
Representing Social Structures in UML

H. Van Dyke Parunak1 and James J. Odell2

1 ERIM, PO Box 13400 1, Ann Arbor,
MI 48113-4001 USA
vparunak@erim.org

http:// www.erim.org/~vparunak/
2 James Odell Associates, 3646 West Huron River Drive, Ann Arbor

MI 48103-9489 USA
jodell@compuserve.com

http://www.jamesodell.com

Abstract. From a software engineering perspective, agent systems are a
specialization of object-oriented (OO) systems, in which individual objects
have their own threads of control and their own goals or sense of purpose.
Engineering such systems is most naturally approached as an extension of
object-oriented systems engineering. In particular, the Unified Modeling
Language (UML) can be naturally extended to support the distinctive re-
quirements of multi-agent systems. One such requirement results from the
increasing emphasis on the correspondence between multi-agent systems
and social systems. Sociological analogies are proving fruitful models for
agent-oriented constructions, while sociologists increasingly use agents as
a modeling tool for studying social systems. We combine several existing
organizational models for agents, including AALAADIN, dependency theory,
interaction protocols, and holonics, in a general theoretical framework, and
show how UML can be applied and extended to capture constructions in that
framework.

1 Introduction

From a software engineering perspective, agent systems are a specialization of object-
based systems, in which individual objects have their own threads of control and their
own goals or sense of purpose. Elsewhere we have defined agents as objects that can
say “go” (reflecting their separate threads of control and the resulting ability to execute
without being externally invoked) and “no” (reflecting the priority of their internal
goals over external direction) [23]. Engineering such systems is most naturally ap-
proached as an extension of object-oriented systems engineering. In particular, the
Unified Modeling Language (UML), a product of the OO community, is a natural
starting point for developing requirements and designs for agent-based systems. It is
widely known, and supported by a number of computer-aided software engineering
platforms.

Some researchers have already called the attention to the potential of UML, in its
unmodified form, for addressing many aspects of agent-based systems [3, 33]. As
valuable as these efforts are, they cannot accommodate the additional functionality of
agents over objects. Earlier work addressed one such area, the definition of interaction
protocols between autonomous processes, and suggested constructs and conventions
for Agent UML (AUML) [24, 25].

This paper addresses another area of agent functionality that goes beyond the capa-
bilities of current UML. Sociological concepts have always been a source of inspira-
tion for multi-agent research, and recently the agent community has been returning the
favor by exploring the potential of agent-based models for studying sociological phe-
nomena (e.g.,[6, 11, 21, 32]). The result of this interaction has been the formalization
of a number of sociological and psychological concepts with important applications in
engineering agent systems, concepts that are not directly supported in UML.

This paper brings together a number of these concepts, including “group,” “role,”
“dependency,” and “speech acts,” into a coherent syntax for describing organizational
structures, and proposes UML conventions and AUML extensions to support their use
in the analysis, specification, and design of multi-agent systems. Our approach is
distinct from some other approaches to roles in that it is behavioristic rather than
mentalistic. We define roles in terms of features that are accessible to an outside ob-
server, rather than those available only to introspection by the agent.

Section 2 outlines the syntax of group structure on which our representation is
based. Section 3 describes a simple scenario and illustrates the use of the proposed
UML constructs to model it. Section 4 summarizes our contribution.

Fig. 1. AALAADIN architecture expressed as a UML class diagram.

2 A Group Syntax

We begin with the AALAADIN architecture proposed by Ferber and Gutknecht [13].
Their model, expressed as a UML class diagram in Fig. 1, involves three elements:
- An agent is an active communicating entity.
- A group is a set of agents.
- A role is an abstract representation of an agent’s function, service, or identification

within a group.
-

Group Role

Agent

is member of

contains

1
0..1

0..10..1

1

handles

1

(The one-to-one mappings in this diagram reflect the original AALAADIN model,
not the one we propose in this paper.) A fundamental insight of AALAADIN is that
groups interact only through shared agents. An agent can be a member in several
different groups at the same time, perhaps playing a different role (or roles) in each of
them, and can move from one group to another dynamically. From a classical OO
point of view, this multiple and dynamic role capability distinguishes the agent-based
from the OO approach. An OO class can be defined by extension as a role, the set of
all instances that belong to the class, or role; but simulaneous membership in multi-
ple classes is the exception rather than the rule, and dynamic change of class member-
ship is even rarer. (Although, UML now supports multiple and dynamic classifica-
tion of objects.)

AALAADIN’s notion of a group is naturally extended to organizations. We under-
stand “group” as the generic term for a set of agents related through their roles. The
term “organization” refers to groups distinguished by formality and stability, but the
underlying model and formalisms are the same.

AALAADIN offers an attractive combination of parsimony and expressiveness. It is
a straightforward basis for developing representational mechanisms for organizational
concepts. We refine AALAADIN in three ways. First, we suggest that the notion of
“role” can be defined in terms of two other notions current in the agent community,
dependencies and action templates. Second, the ontology should be extended with the
concept of an environment through which agents interact. Third, we confront the issue
of aggregation as developed in the holonic model and its apparent tension with
AALAADIN’s flat network of groups.

2 . 1 Looking Behind Roles

AALAADIN defines a group as a set of agents. An agent’s role mediates between it and
the group. That is, it participates in the group not in its own right, but as an incum-
bent of a particular role, and the nature of the group is defined by the set of roles that
it includes and their relations to one another. This observation encourages us to seek a
more fundamental way to define roles, one that makes explicit their relations with one
another. Two concepts from the theory of multi-agent systems contribute to this
refined definition: dependency theory and speech acts. Both of these concepts define
structured relations among interacting agents. Our insight is that a role is just a label-
ing of a recurring pattern of dependencies and (speech and other) interactions.

Dependency theory (e.g., [7, 8, 34], to cite only a few classic references) is based
on the idea that interactions among agents result from an incompatibility between a
single agent’s goals and its resources and capabilities. Typically, an agent does not
control all the resources or have the ability to execute all the actions required to
achieve its objectives, so it must interact with other agents who do control those
resources or who can perform those actions. For expository simplicity, we consider
only action dependencies (since a dependency on an agent for a resource may be repre-
sented as depending on that agent to perform the action of providing the resource), and
define a dependency as a three-tuple <Dependent, Provider, Action>. The literature on

dependency theory works out many additional details that might be included in a de-
pendency, including the specific goal that leads to the dependency, the specific plan
leading to that goal that requires the specified resource or action, and which of the
agents involved in the dependency recognizes its existence. Such details can readily be
incorporated in our approach.

A pattern of dependencies is an important component of a role. For example, if
agent A is a customer, there must be some agent B on whom A depends for goods and
services, while B depends on A for money. However, dependencies alone leave many
details of the role ambiguous. From dependencies alone, A and B might be thieves
preying on one another. We can refine the definition of a role by incorporating more
dynamic information, based on speech act theory.

Speech-act theory originates in the observation of [2] that utterances are not simply
propositions that are true or false, but attempts on the part of the speaker that succeed
or fail. The theory has become ubiquitous in the development of agent communication
protocols such as KQML [15] and the FIPA Agent Communication Language [16].
Isolated utterances do little to characterize the relationships among interacting agents.
However, the “speech-act” nature of utterances permits the definition of a set of rela-
tions that can obtain among successive utterances in a conversation [28]. For exam-
ple, utterance B “responds” to utterance A if A caused B; it “replies” to A if it re-
sponds and in addition is addressed to the agent who uttered A, it “resolves” A if it
replies and in addition causes A to succeed, and it “completes” A if it fulfills an earlier
commitment. These relations may be extended to non-speech actions. For example, a
request to close the door may be resolved by the physical action of closing the door. A
formal construction based on these relations, the Dooley Graph [10, 28], consists of
nodes corresponding to agents, with directed edges corresponding to utterances and
other actions issued by the source of the edge and received by its sink. Each node in a
Dooley Graph corresponds to a single agent, but an agent may occupy several different
nodes. The significance of a single node is that it terminates speech acts associated
with a single function of the agent. By a thespian analogy, this function has been
called a “character” [28], but bears clear relationship to the notion of a role in
AALAADIN. The characters disclosed through Dooley analysis are useful in engineer-
ing agent code, since they define reusable behavioral templates (cf. the modules in
BRIC [12], AARIA’s Actions [31], Contexts in Gensym’s Agent Development Envi-
ronment [29], and Singh’s agent templates [35]). Such a template implements a par-
ticular protocol, defining an interrelated set of speech or other actions that an agent
may undertake.

Table 1. A simple protocol characterizes the “customer” role.

Utterance # Speaker Utterance
1 B Advertisement: Offers goods in exchange

for money
2 A Sends an order to B for the goods, accom-

panied by the payment
3 B Sends the goods to A

From the point of view of a protocol, A is a customer of B if the two participate in
the pattern of actions outlined in Table 1. This pattern is not the only protocol that
would be appropriate for a customer and supplier. For example, a customer might
initiate the exchange with a request for quotation. The point is that a protocol can
capture part of the semantics of a role. As with dependencies, however, the semantics
are incomplete. The same protocol would be appropriate between two actors in a play,
neither of whom depends on the other for either money or goods. Adding the depend-
ency information provides a clearer and more robust picture of the roles of customer
and supplier than either offers by itself. Such a protocol can be represented in UML at
various levels of abstractions. Previous work [24, 25].

From the point of view of system analysis, both dependency theory and interac-
tions are attractive because they can be analyzed (at least at the level necessary for our
purposes) without access to the internal state of the agents. Empirically, an agent’s
function in a group is defined by the network of dependencies and actions in which it
is embedded. When a particular pattern of dependencies and protocols recurs, it is use-
ful to summarize it as a role. However, the role is not primitive, but built up from
dependencies and interactions. The dependencies and actions are what really matter. The
role is simply a label that we attach to a recurring pattern to enable us to manipulate
it with greater efficiency. This viewpoint implies (contrary to the original AALAADIN

model exemplified in Fig. 1) that the same role can appear in multiple groups, if they
embody the same pattern of dependencies and interactions (Fig. 2).

If an agent in a group holds multiple roles concurrently, it may sometimes be use-
ful to define a higher-level role that is composed of some of those more elementary
roles. For example, consider the three roles Customer, Vendor, and Employee, all
within the group Market Economy. An end-user in such an economy is an agent who
earns money in a job and uses that money to purchase goods. Thus the End User role
is the composition of Customer and Employee roles. A supply chain link in such an
economy is an agent who buys goods, transforms them into other goods, and then
sells them. Thus Supply Chain Link is the composition of Customer and Vendor
roles. Fig. 2 expresses this composition of roles by the composition association loop
at the top of the Role class.

Interaction
Protocol

Action
Dependency

originator

recipient
provider

dependent

*

*
1

1

*

*

1

1

*

*

composed of

Group

*

1..*
employs

employed by

Role

Fig. 2. UML Class Diagram expressing the role associations described in Section 2.1.

Our view of a role as a recurring pattern of dependencies and actions is deliberately
behavioristic rather than mentalistic. Other researchers define roles in terms of mental-
istic qualities, such as obligations, permissions, and rights, that require a detailed
knowledge of the agents’ internal structure [1, 9, 27]. One prominent definition even
disavows behavioral considerations: “A role is here conceived as a system of prescribed
mental attitudes, rather than a system of prescribed behaviour” [27]. The mentalistic
approach is extremely useful theoretically, as an extension of the BDI model that can
both inform the further development of that model and permit application of its formal
mechanisms to role analysis. It is less useful to a systems analyst confronted with a
heterogeneous system whose elements are often opaque. Examples of such systems
might be a network of trading partners in a B2B ecommerce scenario, or a terrorist
network in a military intelligence application. In such cases, internal beliefs, desires,
and intentions are closely held secrets, and those who would model the system from
the outside must rely on externally observable behaviors. The intended users of our
extensions to UML must often cope with just such situations. An important question,
which we do not engage here, is developing correlations between the two classes
(mentalistic and behavioristic) of role models.

2.2 The Importance of the Environment

Agents cannot be considered independently of the environment in which they exist and
through which they interact [14, 22]. This insight is often ignored in work on compu-
tational multi-agent systems, where researchers consider the environment as a passive
communications framework and everything of interest is relegated to one or another of
the agents. Even such purely electronic environments often prove embarrassingly
active when an application is scaled up for real-world use, and those engineering
agents for non-electronic domains (such as factory automation) must consider the
environment explicitly.

Consider, for example, the active role of the environment in pheromone models of
coordination [4, 30]. In natural insect societies and engineered systems inspired by
them, the environment actively provides three information processing functions.
1. It fuses information from different agents passing over the same location at differ-

ent times.
2. It distributes information from one location to nearby locations.
3. It provides truth maintenance by forgetting information that is not continually

refreshed, thereby getting rid of obsolete information.

In modeling groups, it is important to recognize the role of the environment in
supporting the dependencies and protocols that define the participants’ roles. The exact
form that this representation takes will vary widely, depending on the group in ques-
tion. However, we should recognize that environment, along with the network of roles
that it supports, is a defining component of a social group (Fig. 3).

2.3 Groups as Agents

At first glance, AALAADIN contrasts strongly with the holonic view of agent organi-
zation. A holon is an agent that may be made up of smaller holons and that may join
together with other holons to form higher-level holons [5, 17, 19, 20]. Thus the
holonic model explicitly permits groups to be members of other groups. The resulting
lattice of holons is called a holarchy, and is the dominant organizational metaphor in
holonic systems [36]. In AALAADIN, groups are related only through shared members,
and there is no provision for one group as a group to be a member of another.

Both models have their own attractions. The holonic model recognizes the need for
some form of hierarchical aggregation in real-world systems, which must remain
understandable while spanning a wide range of temporal and spatial scales. A modern
automotive factory incorporates hundreds of thousands of individual mechanisms (each
a candidate for agent-hood) in hundreds of machines that are grouped into a dozen or so
lines. Engineers can design, construct, and operate such complexes only by shifting
the focus from mechanism to machine or line, depending on the problem at hand, and
recognizing the higher-level agents are aggregates of lower-level ones. Similarly, in e-
commerce applications, a corporation is a legal entity that is independent of the indi-
vidual people who make up its employees and directors. Conversely, AALAADIN

recognizes that when two groups (at any level) interact, they do so through the interac-
tions of their components. Negotiations between two companies take place through
individual people with the roles of representing their groups in the negotiation. Two
machines in a factory interact by virtue of a process involving the sensors of one and
the actuators of another.

As practicing engineers of agent-based systems, we recognize the need for both per-
spectives, and resolve the tension pragmatically. When we begin to analyze a group
A , we identify the agents {a1, a2, …, an} occupying its roles. Those agents may be
individual persons, robots, or computer systems (atomic agents). They may also be
other groups, ai = B, which we treat as black boxes. We take this “holonic” perspec-
tive as long as our analysis can ignore the internal structure of the member groups

Group

Agent

*

1..*consists of

Environment
*

*
1..*

1..*

*

played by *

employs

supported by

Role

Fig. 3. The environment and its involvement with groups, agents, and roles.

(Fig. 4a). However, subsequent analysis often requires us to open such a black box and
look inside at its roles and their incumbent agents, analyzing B = {b1, b2, …, bm}. At
that point, we insist on identifying which of B’s member agents is actually responsi-
ble for filling B’s role in A, thus adhering to the discipline of AALAADIN (Fig. 4b).
Fig. 4c is thus the consolidated model for our approach.

2.4 Summary

In sum, our model is based on AALAADIN, but with three extensions:
- Roles are not ontologically primitive, but are defined as recurring patterns of de-

pendencies and actions.
- The definition of a group includes not just a set of agents occupying roles, but also

the environment through which they interact.
- AALAADIN’s requirement that groups interact only through identified members is

relaxed in the case of unanalyzed groups, which are permitted to occupy roles in
higher-level groups following the holonic model.

Figure 5 consolidates the class views described in this section.

3 An Example

We illustrate the theory and its UML instantiation by modeling a simple example, a
terrorist organization.

*

1..*consists of

Group Atomic
Agent

Agent

*

1..*consists of

represented via
1..*

*

Group

Agent

(a) Holonic perspective (b) AALAADIN perspective

*

1..*consists of

represented
via

1..*

*

Group
Atomic
Agent

Agent

(c) Consolidated perspective

Fig. 4. Three perspectives on the relation between Groups and Agents.

3.1 A Terrorist Organization

A national security organization might construct an agent-based model of terrorism,
for use in contingency planning and modeling emerging threats. In this particular
model, we envision interactions among three groups with associated roles. Individual
agent A occupies roles in all three groups:
- The terrorist organization (TO) has roles
o Operative, who actually deploys and operates the instrument of terrorism (e.g.,

plants and detonates the bomb, or shoots the gun) (= A)
o Ringleader, who sets the vision for the organization and may bankroll it per-

sonally
- The weapons cartel (WC) has roles
o Customer, who wishes to procure arms (= A)
o Supplier, who delivers arms to the customer
o Negotiator, who negotiates the deal with the customer and receives payment.

- Western society (WS) has roles
o Citizen, whom the terrorist operative wishes to target
o Student, a convenient cover for a foreign national (= A).

Informally, individual A procures financing and a mission from TO, while feeding
back information that permits TO to expand its activities. A uses funds from TO to
purchase weapons from WC, and then occupies a role in WS to deploy the weapons
against citizens.

Atomic
Agent

Agent

*

1..*consists of

represented
via

1..*

*

Environment
*

*
1..*

1..*

*

played by *

employs

supported by

or
ig

in
at

or

re
ci

pi
en

t

pr
ov

id
er

de
pe

nd
en

t
1111

Role

Group

Interaction
Protocol

Action
Dependency

Fig. 5. Consolidated ontology.

3.2 Its AUML Model

The OMG's Unified Modeling Language (UML) version 1.3 already provides a wealth
of diagramming elements [18]. However, extensions to UML are required to effec-
tively model agents and agent-based systems. Within both OMG and FIPA, an effort
is currently underway to define a UML for agents (AUML) that extends UML
(http://www.auml.org). This section proposes usages of and extensions to UML to
represent groups, agents, and roles, as illustrated in the Terrorist Organization sce-
nario, above.

A common misconception is that UML (and by extension, AUML) is a graphical
notation with no formal semantics. The UML specification consists of two interre-
lated parts: the UML Semantics (a metamodel that specifies the abstract syntax and
semantics of UML object modeling concepts), and the UML Notation (a graphic
notation for the visual representation of the UML semantics) [26]. Our concern here is
the development and communication of high-level intuitions, not the formal definition
of the associated semantics, so we focus on the graphical notation. The close linkage
between UML notation and semantics means that our use of UML, far from hamper-
ing subsequent formalization, in fact provides a foundation for that task.

3.3 Swimlanes as Groups

The scenario described in 3.1 involve three groups, each employing defined roles. Fig.
6 illustrates these groups and roles using two UML techniques: the class diagram and

/Operative

/Negotiator

/Customer /Student

Terrorist
Organization

Weapons
Cartel

Western
Society

A
ge

nt
 A

A
ge

nt
 B

A
ge

nt
 C

/Supplier

A
ge

nt
 D

/Citizen

A
ge

nt
 E

targets

de
liv

er
s

to

deals with

orders from

co
or

di
na

te
s

/Ringleader

<<aggregation>>

<
<

in
st

an
tia

tio
n>

>

Fig. 6. A class diagram with swimlanes depicts the interrelated roles with their agents
and groups.

swimlane. The class diagram here models the various terrorist roles and their relation-
ships. (The slash in front of each name indicates that the name is a role name, rather
than a class name.)

In UML, swimlanes graphically organize responsibility of activities within an ac-
tivity graph. However, AUML proposes that the same device be used for any kind of
UML diagram—in the case of Fig. 6, a class diagram. For example, Fig. 6 indicates
that the Terrorist Organization involves two roles, Operative and Ringleader, where
the Ringleader agent coordinates Operative agents. Fig. 6 also depicts a second kind of
swimlane based on agent instance. For example, agent A plays the roles of Operative,
Customer, and Student. Multidimensional swimlanes are highly uncommon in the
UML community, but are supported by UML version 1.3.

The UML 1.3 swimlane is only “syntactic sugar,” a graphical packaging technique.
It cannot specify a swimlane's underlying semantics. Understanding swimlanes like
those in Fig. 6 could cause difficulty because vertical swimlanes specify group aggre-
gation, while the horizontal swimlanes specify role instantiation. We propose that
UML be extended to specify the swimlane's underlying relationship. In Fig. 6, the
vertical swimlanes are indicated as <<aggregation>> and the horizontal as <<instantia-
tion>>.

3.4 Class Diagrams to Define Roles

As mentioned above, the vertical swimlanes define an aggregation relationship be-
tween groups and the roles that comprise the group. Another way to express these
relationships within a group is to use a class diagram as depicted in Fig. 7.

The class diagram in Fig. 7 and the Weapons Cartel swimlane in Fig. 6 are basi-
cally equivalent. They both show that each Weapons Cartel group consists of agents
playing the roles of Customer, Negotiator, and Supplier. Additionally, they both
depict relationships among the roles. The only difference is that Fig. 7 expresses the

/Customer /Negotiator /Supplier

Weapons
Cartel

deals with orders from

delivers to

*
*

*
*

**

* * *

* *

1

Fig. 7. A class diagram depicting that Terrorist Organizations consist of agents playing
several distinct roles.

relationship cardinality constraints (multiplicity) between the Weapons Cartel and the
various roles, while Fig. 6 does not. For example, Fig. 7 indicates that while each
Weapons Cartel group may have multiple customers and suppliers, it may only have
one negotiator. These constraints cannot be expressed by UML swimlanes.

3.5 Sequence Diagrams to Show Roles as Patterns of Interactions

Class diagrams model the kinds of entities that exist in a system along with their
relationships. Modeling the interactions that may occur among these entities can be
represented using a UML sequence diagram. For example, Fig. 8 depicts the permitted
interactions that may occur among Customer, Negotiator, and Supplier agents for a
weapons procurement negotiation. The tabbed folder encompassing the sequence dia-
gram indicates that the interaction can be viewed as a unit called a package.

The only extension to UML is the addition of the diamond-shaped decision symbol.
While branching decisions can be expressed in UML 1.3 using guard conditions, we
recommend using the same symbol employed for the same purpose in activity
graphs—the diamond. (For more AUML extensions to the sequence diagram, see [24,
25].)

3.6 Activity Graphs to Show Groups as Patterns of Dependencies

The object-flow activity graph represents activities and the kinds of objects that they
produce or consume. The weapons procurement in Fig. 9 states that a Terrorist Orga-

/Negotiator/Customer

request for guns

request denied

pay money

deliver guns

request accepted

/Supplier

order guns

Interaction protocol for weapons
procurement negotiation

Fig. 8. Sequence diagram depicting an interaction protocol for buying guns from a ter-
rorist operation agent.

nization procures guns (and not butter) from a Weapons Cartel to which it pays
money. Instead of representing the way in which roles relate or interact among groups
(Fig. 6, Fig. 7, Fig. 8), this diagram models groups as processing entities in their
own right. For example, Fig. 9 depicts two groups and their dependencies, without
regard to the underlying roles. In other words, it expresses the pattern of dependencies
between a Terrorist Organization and a Weapons Cartel.

Object-flow activity graphs, then, provide a way to model a system by removing
some of the detail, providing a "higher-level" view of the system components. Fig. 4c
expresses the fact that all groups are agents; but until this point, the only agents we
were modeling were as role-playing elements of a group. The activity graph allows us
to model groups of agents as agents. In this way, we can express the kinds of depend-
encies that are best represented at a group level. When a more detailed view of the
underlying interactions is required, a sequence diagram (e.g., Fig. 8) can be used.

Such an approach requires a UML extension. UML requires all activities terminate
in order to produce their output. However, agent groups such as terrorist organiza-
tions or order processing departments are typically thought of as continuous activities,
not as processes with definable starts and completions. This proposed extension is
important when modeling long-lived groups that produce output many things during
their lifetime.

4 Summary

Engineering of agent-based systems requires the availability of common languages for
requirements analysis, specification, and design. The Unified Modeling Language
(UML) has gained wide acceptance in the Object-Oriented community, and is
supported by a number of computer-aided software engineering tools. The close
relation between objects and agents has led numerous researchers to seek to apply it to
agents. Carrying out this agenda requires that we identify the distinctive constructions
required in designing agent-oriented systems and develop conventions for using and
extending UML to accommodate them.

Weapons
Cartel

{0}Terrorist
Organization

Money

Butter

Guns

{0}

Fig. 9. An object-flow activity graph specifies roles as patterns of activities along with
the products that are produced and consumed by each activity.

In the case of social structures, insights from AALAADIN, dependency theory, and
holonics can be fused into a single metamodel of groups as composed of agents occu-
pying roles (defined as patterns of dependency and interaction) in an environment.
Various UML constructs, including swimlanes, class diagrams, activity diagrams, and
sequence charts, can capture the crucial distinctions in such a model.

Acknowledgements

When the first author presented an invited talk on applications of UML to agents at
MAAMAW’99, several participants, including Cristiano Castelfranchi and Yves De-
mazeau, raised the question of how a wide range of organizational structures could be
captured in UML. Their challenge was the germ for this paper. Some of the ideas
concerning the relation of dependencies and action relations to the definition of roles
were stimulated by discussions with Catholijn Jonker, Gabriela Lindemann, and others
at the MASHO’00 workshop, and by comments on a preliminary version with John
Sauter, Mitch Fleischer, and others at ERIM.

References

[1] A. Artikis and J. Pitt. A Formal Model of Open Agent Societies. In Proceedings of
Fifth International Conference on Autonomous Agents (Agents 2001), 2001.

[2] J. L. Austin. How to Do Things with Words. Oxford University Press, 1962.

[3] F. Bergenti and A. Poggi. Exploiting UML in the Design of Multi-Agent Systems. In
Proceedings of Engineering Societies in the Agents' World, pages 96-103, 2000.

[4] S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control.
Thesis at Humboldt University Berlin, Department of Computer Science, 2000.

[5] H.-J. Bürckert, K. Fischer, and G. Vierke. Teletruck: A holonic fleet management sys-
tem. In Proceedings of 14th European Meeting on Cybernetics and Systems Research,
pages 695-700, 1998.

[6] K. Carley and M. Prietula, Editors. Computational Organization Theory. Lawrence
Erlbaum Associates, 1994.

[7] C. Castelfranchi. Founding Agent's 'Autonomy' on Dependence Theory. In Proceed-
ings of 14th European Conference on Artificial Intelligence, pages 353-357, IOS
Press, 2000.

[8] C. Castelfranchi, M. Miceli, and A. Cesta. Dependence Relations among Autonomous
Agents. In Y. Demazeau and E. Werner, Editors, Decentralized AI 3 (Proceedings of the
Third European Workshop on Modeling Autonomous Agents in a Multi-Agent World),
Elsevier, 1992.

[9] L. Cavedon and L. Sonenberg. On Social Commitment, Roles and Preferred Goals. In
Proceedings of International Conference on Multi-Agent Systems (ICMAS'98), pages
80-87, IEEE, 1998.

[10] R. A. Dooley. Appendix B: Repartee as a Graph. In R. E. Longacre, Editor, An Anatomy
of Speech Notions, pages 348-58. Peter de Ridder, Lisse, 1976.

[11] M. E. Epstein and R. Axtell. Growing Artificial Societies: Social Science from the
Ground Up. Boston, MA, MIT Press, 1996.

[12] J. Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Harlow, UK, Addison Wesley Longman, 1999.

[13] J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations
in multi-agent systems. In Proceedings of Third International Conference on Multi-
Agent Systems (ICMAS'98), pages 128-135, IEEE Computer Society, 1998.

[14] J. Ferber and J.-P. Müller. Influences and Reactions: a Model of Situated Multiagent
Systems. In Proceedings of Second International Conference on Multi-Agent Systems
(ICMAS-96), pages 72-79, 1996.

[15] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. McKay, J. McGuire, R.
Pelavin, S. Shapiro, and C. Beck. DRAFT Specification of the KQML Agent-
Communication Language. 1993. Postscript,
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html.

[16] FIPA. FIPA Agent Communication Language Specifications. 2000. HTML,
http://www.fipa.org/repository/aclspecs.html.

[17] K. Fischer. Agent-based design of holonic manufacturing systems. Robotics and
Autonomous Systems, 27(1-2):3-13, 1999.

[18] M. Fowler and K. Scott. UML Distilled: Applying the Standard Object Modeling Lan-
guage. Reading, MA, Addison-Wesley, 1997.

[19] C. Gerber, J. Siekmann, and G. Vierke. Flexible autonomy in holonic multi-agent
systems. In Proceedings of AAAI Spring Symposium on Agents with Adjustable
Autonomy, 1999.

[20] C. Gerber, J. Siekmann, and G. Vierke. Holonic Multi-Agent Systems. RR-99-03, DFKI,
Kaiserslautern, Germany, 1999. URL ftp://ftp.dfki.uni-
kl.de/pub/Publications/ResearchReports/1999/RR-99-03.ps.gz.

[21] G. N. D. Gilbert, J. Simulating Societies: the computer simulation of social processes.
London, UCL Press, 1993.

[22] J. P. Müller. The Design of Intelligent Agents. Berlin, Springer, 1996.

[23] J. Odell. Agents: Technology and Usage (Part 1). Distributed Computing Architec-
ture/E-Business Advisory Service, 3(4):1-29, 2000.

[24] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for Agents. In Proceedings of
Agent-Oriented Information Systems Workshop, pages 3-17, 2000.

[25] J. Odell, H. V. D. Parunak, and B. Bauer. Representing Agent Interaction Protocols in
UML. In Proceedings of Agent-Oriented Software Engineering, pages 121-140,
Springer, 2000.

[26] OMG. OMG Unified Modeling Language Specification. 1999. PDF File,
http://www.rational.com/media/uml/post.pdf.

[27] P. Panzarasa, T. J. Norman, and N. R. Jennings. Modeling Sociality in the BDI Frame-
work. In Proceedings of First Asia-Pacific Conference on Intelligent Agent Technol-
ogy (IAT'99), pages 202-206, 1999.

[28] H. V. D. Parunak. Visualizing Agent Conversations: Using Enhanced Dooley Graphs
for Agent Design and Analysis. In Proceedings of Second International Conference
on Multi-Agent Systems (ICMAS’96), pages 275-282, 1996.

[29] H. V. D. Parunak. Workshop Report: Implementing Manufacturing Agents. Industrial
Technology Institute, 1996. URL http://www.erim.org/~vparunak/paamncms.pdf.

[30] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent Systems.
Annals of Operations Research, 75:69-101, 1997.

[31] H. V. D. Parunak, A. D. Baker, and S. J. Clark. The AARIA Agent Architecture: From
Manufacturing Requirements to Agent-Based System Design. Integrated Computer-
Aided Engineering, 8(1):45-58, 2001.

[32] M. J. Prietula, K. M. Carley, and L. e. Gasser. Simulating Organizations: Computa-
tional Models of Institutions and Groups. Menlo Park, CA, AAAI Press, 1998.

[33] G. Satapathy and S. R. T. Kumara. Object Oriented Design based Agent Modeling. In
Proceedings of The Fourth International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology, pages 143-162, The Practical Appli-
cations Company, 1999.

[34] J. S. Sichman, Y. Demazeau, R. Conte, and C. Castelfranchi. A Social Reasoning
Mechanism Based on Dependence Networks. In Proceedings of 11th European Con-
ference on Artificial Intelligence, pages 416-420, John Wiley and Sons, 1994.

[35] M. P. Singh. Developing Formal Specifications to Coordinate Heterogeneous
Autonomous Agents. In Proceedings of Third International Conference on Multi-
Agent Systems (ICMAS'98), pages 261-268, IEEE Computer Society, 1998.

[36] University of Hannover. Holonic Manufacturing Systems. 2000. Web Page,
http://hms.ifw.uni-hannover.de/.

