State

Other Names

Objects as states, delegation.

Problem

Unlike English, Spanish has two verbs that mean "to be." Ser is used to express relatively permanent states of being such as nationality and gender, while Estar is used to express a relatively impermanent states of being such as health and wealth.

Programmers can use generalization to express states of being. For example

A secretary is an employee.

could be expressed in C++ as:

class Secretary: public Employee { ... };

Unfortunately, C++ suffers from the same lack of expressiveness as English when it comes to distinguishing permanent from impermanent states of being. For example, expressing:

A handyman is a carpenter.
A housekeeper is a cook.

using generalization:

class Handyman: public Carpenter { ... };
class Houskeepr: public Cook { ... };

Causes trouble when the same handyman gets a job as a plumber or electrician, or the housekeeper is performing cleaning or laundry services. A C++ handyman object is a block of carpenter attributes fused to a block of handyman attributes:

[image: image1.wmf]Carpenter

member variables

Handyman

member variables

We cannot dynamically (i.e., while the program is running) change the base class of a handyman:

class Handyman: public Plumber { ... };

Multiple inheritance:

class Handyman:
public Carpenter,

public Plumber,

public Electrician { ... };

may be inefficient because every handyman object carries the attributes of all three base classes:

[image: image2.wmf]Carpenter

member variables

Plumber

member variables

Electrician

member variables

Handyman

member variables

.

But some handymen may never get jobs as plumbers or electricians, while others may find work at jobs we haven't anticipated, such as gardening or painting.

Solution

The state pattern separates an object, called the context, from its possible states. The principle context member functions call (delegate to) the corresponding functions of an associated state object (also called the delegate). The state class is an abstract base class that guarantees all concrete derived classes will provide implementations of the principle context member functions. As a side effect, some of these functions may change the associated state of the context.

Static Structure

[image: image3.wmf]Context

function1()

function2()

function3()

"

State

"

function1() = 0

function2() = 0

function3() = 0

State1

function1()

function2()

function3()

State2

function1()

function2()

function3()

State3

function1()

function2()

function3()

Implementation

There are several styles of delegation. In the parameter style, the context passes all relevant member variables by reference to the delegate (i.e. the state). In the "parameterless" style the context passes a pointer to itself (this) to the delegate or the delegate encapsulates a pointer to its context. In this case either the context must provide public member functions to access and update its private member variables (getters and setters), or it must declare each concrete state class as a friend. (Declaring the base class to be a friend apparently doesn't work.) Our examples use the second style.

class Context; // forward reference

class State
{
public:

virtual void function1(Context* c) = 0;

virtual void function2(Context* c) = 0;

virtual void function3(Context* c) = 0;
};

All concrete derived classes of State must implement the principle functions:

class State1: public State
{
public:

void function1(Context* c);

void function2(Context* c);

void function3(Context* c);
};

Alternatively, make the inherited state functions truly parameterless, and:

class State1: public State
{
public:

State1(Context* c = 0) { context = c; }

void function1();

void function2();

void function3();
private:

Context* context;
};

The behavior of an instance of the Context class depends on its current state:

class Context
{
public:

Context(State* s = 0) { state = s; }

void function1() { state->function1(this); } // delegation

void function2() { state->function2(this); } // delegation

void function3() { state->function3(this); } // delegation

void setState(State* s) { if (state) delete state; state = s; }

// etc.
private:

State* state;

// etc.
};

Any of the state functions might change the state of the context. The Context::setState() function can be used to do this. For example:

void State1::function3(Context* c)
{

// ...

if (...)

c->setState(new State2());

else if (...)

c->setState(new State3());

// etc.
}

Returning to our example, we might think of a handyman's job as his state, and use the state pattern:

class Handyman
{
public:

// etc.

void setJob(Job* j) { if (job) delete job; job = j; }
private:

Job* job;

// etc.
};

Where Job is an abstract base class for various specific types of jobs:

class Electrician: public Job { ... };
class Plumber: public Job { ... };
class Carpenter: public Job { ... };

We can use the setJob() function to dynamically change a handyman's current job.

Example

What is a clock? A clock keeps time. But there are other types of clocks. A stop watch is a clock that tracks elapsed time. A timer is a clock that tells us when a fixed amount of time elapses. We could define representations of all three of these types of clocks using generalization:

class Clock { ... };
class Timer: public Clock { ... };
class StopWatch: public Clock { ... };
class TimeKeeper: public Clock { ... };

Most computers have desktop clocks. Normally, a desktop clock keeps the current time in a tiny window. A timer and a stop watch would also be useful types of desktop clocks. Better still would be a desktop clock that could switch between being a timer, a time keeper, and a stop watch.

If we use generalization to describe the relationship between desk top clocks and time keepers, we cannot dynamically change desk top clocks into timers or stop watches. It is better to think of timer, time keeper, and stop watches as desk top clock modes or states, and use the state pattern:

[image: image4.wmf]DeskTopClock

alarm_time

alarmOn

time

function1()

function2()

function3()

"

Mode

"

function1() = 0

function2() = 0

function3() = 0

TimeKeeperMode

function1()

function2()

function3()

TimerMode

function1()

function2()

function3()

StopWatchMode

function1()

function2()

function3()

The three member functions can be regarded as handlers that are automatically called when the user presses corresponding buttons in the window that displays the clock. Of course the behavior of these buttons will depend on what mode the clock is in. (Electronic wrist-watches also have buttons that allow users to change mode, set the timer, start the stop watch, etc.)

clock.h

class DeskTopClock; // forward reference

class Mode
{
public:

// button 1 handler-- always changes mode:

virtual void function1(DeskTopClock* c) = 0;

// button 2 handler:

virtual void function2(DeskTopClock* c) = 0;

// button 3 handler:

virtual void function3(DeskTopClock* c) = 0;

// mode dependent view

virtual void show(DeskTopClock* c) = 0;
};

The button 1 handler, function1(), always changes to the next mode. We can use a state transition diagram to understand the mode changes:

[image: image5.wmf]function1()

function1()

function1()

TimeKeeper

Timer

StopWatch

In stop watch mode, the button 2 handler starts the stop watch, which runs for MAX = 60 "seconds". Once started, our stop watch can't be interrupted without multithreading. The button 3 handler resets the elapsed time counter to 0:

class StopWatchMode: public Mode
{
public:

enum { MAX = 60 }; // limit of stop watch

StopWatchMode() { elapsed = 0; }

void function1(DeskTopClock* c); // go to time keeper

void function2(DeskTopClock* c); // start

void function3(DeskTopClock* c); // clear

void show(DeskTopClock* c);
private:

int elapsed;
};

In timer mode (i.e., alarm clock mode), the button 2 handler sets or disarms the timer. If the timer is disarmed, the button 3 handler allows users to set the alarm time.

class TimerMode: public Mode
{
public:

void function1(DeskTopClock* c); // go to stop watch

void function2(DeskTopClock* c); // set/disarm

void function3(DeskTopClock* c); // new time

void show(DeskTopClock* c);
};

In time keeper mode the button 2 handler enables users to set the time. The button 3 handler brings up a little dialog to change the time, similar to Timer::function3().

class TimeKeeperMode: public Mode
{
public:

void function1(DeskTopClock* c); // go to timer mode

void function2(DeskTopClock* c); // set

void function3(DeskTopClock* c); // new time

void show(DeskTopClock* c);
};

The context is the desk top clock. It keeps track of the current hour and minute as well as the hour and minute the alarm is scheduled to ring, if the alarmOn flag is true. I chose to use the parameterless style of delegation. Passing the member variables by reference or providing getters and setters may have been a better choice.

class DeskTopClock
{
public:

DeskTopClock()

{

mode = new TimeKeeperMode();

hour = minute = 0;

alarm_hour = alarm_minute = 0;

alarmOn = false;

}

void incTime(); // automatically called every "minute"

void function1() { mode->function1(this); }

void function2() { mode->function2(this); }

void function3() { mode->function3(this); }

void show() { mode->show(this); }

friend class TimerMode;

friend class TimeKeeperMode;

friend class StopWatchMode;

private:

void setMode(Mode* s)

{

if (mode) delete mode;

mode = s;

}

Mode* mode;

bool alarmOn, settable;

int hour, minute, alarm_hour, alarm_minute;
};

clock.cpp

Here are the include directives clock.cpp needs:

#include "clock.h"
#include <iostream>
using namespace std;

Ideally, we would use some form of multitasking to arrange to have the operating system automatically call the incTime() function every minute. Recall that '\a' is the ASCII code for the computer's alarm:

void DeskTopClock::incTime()
{

minute = (minute + 1) % 60;

if (!minute) hour = (hour + 1) % 24;

show();

if (alarmOn && hour == alarm_hour && minute == alarm_minute)

cout << "\a\a\a\a\a\a\a"; // ring the alarm
}

The options menu replaces the graphical user interface a real desktop clock would use:

void DeskTopClock::options()
{

char option;

cout << "Choose an option:\n";

cout << " 1: change mode\n";

cout << " 2: set/start\n";

cout << " 3. enter time/clear\n";

cout << " press Return or Enter to continue\n";

cin.get(option);

cin.sync();

switch (option)

{

case '1': function1(); break;

case '2': function2(); break;

case '3': function3(); break;

}
}

Stop Watch Mode Functions

void StopWatchMode::show(DeskTopClock* c)
{

cout << "Stop Watch Mode\n";

cout << "Second =\t" << elapsed << '\n';
}

// next state
void StopWatchMode::function1(DeskTopClock* c)
{

c->setMode(new TimeKeeperMode());
}

// start
void StopWatchMode::function2(DeskTopClock* c)
{

for(elapsed = 0; elapsed < MAX; elapsed++)

{

show(c);

for(long i = 0; i < 60000; i++); // waste some time

}
}

// clear
void StopWatchMode::function3(DeskTopClock* c)
{

elapsed = 0;
}

Timer Mode Functions

// show
void TimerMode::show(DeskTopClock* c)
{

cout << "Timer Mode\n";

cout << c->alarm_hour << ": ";

cout << c->alarm_minute;

if (c->alarmOn) cout << '\''; // timer set indicator

cout << '\n';
}

// next state
void TimerMode::function1(DeskTopClock* c)
{

c->setMode(new StopWatchMode());
}

// set/disarm
void TimerMode::function2(DeskTopClock* c)
{

c->alarmOn = !c->alarmOn;
}

// set alarm time
void TimerMode::function3(DeskTopClock* c)
{

if (!c->alarmOn)

{

cout << "Enter hour: ";

cin >> c->alarm_hour;

cout << "Enter minute: ";

cin >> c->alarm_minute;

c->alarmOn = true;

show(c);

cout << "done\n";

}
}

Time Keeper Mode Functions

// next state
void TimeKeeperMode::function1(DeskTopClock* c)
{

c->setMode(new TimerMode());
}

// show
void TimeKeeperMode::show(DeskTopClock* c)
{

cout << "Time keeperMode\n";

cout << c->hour << ": ";

cout << c->minute ;

if (c->alarmOn) cout << '\''; // indicator

cout << '\n';
}

// enable/disable users to set the time
void TimeKeeperMode::function2(DeskTopClock* c)
{

c->settable = !c->settable;
}

void TimeKeeperMode::function3(DeskTopClock* c)
{

if (c->settable)

{

cout << "Enter hour: ";

cin >> c->hour;

cout << "Enter minute: ";

cin >> c->minute;

cout << "done\n";

}
}

main.cpp

Here's a test harness:

#include "clock.h"

int main()
{

DeskTopClock clock;

while(true)

{

clock.incTime();

clock.options();

}

return 0;
}

Sample Output

The single quote indicates that the timer is armed:

Alarm Mode
0: 9'
done
Alarm Mode
0: 9'
Choose an option:
 1: change mode
 2: set/start
 3. enter time/clear
 press Return or Enter to continue
Alarm Mode
0: 9'
Choose an option:
 1: change mode
 2: set/start
 3. enter time/clear
 press Return or Enter to continue
1
Stop Watch Mode
Second = 0
Choose an option:
 1: change mode
 2: set/start
 3. enter time/clear
 press Return or Enter to continue
1
Time Mode
0: 7'
Choose an option:
 1: change mode
 2: set/start
 3. enter time/clear
 press Return or Enter to continue

Time Mode
0: 8'
Choose an option:
 1: change mode
 2: set/start
 3. enter time/clear
 press Return or Enter to continue

Time Mode
0: 9'
Choose an option:
 1: change mode
 2: set/start
 3. enter time/clear
 press Return or Enter to continue

Known Uses

Delegation, not inheritance, is the primary reuse mechanism used by languages like Smalltalk and LISP. Its popularity among C++ programmers is growing as rapidly as the popularity of inheritance is shrinking.

Admittedly, the original intent of the state design pattern was to represent finite state machines (like the desk top clock) rather than capture a notion as general as delegation. A real example of this more limited use of the state pattern is the Java Telephony Application Programmer Interface (JTAPI). Telephony APIs (like JTAPI, or Microsoft's TAPI or Sun's TSAPI) are the heart of a rapidly-growing area called Computer Telephony Integration (CTI). CTI includes applications such as soft phones, web phones, and traditional PBX functions such as switching, caller identification, Interactive Voice Response (IVR), and voice mail.

The basic JTAPI represents calls as objects. A call encapsulates two connection objects representing the calling telephone and the called telephone. A connection contains an associated connection state object. Some of the derived classes of the connection state base class are: Idle, Ringing, Connecting, Busy, OnHook, OffHook, etc. When a connection changes state, it creates an object representing the next state (Java garbage collection automatically deletes the old state). Connection objects are publishers or observables while CTI applications are subscribers or observers (see the Publisher-Subscriber pattern). The state constructors notify subscribers that the connection's state has changed.

_961735418.doc

Carpenter�member variables

Handyman�member variables

_961735809.doc

Carpenter�member variables

Plumber�member variables

Electrician�member variables

Handyman�member variables

_961738549.doc

TimeKeeper

Timer

StopWatch

function1()

function1()

function1()

_961580697.doc

Context

function1()�function2()�function3()

"State"

function1() = 0�function2() = 0�function3() = 0

State1

function1()�function2() �function3()

State2

function1()�function2() �function3()

State3

function1()�function2() �function3()

_961583535.doc

DeskTopClock

alarm_time�alarmOn�time

function1()�function2()�function3()

"Mode"

function1() = 0�function2() = 0�function3() = 0

TimeKeeperMode

function1()�function2() �function3()

TimerMode

function1()�function2() �function3()

StopWatchMode

function1()�function2() �function3()

