validation (V&V) of such code is paramount. Unfortunately, traditional
approaches to software testing are extremely expensive and labor intensive,
when a low software error rate is expected. Therefore, approaches and tools,
which help to find errors and bugs as early as possible, which help to find
hard-to-test errors, and which support the automatic generation of test suites,
are extremely helpful and important.

• In this seminar, we will focus on advanced tools for V&V of Java code, some
of which have been developed at NASA. All these tools are open source, so
the threshold for use by students is low.

2

Abstract
• We will cover the following topics:

– The role of V&V in modern Software Engineering
– Early detection of bugs and defects (e.g., Findbugs)
– Model Checking of Java Programs to find concurrency bugs in

multithreaded programs with Java PathFinder
– Using Model Checking to validate a graphical user interface (e.g., with

Java Swing)
– Automatic generation of Java testcases with SPF (Symbolic Path Finder)
– Discussion of integration of V&V tools into a software process.

• This course will present a short theoretical background and will
discuss practical examples and technqiues. All tools presented are
open-source; Java PathFinder and SPF have been developed at NASA
Ames for the V&V of safety-critical code.

Prerequisites

• knowledge of Java, including threads and
Swing/awt.

• knowledge of eclipse (most tools run within
eclipse)

• basics of software engineering

“This is your last chance...”

3

Books
• J. Schumann, Automated Theorem Proving in Software

Engineering, Springer, 2001
• M. Mansouri-Samani, P. Mehlitz, C. Pasareanu, J. Penix, G.

Brat, L. Markosian, O. O'Malley, Th. Pressburger, and W.
Visser, Program Model Checking: a Practitioner's Guide,
NASA/TM-2008-214577, January 2008 (available:
http://sarpresults.ivv.nasa.gov/; search for "program model
checking")

• B. Berard, M. Bidoit, et.al., Systems and Software
Verification: Model-Checking Techniques and Tools, Springer,
2001

• U. Schoening, Logic for Computer Scientists, Birkhaeuser,
1994

more links etc. throughout the seminar

Safety-critical Software

4

Mars Climate Orbiter ‘99
• course deviated from

calculated trajectory
• MCO burned up in

atmosphere or flew
beyond Mars
(unknown)

• What happened:
– NASA: lbs,ft,in,...
– contractor: m,kg,..
in analysis and software

• They didn’t talk to
each other.

Did they learn?

• For Orion, NASA has chosen imperial units
• According to an international treaty, all

units on moon are metric.

• Dual-scale units or switch?
• When will they throw the switch?

5

Mars Polar Lander
• MPL descended

through atmosphere,
deployed parachute,
jettisoned parachute at
low altitude, continued
descend on rockets, and
crashed

• What happened?

Mars Polar Lander II
• landing legs are deployed at ~200m
• shut off rocket as soon as landed

– contact switch in leg
• Reality (what people think what happened):

– landing legs deployed at ~200m (measured with radar
altimeter)

– landing legs unfold; vibration triggers landing switch
– software says: switch activated, we have landed: turn

off rocket engine
– no rocket engine at 200m: bad, bad...
Software did not take other available sources into account

6

Mars Polar Lander III
• The software
actual:
...
if (l_switch){
 turn_off_engine();
 }

correct:
...
if (l_switch){
 if (radar_alt < 5){
 turn_off_engine();
 }
 else {
 errors++; // ignore spurious
 }
 }

Obviously no one tested the situation:
l_switch==1 AND radar_alt >100

DART-I
• DART spacecraft

should autonomously
maneuver to and dock at
an “old” satellite

• What happened: DART
zig-zagged around,
burned its fuel, bumped
into the satellite and
turned itself off.

7

DART-I

• the Navigation software was buggy
• a new (and bad) GPS system was put on the

spacecraft only few weeks prior to launch
• the GPS system caused to spacecraft to

repeatedly reset its navigation to “wrong”
default values

• SC zig-zagged around and missed its
approach target

Ariane V
• Control software component was

re-used from Ariane-IV
• Larger rocket=different

parameters, leading to value
overflow

• Exception handling was disabled
• Rocket went unstable and had to

self-destruct

before

after

8

Harrier Autolander
• autolander receives altitude

above ground from Radar
altimeter

• Software had to deal with
data drop-outs
– if (reading.good){

• alt = get_radar();
– else {

• alt = last_good_radar_value
– }

In an experiment, the altimeter failed during a landing approach (at
10m) and almost crashed the AC into the tarmac. What happened?

B777

 ... we received a recent report of a significant nose-up pitch event on a
Boeing Model 777-200 series air plane while climbing through 36,000 feet
altitude. The flight crew disconnected the autopilot and stabilized the air
plane, during which time the air plane climbed above 41,000 feet,
decelerated to a minimum speed of 158 knots, and activated the stick
shaker.

FAA Emergency Directive AD 2005-18-51 (Aug ʼ05):

9

B777

• Action Item: “Install previous Software Version” bugs
and bug workarounds (Display of flight data) are
known in this version

• install old version on all B777ʼs
• software problem: Byzantine problem in handling

sensor data

... These errors were caused by the OPS using data from faulted
(failed) sensors. OPS using data from faulted sensors, if not
corrected, could result in anomalies of the fly-by-wire primary flight
control, autopilot, auto-throttle, pilot display, and auto-brake
systems, which could result in high pilot workload, deviation from
the intended flight path, and possible loss of control of the air plane.

Other Failed Missions,
Problems,...

• Many problems and mishaps can be attributed to
faulty computers and/or software

• In safety-critical applications, such bugs can put
human life at risk and can catastrophes

• Bugs and errors can be extremely costly to fix

• http://www.rvs.uni-bielefeld.de/publications/compendium/index.html computer-related incidents with
Commercial Aircraft

• Peter Neumann, Computer-related Risks, Addison Wesley, 1995
• related URL + forum: http://www.csl.sri.com/users/neumann/#3

10

Big Questions I
• How to find errors as early as possible?

Bug-removal after deployment can cost up to 100x more than for
finding the bug early in the SW development

Big Question II

• How to find errors/bugs as cheap and quick
as possible?
– can’t spend years on testing
– can’t hire 10,000s of testers
– automatic tools for

• finding bugs
• generating and executing tests
• ...

11

Big Question III

• How to find as many and very complex
errors as possible?
– complex (logic-based) tools necessary to find

difficult bugs
– combination of different techniques

Big Question IV

• Which technology/tool to use?
– code review
– testing
– model checking
– static analysis
– formal verification
– ...

12

Big Question V

• How to do it in a “good” way?
– Software processes and V&V processes exist

(many of them)
– Processes need to be adapted to specific needs
– Processes need to be executed

Big Question VI

Do all approaches/tools work for all languages?
• Java
• C
• C++
• Ada
• other languages?

13

Summary
• Software is buggy
• Buggy software can risk lives and costs $$$
• Techniques and tools exist to help find bugs early

– modern tools
– expensive commercial tools (Klocwork, T-VEC, LDRA,

PolySpace, Design verifier,...) and opensource tools
– these tools are not push-button, so power users must understand

underlying principles and limits
– these tools are based upon mathematical logic, theorem proving,

model checking, etc.
• These seminar covers the underlying principles and

discusses various powerful tools and their applications

OVERVIEW

• The Software Life Cycle
• Verification and Validation
• Tools/approaches:

– code review/static analysis/findbugs
– Model Checking: Java Pathfinder
– Testcase generation

14

Software Engineering

• “Art of Doing Software”
– was a “dark art” for a long time rather an

“engineering discipline”
• large field; here will focus on

– elements of the software life cycle
– verification and validation
– levels of criticality
– software processes and V&V processes

The Elements of SW Lifecycle
• Requirements
• Design
• Implementation
• Test/Validation
• Deployment
• Maintenance

Many refinements of the SW life-
cycle elements exist.

15

Requirements
• Captures ``What has to be done?’’
• Uses the word “Shall”
• Often just a word/power-point document
• can come out of meeting with customers
• more formal representations exist

– high-level specification (logic-based)
– tables (e.g. SCR)
– UML (mostly use cases)

Design

• Captures “How the program will look like?”
• Typically, graphical representations and

high-level language constructs (e.g., class
diagrams) are used

• much more detailed than requirements
• Focuses on the “how” questions and on

architecture
• Here come the “it’s object-oriented” in

16

Design

• Important elements
– definition of data structures, often on higher

level: list_of_entries, sets, ...
– static breakdown into components
– dynamic breakdown into processes or threads
– major decision logic

• if-then-else cascades
• automata
• state charts

Implementation

• Actual coding phase
• more refinement of the architecture

– how are the data structures implemented
– low-level structuring
– OS interface

But: the more design decisions are made during the coding
phase, the harder the program is to test later on.
See Harrier example: the programmer (“junior duck”)
implemented the error-handling routine on his own.

17

Testing

• Run the program with ``test cases’’
• various levels of testing

– unit testing: test small components
– system testing: test larger subsystems
– integration testing: test together with

environment

Testing – What you test for?
• functional test:

– does the system do what it is supposed to do?
• does it print the correct information,...

– nominal cases / error cases
• what happens if you give it a “wrong” file?

• code coverage:
– has the entire code (line by line) been executed by at

least one test case
– different coverage metrics (->later)

18

Deployment

• packaging
– how to pack and deliver software

• upload/download Which mechanisms?
• CD/DVD
• licensing and checking of licenses

• installation of software
– HW/SW requirements
– SW/Version prerequisites

• documentation / training

Maintenance and Reuse

• 1-800- / Helpdesk, etc.
• version control
• compatibility with older versions
• software patches (how to distribute and

install)
• re-testing
• new features can cause problems (see our

Boeing 777 example)

19

SW Development Elements

• The SW development elements
(requirements, design, coding, testing,
deployment, maintenance) are necessary to
develop a piece of software.

• However, there are many different ways, in
which order these steps are executed, and
how often they are executed.

Software Life Cycle:
Waterfall model

• Each stage is executed
• Previous stage needs to be

finished (almost) before next
stage begins

• traditional model
• often used for safety-critical

software
• inflexible with respect to

changes

20

Lifecycle: Spiral model
• each phase is run through

multiple times
• early iterations with limited

functionality
• prototypes assessed carefully

for correctness and
alignment with requirements

• in safety-critical SW: at each
iteration, a risk assignment is
performed

Lifecycle

• Regardless of the choice of the lifecycle
model, it is always important to make sure
that the software “works as expected”.
There are three major activities involved
with this notion
– verification
– validation
– certification

21

Verification, Validation, Certification

• Verification: “Did you implement the thing right?”
– Typical: formal analysis, proofs, …

• Validation: “Did you implement the right thing?”
– Typical: testing, testing, …

• Certification: “Did you do all the right steps (with respect
to a certification standard) and demonstrated that nothing
can go wrong?”
– Typical: paperwork (plans, reports), meetings, …

Verification
• “Do you implement the thing right?”

– “Does the design meet the requirements?”
– “Is the code matching up with the design?”

• Verification is usually considered to be the “hardest part”
of V&V

• Many different questions need to be answered for
verification as
– the “grand goal”, namely a formal proof of equivalence, cannot be

reached in reality (unless programs of <100 lines are reality)
– multiple “properties” can/cannot be analyzed. Which ones to pick?

22

Verification
• Verification can be done on various levels of formality

and rigor
– Verification by documentation: e.g., Word-document

• “Code lines 346-537 implement req 4.2.1.0 and req 7.2.4.1,
because the variable “altitude” has a positive value.

– Code inspection: peer reviewers go over the code line-by-line
– automatic tools to show that important properties hold, e.g.,

no array-out-of-bounds, no deadlock, ...
– Formal (logical) proof: Code -> Requirements

• “forall L=<date,amount>* exists <D,A> : <D,A> \in L /\ forall
<D1,A1> \in L: A>= A1”

Effort G
RO

W
S

ou
r t

op
ic

s

Validation
• Did you implement the right thing?
• Traditional technique: testing, i.e., exercising the code with

specific inputs and check if the outputs are the expected ones
• Most software processes prescribe rigorous testing according

to a metric
• Testing is one of the major cost driver in SW development

23

The V-Shape

--> Verification
-.-.-> Validation

Tools for V&V

• In the rest of this seminar, we will look at
various techniques to find and remove
errors in various artifacts during the
software development.

• There are many such techniques/tools out
there, so we will have to focus

24

Tools for V&V
• we focus on

– Java: although rarely used for embedded systems (yet),
Java is a very popular language and finds its way more
and more into safety-/mission-critical applications.

– open source: commercial tools can be extremely
expensive, but everybody should produce reliable
software.

– automatic: some V&V techniques (e.g., classical proof)
requires heavy user interaction, others are fairly
automatic (like a compiler). High degree of automation
can lower threshold to use tools.

Overview

• “Take a good look”: Analyze the code
without executing it – code review, static
analysis, Findbugs

• “Execute all possibilities”: Model checking
of models and code – JPF

• “Test the code”: Testing and automatic
testcase generation – SPF

25

Code Review

• In most SW processes, parts (or all) of the
implemented code has to undergo some
kind of formal review

• A review team looks at the code (e.g.,
printout) and “tries to see if it is OK”

• There are multiple approaches to that and
many “check-lists” exist

• Tools can support some aspects

Metrics for Code Review

26

Properties for Code Review

Coding Standards
• most programming languages are very rich and expressive
• some language constructs are hard to test and a especially

error prone
– multiple inheritance in C++
– pointers and casting
– dynamic memory, etc.

• There are several “coding standards” out there, which
prescribe the subset of language constructs that can be
used by the programmer.

• Such a list can be easily adapted and can be very helpful
for all V&V purposes

27

Code Review and Coding Standards
• some pointers to code-review checklists and coding

guidelines/standards
– http://www.mathworks.com/industries/auto/maab.html: Standard for Simulink/Stateflow (modeling standard)
– http://www.homeport.org/%7Eadam/review.html: Guideline for Security Code Review
– http://www2.umassd.edu/SWPI/TechnicalReview/inspect.pdf: Question catalog for code inspections
– http://www.chris-lott.org/resources/cstyle/Baldwin-inspect.pdf: An abbreviated C++ Code Inspection Checklist
– http://hissa.nist.gov/publications/nistir4909/: NISTIR 4909 - SW quality assurance: documentation and review
– http://www.jetcafe.org/jim/c-style.html: Standards and Style for Coding in ANSI C
– http://www.alma.nrao.edu/development/computing/docs/joint/0009/2001-02-28.pdf: C coding standard for the Atacama Large

Millimeter Array
– http://www.possibility.com/Cpp/CppCodingStandard.htm: C++ Coding Standard
– http://www.chris-lott.org/resources/cstyle/indhill-cstyle.pdf: somewhat older C coding standard
– http://www.gnu.org/prep/standards/: GNU coding standards
– https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards: CERT secure coding standars

webpage pts. to books, wiki’s etc.
– http://membres.lycos.fr/pierret/cpp2.htm#cpp: Ellemtel C++ guide (middle of page) + other links
– http://gee.cs.oswego.edu/dl/html/javaCodingStd.html: Draft Java Standard
– http://java.sun.com/docs/codeconv/: Java Code conventions
– http://geosoft.no/development/javastyle.html: Java progamming Style Guidelines

Static Analysis Tools
• tools for debugging and V&V support
• the code is never executed, but the code

structure is analyzed in detail
• some tools are tailored more toward finding

bugs (not complete), others guarantee the
absence of certain property violations

• Lot of tools - for a list see e.g.,
– http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

28

FindBugs

• FindBugs is an open source static analysis
tool for Java

– http://findbugs.sourceforge.net/

• There is an Eclipse Plugin
• the tool works with a set of filters
• highly flexible and extensible (user-defined

filters)

Bug Categories
• Correctness bug Probable bug - an apparent coding

mistake resulting in code that was probably not what the
developer intended. We strive for a low false positive rate.

• Bad Practice Violations of recommended and essential
coding practice. Examples include hash code and equals
problems, cloneable idiom, dropped exceptions,
serializable problems, and misuse of finalize. We strive to
make this analysis accurate, although some groups may
not care about some of the bad practices.

• Dodgy Code that is confusing, anomalous, or written in a
way that leads itself to errors. Examples include dead local
stores, switch fall through, unconfirmed casts, and
redundant null check of value known to be null. More
false positives accepted. In previous versions of FindBugs,
this category was known as Style.

29

Current list of bug patterns

...

DEMO

• select java project (findbugs
calculator/GUIConverter)

• CTRL-click
– clear bug marks/ run bugmarks

30

Summary: findbugs/static analysis
• tools run fully automatic
• find many weird things and possible bugs, but

– many false alarms: tools says “could be a bug”, but
code is correct waste of time

– code is NOT executed, so many bugs cannot be
found

• SA tools are useful for debugging and QA of
daily builds. Can be problematic if too many
false alarms occur

31

Model Checking

• Model Checking (in a nutshell)
– given a (simplified) model of a system, test

automatically whether this model meets a given
specification or not

– system: software or digital hardware
– specification: formal safety requirement that

should always hold or that should never occur

Models and Model Checking

• Model checking in a commutative diagram

Model

System

SPEC

Property/
Requirement

???

Model checking

Modeling
• model construction
• model extraction
• program as model

formal req.
capture

32

Model Checking

• model checking can
be used at different
stages of the SW
process and its
artifacts
– statemachines,

statecharts, etc. on
design level

– actual code on the
coding level

Program Model Checking

• Program model checking is concerned with
checking properties, where the underlying
system is a program (or a model thereof)
– comes later in the SW process
– programs usually contain much more details

(good and bad for analysis)

33

Program Model Checking

• Use the actual program as the model
– pros:

• no translation into MC syntax/semantics necessary
• easier to use
• counter example already in the “program” world

– cons:
• How can we check a program?

– explicit model checking
• Programs contain too many details and are too large

– abstraction
– How to formulate properties?

Propositional and other logics

• Many specifications can be formulated in this propositional
logic. What can’t be done?
– modeling with time:

• “first click A then click B”;
• “eventually the program will crash”

– modeling with unknown parameters:
• “for all x: x2 > -1”,
• “for all humans H: mortal(H)” (Socrates)

– higher order logics, typed logics...

temporal logic(s)

predicate logic

Most model checkers specialize on temporal logic

34

Why temporal logic?
• Most programs contain some kind of “state”, which is

updated by operations
– “file modified” is updated by “delete-char” and “save”
– context sensitive menus
– modes in GN&C, e.g., mode={launch,orbit,landing,landed}

• if (mode==launch && alt >100km) mode=orbit
• if (mode==landing && alt < 100m) mode=landed

– network protocols: mode=init, connecting, connected, error

Why temporal logic?
• Often finite automata, state-machines, statecharts

(UML), etc. are used

launch orbit

landing landed

alt >100km

alt < 100m

de_orbit=1

alt>=100,

alt<=100km

35

Why temporal logic?
• Simple programs are deterministic and sequential
• Debugging a simple program is hard
• Debugging a non-deterministic, parallel/multi-

threaded can be a night-mare
– Some errors cannot be reproduced
– errors can show up sporadically
– you cannot test for all cases

Example

• two different threads (e.g., in Java)
 global int x=5;
 thread 1: thread 2:
 x = x + 2; x = 2*x;

Which value of x do you get?

x=14, x=11, x=7, x=10, x=12 ?

36

Example cont’d
• One can get all five different values
• Why?

– the different threads can run with different speed. So x=x+2 can be
executed before or after x=2*x;

– the assignments x=x+2 are not atomic (uninterruptable), so if after
loading “x” (=5), the other process gets the CPU and sets x=10.
After that, thread 1 gets the CPU again and calculates 5+2 and
assigns it to x

• Bad thing: you cannot reproduce the runs; if you add
“printf”s for debugging the behavior will be different
again...

Obviously, the “synchronized(...)” was forgotten. Can we detect
such situations?

Things to check in multithreaded
code

• deadlock: if two (or more) threads mutually
block each other, waiting for a resource that
the other thread has. Execution grinds to a
halt.

• race condition: undesirable effects occur by
having multiple threads trying to access the
same resource

Temporal logic can be used to formalize these kinds of properties
and check them. They actually occur: left-out protected region in
Deep Space I

37

Properties

• In general, we have two kinds of properties
– safety properties: Show that something (bad)

cannot happen
– liveness properties: Show that something (good)

will happen eventually
• Violations can be shown by counter-

examples. Note: for liveness, the
counterexample might be of infinite
length/size

Model Checking

OK

Error trace

or
Finite-state model

Temporal logic formula

Model Checker
 (Φ Ω)

Line 5: …
Line 12: …
Line 15:…
Line 21:…
Line 25:…
Line 27:…
 …
Line 41:…
Line 47:…

38

Example
1 i=1;j=0;
2 while(i<10){
3 if (i < 5){
4 i=i+1;
5 j=j-3;
6 }
7 else {
8 j=j+2;
9 i=i+2;
10 }
11 }

state:

<PC,i,j>

j=0

Deadlocks and JPF

• The Dining Philosopher Example
– philosophers do: eat, think
– need 2 forks (left, right)

• What can happen?
– deadlock
– livelock

39

Java Pathfinder

• Java Pathfinder is an explicit model checker
for Java, implemented in Java

• The tool was/is developed at NASA Ames
• Opensource:

http://javapathfinder.sourceforge.net/
• first NASA-developed SW in open source

Java PathFinder
void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

JAVAC JVM

0: iconst_0
1: istore_2
2: goto #39
5: getstatic
8: aload_0
9: iload_2
10: aaload

Bytecode

Special
JVM

Model
Checker

40

DEMO

• Eclipse:
– javapathfinder-trunk/examples/DiningPhilosophers
– show code
– runConfiguration: DiningPhilosophers

• _JPF
– fix with waiter
– increase NUM_PHILS = 10 (DiningPhilosophers.java)

• run with JPF

Running JPF: What does the output
mean?

• the “no errors detected” is a proof that this piece of code does not
violate this property.

• “error #1...” shows a trace, on how a violation of the property
occurred.

• In contrast to testing, all possible paths through the code and
process interleavings are checked.

...
== results
no errors detected

== statistics
...

41

Growing of the State Space
• Figure shows that

number of states
grows exponentially
with the size of the
problem.

• In general, large and
complex programs get
model checkers into
problems (time,
memory) quickly

JPF: Underlying Principles
• An explicit program model checker consists of:

– searching the state-transition space of the program
– checking for properties as algorithm goes along
– storing states for

• recognizing states “already visited”
• for backtracking

– reading in
• program
• properties

42

JPF: Basic Idea

• implement a special-purpose JVM
– add techniques for state compression
– add search algorithm and search control
– add property checker
– and you are ready to go

Well, it’s not that easy...

JPF Architecture
• .class: input to JVM
• configuration file (not

shown)
• Virtual machine: custom-

made VM which includes
– lots of interfaces
– state management for storing

and comparing states
(“seen”/”visited”)

• Search Strategy: do all kinds
of search

43

JPF Architecture
• Property checkers: check

properties when moving along
• contains default property checkers:

deadlock, race condition, uncaught
exception,...

• search listener: provide
information about the search

• everything is implemented in an
OO fashion with “listeners”,
“factories”, ...

ChoiceGenerator
• Our example was extremely primitive, as all the variables were set to a

constant value.
• What can be done if variable values are set from the outside (e.g.,

input to program, environment)?
• The ChoiceGenerator is an OO interface to provide enumeration of

values for a variable during model checking
– import gov.nasa.jpf.jvm.Verify;
– boolean b = Verify.getBoolean();
– int arg = Verify.getInt(-10,10);

• These “nondeterministic variable settings” are used to automatically
generate the appropriate values during the MC search

44

Example with ChoiceGenerator

• This set-up causes JPF
to go through all values
of arg2 from -10 to 10.

• Should hit a div-
by-0 exception
somewhere...

import gov.nasa.jpf.jvm.Verify;

public class example2 {
example2(){}

int dodiv(int x, int y){
 int z;
 z=x/y;
 return z;
 }

public static void main(String[] args) {
 int res;
 example2 ex = new example2();
 int arg2 = Verify.getInt(-10,10);
 res = ex.dodiv(10,arg2);
 System.out.println("result: "+res);
 }
}

Configurable Heuristic Choice
Models

• take choice generator
– double alt = Verify.getDouble(“altitude”);

• configure, how selected values for the
variable “alt” are to be generated.

• This de-couples the value generation and
the search (heuristics)

• user can easily extend this
 mechanism

45

Properties
• There are different kinds of properties

– safety properties (something bad cannot
happen)

– liveness properties (something good will
eventually happen)

– fairness properties (something good happens
infinitely often)

– temporal properties

Properties

• generic properties
– deadlock, no race condition

• language-specific
– no array-out-of-bounds
– no null-pointer dereference

• application specific
– pitch ration should be between -1 and 1
– The parachute can only jettisoned after ...

46

How to specify properties

• default properties (in JPF): deadlock, assertion violation,
uncaught exception, race condition

• instrumentation (adding property oracles): insert code that
says whether a property holds at a given state during model
checking
– this fits neatly with traditional “assert” programming and

programming by contract (i.e., preconditions, postconditions,
invariants).

Abstraction
• In Model Checking things usually break if

– there are an infinite (or large) set of choices
• there is no choice-generator for “double”

– the program contains many variables and details
• The resulting search space is infinite (or at least

too large)
• With Abstraction, we throw away some

information about the program without (hopefully!)
not changing the validity of properties

• e.g.: double altitude
– can be abstracted into “altitudes larger than 30,000ft”

and “smaller”.

47

Abstraction - the Process

• commutative diagram

Program

Abstracted
Program

Abstracted
Results

Concrete
Results

abstraction
mapping

mapping
“back”

Model Checking

Abstraction

• control abstraction
– remove program parts, which are not of interest for the current

analysis
– Example:

• ...{ var1=5; var2=var2+1;} ==> act_1
– “program slicing”

• data abstraction
– replace large domains with small ones
– see previous slide

48

Property Preservation
• An abstraction is weakly preserving if a set of properties,

which are true in the abstracted system, is also true in the
concrete system

• An abstraction is strongly preserving if a set of properties
has the same truth value in the abstracted system and the
control system

• An abstraction is error preserving if a set of properties,
which are false in the abstracted system is also false in the
conrete system

Property Preservation
• Weakly preserving properties are nice, because they can substantially

reduce the space. However, violations of properties found in the
abstracted systems need not correspond to property violations in the
concrete system
– this is called “false” alarms

• An error preserving abstraction is useful for disproving properties.
Property violations in the abstracted system correspond to property
violations in the concrete system.
– this comes in handy for debugging
– bugs (as violations of properties) can be found that way
– however, such an abstraction does not guarantee that a property holds

49

Example
• x={0,1000} is error-preserving wrt.

division-by-zero
– bad statement (*) in abstracted code is

also bad in original code
• x={-1000,1000} is weakly

preserving wrt. dead code
– statement (*) cannot be reached in

abstraction (violation of dead-code
free property). However, orginal code
is dead-code free

Program:
if (-100 < x && x < 100){
 y=1/x; // (*)
 }
elseif (x <= -100)
 action_b;
else
 action_c

Abstract Interpretation

• Abstract interpretation is a framework for
data abstractions, which are weakly
preserving with respect to safety properties

• An abstract interpretation consists of
– finite domain of abstract values
– abstraction function
– collection of primitive operators

50

Example: Sign abstraction

• A popular abstraction is the sign abstraction:
instead of using the actual value of a
variable, we only consider its sign.

• Usually, ZERO, NEG, POS are used
• we need to define

– abstraction function
– primitive operators: e.g., “+” and “<“

Sign Abstraction

NEG{ZERO,N
EG,POS}

NEGNEG

{ZERO,N
EG,POS}

POSPOSPOS

NEGPOSZEROZERO

NEGPOSZERO“+”

51

Sign Abstraction: “<“

{FALSE,
TRUE}

TRUETRUENEG

FALSE{FALSE,
TRUE}

FALSEPOS

FALSETRUEFALSEZERO

NEGPOSZERO“<”

Abstraction of Program

• program is actually modified

foo(){
int a = -10;
int b = 0;
while (a < 0){
 b = b + a;
 a = a + 1;
 }
assert(a==0);

foo(){
int a = Sign.map(-10);
int b = Sign.ZERO;
while (Sign.lt(a, ZERO)){
 b = Sign.add(b,a);
 a = Sign.add(a,Sign.map(1));
 }
assert(Sign.isequal(a,ZERO));

52

Useful abstractions

• range abstraction: [lt_l, l, l+1,...,u-1,i,gt_u]
• sign abstraction
• even/odd
• modulo abstraction: merge all values with

the same remainder into one value. even-
odd is a modulo-2 abstraction

• point abstraction: abstract all values into
“unknown”

JPF as Framework
• The JPF architecture is very flexible and thus can be (and

has been) used for multiple purposes/extensions
– checking numerical properties (overflow, roundoff, ...):

extensions/numeric
– symbolic testcase generation: extensions/symbc
– swing GUI model-checking: extensions/ui
– translation of temporal logic into automata for property checking

(this is LTL (linear time temporal logic)): extensions/LTL2Buchi
– checking of statecharts: extensions/statecharts
– compositional verification: extensions/cv
– ...

53

Controlling JPF

• There are many knobs to turn
• Abstraction
• ChoiceGenerator
• Search: DFS, BFS, heuristic search
• ignoring parts of the program
• compressing transitions

Summary: JPF
• JPF is a powerful search/checking framework for

Java programs
• Easy to use for checking built-in properties,

special-purpose ones require programming
• Many opensource extensions to JPF
• large programs/large variable domains require

abstraction – this is where creativity comes in

54

Model Checking GUIs

• Graphical user interfaces are used in many
applications

• Often implemented in Java (e.g., Swing, awt)
• Often they hide a fairly complex control structure
• GUIs are traditionally very hard to test

– requires “point and click actions”
– lots of possibilities and sometime longer sequences are

necessary to trigger a failure

55

Example

• I found an example of a “Calculator” in a
Java tutorial on the Web
– simple GUI, no background libraries
– still enough buttons + operations

UIInspector: an extension to JPF
• UI to run, step the GUI under analysis

and to run JPF
• Browser to identify individual

components of the GUI
• Script to define (nondeterministic)

sequences of GUI actions
• traces can be saved and loaded
• Stepwise execution or replay of saved

traces
• UIInspector part of JPF distribution

56

DEMO: GUI-Model Checking

• JPF_GUI_Calculator
• run with configuration “Calculator”
• run with conf “Calculator_JPF”

– show UI elements and numbers
– show script file
– run
– demonstrate trace

GUIInspector script files

• simple language to specify non-
deterministic sequence of GUI actions
REPEAT 2 {
 ANY { #13.doClick, #14.doClick, #15.doClick }
 #6.doClick
}

•we repeat 2 time a sequence where we click any of the 3
buttons and the click “Cycle”
•The ID numbers (#13, etc) can be obtained using the
content browser.
•Events can be added to script using the “add target” (RHS)

57

Limits of the GUI MCing
• if external libraries are used, they should be “abstracted”,

i.e., they should be ignored during search (unless you want
to find a bug in the library)

• generic input (e.g., editor fields) must be handled
separately (e.g., with ChoiceGenerator) to produce
reasonable multiple values

• graphical elements (e.g., drag, draw,...) would need some
abstractions – one does usually not want to enumerate all
(x,y) positions of the cursor

58

Testing

• Testing is one of the most important activity
during the software lifecycle.

• With testing, it is assured that the
implemented software performs according
to the specification

• The V-shape

--> Verification
-.-.-> Validation

The Testing Hierarchy
• unit test: small SW component: your desktop
• SW system test: on a big workstation; environment

and hardware are simulated
• Test on target platform “baby bed”: flight computer

(“black box”) is attached to workstation. SW runs on
black box, workstation simulates environment

• HILS (Hardware in the loop): flight computer runs
SW, is attached to aircraft. An external workstation
simulates the environment and produces simulated
inputs; outputs directly drive the aircraft.

59

The Testing Hierarchy

• The costs for testing and the testing time grows
dramatically with increasing level of fidelity
(HILS: >$10k per hour)

• Time & effort to fix bugs and retest grows
dramatically with increasing level of fidelity.

Thus it is essential that to do as many tests and to find as
many bugs as early as possible.

Our testing with Model Checking is for unit testing

Black-box vs. White-box

• In black-box testing, the piece of SW under test is
exercised using its inputs and outputs only. No aspects of
its internal working is considered. No knowledge about the
implementation is / should be available to the tester.

• In white-box testing, the SW is opened up and details of
the SW implementation and behavior can be looked at and
analyzed.

60

Functional vs. structural testing
• Functional testing: “Do I get the right

output for the given input?”; “Is this thing
working?”

• Structural testing: “Did I test every
statement of the code?”
– The aim of structural testing is to provide a

given coverage of the code
– This of course requires that the code is visible

and accessible

safety-critical code is often required to be tested according to
specific code coverage metrics

Code Coverage Metrics
• Statement coverage: Each statement of the source code

needs to be executed
• Decision coverage (Branch coverage): Each conditional

statement (if, switch, for, while) must be executed in true
and false

• Condition coverage: each boolean subexpression must be
evaluated to true and false

• Path coverage: Every possible route through a piece of
code must be executed

• MC/DC (Modified Condition/Decision Coverage): similar
to Path cov, but reduces number of test-cases. Important
for Aerospace software

61

Example
• 100% statement coverage requires 2

test cases:
– A=B=C=true
– A=B=C=false

• The branch coverage requires 6 test
cases
– A=true/false;B=C=true
– B=true/false;A=C=true
– C=true/false;A=B=true

• Path coverage requires all 8 test cases

if(A)
 do_1; x=1;
else
 do_2;x=2;
...
if (B)
 do_3;x=x-1;
else
 do_4;
...
if (C)
 do_5;
else
 do_6; y=5/x;
...

Coverage and practice

• The number of required test cases increases
tremendously with the metric.

• Condition covagerage and Path Coverage
are the worst: they require an exponential
number of test cases

• In practice, no one uses (can use) full
condition or path coverage.

62

MC/DC
• MC/DC (Modified Condition/Decision Coverage)
• Every entry/exit point has been invoked
• Every condition in a decision has taken all

possible outcomes
• Each condition has been shown to affect that

decision outcome independently: just vary one
decision and keep the others fixed

Why is MC/DC important?

• MC/DC is a powerful coverage metric, but
generates much less test cases than
condition or path coverage

• The standard DO-178B requires all that all
level-A critical software in commercial
Aircraft been tested according to DO-178B

• A lot of other safety-critical standards have
adopted MC/DC.

63

Automatic Testcase Generation
with JPF

• A model checker can generate testcases
• Put an “assert(false)” in the code and the

MC will tell you how to get there (trace)
• This method does not produce input values

for the tests

SPF: Symbolic PathFinder

• adds symbolic execution (i.e., calculation
with symbolic variables to the JPF model-
checking mechanism

• adds algorithms for solving symbolic
equations/in-equalities

• the combined system can automatically
generate test cases for a multitude of
coverage metrics

64

 if ((pres < pres_min) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

 if ((pres < pres_min)) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

 if ((pres < pres_min) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

Symbolic Execution
Systematic Path Exploration

Generation and Solving of Numeric Constraints

 if((pres < pres_min) || (pres > pres_max)) {
…

 } else {
 …
 }

[pres = 460; pres_min = 640; pres_max = 960]

[pres = Sym1; pres_min = MIN; pres_max = MAX] [path condition PC: TRUE]

[PC1: Sym1< MIN] [PC2: Sym1 > MAX]

[PC3: Sym1 >= MIN &&
Sym1 <= MAX

Solve path conditions PC1, PC2, PC3 _ test inputs

Concrete Execution:

Symbolic Execution:

DEMO: Testcase Generation
import gov.nasa.jpf.symbc.Debug;

public class MyClass1 {

public int myMethod(int x, int y) {
 int z = x + y;

 if ((z > 0) && (x >0 || y < 0)) {
 z = 1;
 } else {
 z = z - x;
 }
 z = x * z;
 return z;
}

// The test driver
public static void main(String[] args) {
MyClass1 mc = new MyClass1();
int x = mc.myMethod(1, 2);
Debug.printPC("\nMyClass1.myMethod Path Condition: ");
}
}

extension/symbc/ex
amples/MyClass1.ja
va

configuration:
myClass1_symbolic

•the test cases are
–TC1: y=1 x=0
–TC2: y=0 x=1
–TC3: y=-10000 x=-10000

65

Test drivers, etc
• A test driver (test harness) is a program that wraps around the

program under test (P) and executes the test cases/sequences.
• The output for each test is compared to the desired output “oracle”

and set to PASS/FAIL
– careful with floats: 1 != 0.9999997

• so use fabs(oracle-out) < 1e-5
– might require customized comparisons

• Instrumentation of code to measure coverage
• Generation of Test Report

– % fail/pass, coverage, version/ history ...
• Connection to Data Base

Test Drivers/Harnesses
• There is a lot of tools ($$$ and open source,

e.g. JUnit)
• usually one has to pay for nice (HTML)

output
• MC/DC coverage analysis is usually $$$
• careful set-up of test plan is important

– e.g., functional tests don’t vary with code
version, but code coverage tests do.

66

Limits of JPF testcase generation
• limited support for arithmetic functions: constraint

solving is very similar to equation solving. Some
equations cannot be solved symbolically or it is
extremely hard. So no decision procedures exist
(yet).

• currently limited support for other data structures

Summary
• There are V&V opportunities throughout the

entire SW lifecycle
• V&V: “Do it early and do it often...” AND “Do it”

– the use of V&V tools must be smoothly integrated into
the SW process

– a V&V plan should be set up before the software is
tested

– Don’t separate “developers” (the gurus) and “testers”
(low-pay entry-level people) (but: there is IV&V)

67

Summary
• There are many open source V&V tools for

Java, so use them
– most are not “push-button”
– often require only one-time setup
– education/training is important
– can be integrated into daily builds etc.

• The (ongoing) software crisis cannot be
solved with these tools, but they can help to
make software more reliable – not just
safety-critical software

Summary

