
Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

Use-Case Controller
Ademar Aguiar Alexandre Sousa Alexandre Pinto
FEUP, INESC Porto ISMAI, ParadigmaXis, SA ParadigmaXis, SA
ademar.aguiar@fe.up.pt avs@ismai.pt alexandre.pinto@paradigmaxis.pt

The Use-Case Controller pattern deals with the problem of mapping
use case specifications to an implementation that is cost-effective
and easy to maintain. The pattern suggests delegating the
responsibility for managing the use-case flow of execution to a
use-case controller object, thus localizing this knowledge and its
eventual future changes. Use-case controllers provide a uniform way
of coordinating actor events, user interfaces and system services.
Additionally, use-case controllers enlarge the potential variability of
use cases, either by enabling the plug-in of use case extensions and
inclusions, or by replacement of user interface components and
system components.

Consider an order-processing system for an online order company
that is a reseller of products from several suppliers. When customers
want to purchase products, they place an order accompanied with
payment information. While adding products for an order, customers
are able to save it for later use. Orders can be freely cancelled after
being placed, but before being shipped.

Save Order for Later Use
Place Order

<<extend>>

Customer

Cancel Order

Accounting System Update Account

<<include>>

<<include>>

Order Processing System

Figure 1. Use case diagram for part of an order-processing system.

The outside view of the order-processing system described above is
represented in Figure 1. in the form of a use-case model. Use-case
models are a popular way of capturing user intent and system
functionality as it appears to an outside user [8][10][11][12]. Use
cases help to define the boundaries of a system and describe the
ways in which that system interacts with external entities, the actors.
A use case is "a description of a set of sequences of actions, including
variants, that a system performs to yield an observable result of value
to an actor" [5].

Authors

Example

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

When mapping a use case model to an object-oriented
implementation, several refinements and tasks are undertaken, such
as: detailed description of use cases, user-interface design,
identification of participating classes, and assignment of
responsibilities to classes.

Four different artefacts related with the Place Order use case are
shown in Figures 2, 3, 4 and 5, respectively: a brief textual
description, an activity diagram, classes participating in a use-case
realization, and an user-interface.

Use Case Place Order

Description The use case starts when a customer selects the option to place an order. The
customer identifies himself to the system and enters the products he wants, for
which the system supplies a description, price and a running total. After
entering payment information, the customer is able to submit the order.

The system then verifies the order submitted, saves it as pending, and forwards
payment information to the accounting system.

When the payment is confirmed, the order is marked confirmed, an order ID is
sent to the customer, and the use case ends.

Figure 2. Brief textual description of the Place Order use case.

Entering
identification

Entering
products

Entering payment
information

order placed

Enter customer
identification

Display
Order ID

Enter payment
information

Display
Order form

Enter products

Display product
information and new total

Enter
product

Display product
information and new total

Enter
product

Submit
order

order aborted

Abort
order

Order
pending

Order
confirmed

Confirming
paymemt

new order

more products
no more products

submit
abort

confirm payment

payment confirmed

 : AccountingSystem : OrdersSystem : Customer

Figure 3. Activity diagram of the Place Order use case.

The implementation of a use-case is responsible for coordinating and
sequencing the interactions between the system and its actors, while
preserving the integrity of the data and the flow defined in the use
case specification. Three different types of objects usually participate
in a use-case realization, each one encapsulating a different kind of
behaviour. These types were initially described in [8] and are now

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

widely known and adopted by UML [5] as the stereotypes «boundary»,
«entity» and «control»:

• interface objects are generally used to translate actor's actions to
the system into events in the system, and vice-versa;

• entity objects are used to handle information that outlives use
cases and often persistent;

• control objects are used to encapsulate behaviour related to a
specific use case that isn't naturally placed in any of the
previous two types of objects, such as coordination, sequencing,
transaction, and control of other objects. Control objects usually
last only during the execution of one use case.

In Figure 4. are shown the classes that participate in the realization
of the Place Order use case and also their corresponding types.

control
object
entity
object

interface
object

Place Order
Manager Order

Product
Place Order

Interface

Place Order

Account
Manager

Accoun
t

Update Account
Use-Case Realization

Figure 4. Classes participating in the realization of Place Order use case.

In some situations, different users executing the same Place Order
use case may require different user interfaces, such as: a web
interface for customers, graphical windows interface for customer
reps, or a textual interface for typist operators. As a result, a use
case implementation is often required to support the replacement of
user interface components and system components with others also
satisfying the requirements given by the use case.

Figure 5. User interface for the Place Order use case.

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

A use case implementation can be obtained using different
approaches, which may have distinct impact in terms of modularity,
coupling, reusability and changeability of the resulting code.

You are developing an interactive system following a use-case driven
approach.

Use case modelling is a popular method of determining user
requirements [8][10][11][12] that helps to define the boundaries of a
system and identifies system-actor interactions, i.e., use cases.

Before coding an application modelled with use cases, architectural
and design decisions must be made. Use cases can be realized using
a combination of three types of models: collaborations of subsystems
and classes, state machines, and activity models [2][6]. Use case
maps are another alternative that combines behaviour and structure
in one view and shows the allocation of scenario responsibilities to
system components [17][18].

Independently of the way it is implemented, a use case must
coordinate system actions in response to user actions and to take
control over:

• the events and input coming from user interface components;

• the invocation of services provided by system components;

• the execution of related use cases, such as extensions and
inclusions, both helpful to improve modularity and reusability.

In the development of a family of applications, it is also desirable to
have use-case implementations that can be used in several
applications, although combined and configured in different ways [9].

When designing use case realizations that satisfy the requirements
above mentioned, the following questions arise:

– How do you design a use case implementation so that you can map
easily and efficiently your use case models to an organization of
components?

– How do you design a use case implementation that can be flexibly
configured with their participating components, namely user
interfaces and system components?

– How can we implement use cases in a way that facilitates their
reuse across a family of applications?

A solution to such a design problem should balance the following
forces:

• A use case implementation should preserve the integrity of the
use case flow specified.

• The behaviour of a use case implementation should be easily
configurable with other use cases, either by extending it or by
replacing some of its parts.

Context

Problem

Forces

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

• The same use case implementation should be executable with
different user interfaces and system components, regarding that
they satisfy the requirements given by the use case.

• A use case implementation should be easy to relate to the
corresponding use-case model and thus preserve the traceability
to and back earlier development models.

• Applications should be configurable by assembling use case
implementations, once it has been ensured that these
implementations are compatible and coherent in terms of the
user interfaces and system services required.

The solution proposed in this pattern follows the guidelines for
designing use case realizations presented in [8][9][7] and specializes
the Model-View-Controller pattern [4] for the specific purpose of
controlling the flow of a use case.

The pattern suggests the division of a particular use case
implementation into three kinds of participants:

• A model that provides a single interface to a set of entity objects
that encapsulates system information and behaviour outliving a
use case execution;

• A view that wraps boundary objects through which actors
communicate with the system, and inversely;

• A controller that manages the flow of interactions between users
and system, and coordinates associated views and models.

Controller

ModelView

Place Order
Manager

Order
Place Order

Interface
Account
Manager

Product Account

Customer

Figure 6. Relationships between object types and MVC metaphor.

The model can be described as a facade [3] to a set of services
eventually distributed by several subsystems. Although many
different services can be included in this interface, the intent is to
include only those strictly needed to implement the corresponding
use case. A first outline of this facade can be derived from the
corresponding diagram with classes participating in the use case.

Views are interface objects needed by the use-case implementation to
present information to the user. Views are responsible for the
translation of user actions to events meaningful from the point of

Solution

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

view of the use-case specification. In other words, views support
bi-directional communication between the system and its users.

The controller is the component responsible for ensuring the correct
flow of a use case, both its basic thread and its variants. A controller
receives meaningful events from components and, based on the use
case specification, decides the valid sequence of action steps to
perform. The internal state of a controller records the execution of a
particular scenario, thus knowing why it was performed. A controller
is also responsible for managing the associations with other
participating components, namely the model, views and other related
use cases (extensions, inclusions or generalizations).

The Use-Case Controller pattern defines five types of participants:
UseCaseController, View, Model, Extension and Inclusion.

An instance of UseCaseController is an object that encapsulates the
knowledge needed to ensure the correct execution of one particular
use case specification: sequence of action steps, states,
preconditions, post-conditions, and components, both for accepting
user input and for performing system services.

As a rule of thumb, one UseCaseController will be created for each
use case. When a use case is started, one instance of the
corresponding use-case controller is created to control the flow of the
interactions involved. Depending on the size and complexity of the
controller, one might decide to create several use-case controllers for
a particular use case, or the opposite.

A use-case controller is not intended to interact directly with either
interface objects or system objects, but only to model and view
objects, thereby promoting a layer at the use-case level.

Structure

Class

UseCaseController

Responsibilities

• Ensures the
correct execution
of an use case

• Handles use case
events from views
and models

Collaborations

• View
• Model
• Extension
• Inclusion

Class

Model

Responsibilities

• Provides system
information and
functionality
needed during
use case
execution

Collaborations

• Use-case
Controller

Class

View

Responsibilities

• Presents
information to
actors

• Receives actors
input

Collaborations

• Use-case
Controller

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

A use-case controller is typically associated with a model facade,
through which it has access to the subset of data and functionality
needed to perform system-related actions. On the other hand, to
communicate with the actors, a use-case controller relies on view
facades. A view is usually an aggregation of several interface objects,
such as windows, dialogs, menus and buttons.

Use case inclusions and extensions can be mapped directly to an
implementation by connecting a use-case controller with other
use-case controllers through hook objects.

Using an extension hook, a use-case controller can be connected with
others that augment its behaviour at predefined points and
circumstances. The execution of extensions interrupts the execution
of its base use-case and is usually triggered by conditions internal to
the base use-case controller, either at defined extension points or
during its overall execution. Base use-case controllers do not need to
know their extensions.

An inclusion hook is similar to an extension hook, except that their
execution is needed to realize the behaviour of the base use-case.
Inclusions are known by the caller use-case controller [8][5][1], and
initiated as and when needed during the execution flow of the base
use-case. Base use-case controllers must know their inclusions.

In addition to including and extending relationships, use cases can
also be related by generalization relationships, which mean that a
use case may specialize a more general one [1]. This kind of
relationship between use cases can be implemented by inheritance of
use-case controllers, models and views, thus it is easily
accommodated by the solution proposed.

Extension
preconditions

Inclusion

Component Hook

call()

View

display()
Model

data

 UseCaseController
preconditions
postconditions
state

start()
actionA()
eventX()
finish()

0..n 0..n

0..1 0..n
callee

0..1
caller
0..n

binding

0..n
0..n

0..n 0..n
0..n

Figure 7. Class diagram representative of the pattern structure.

Class

Extension

Responsibilities
• Implements the

<<extend>>
association

• Knows when and
where the
extension is valid

Collaborations

• Use-case
Controller

Class

Inclusion

Responsibilities
• Implements the

<<include>>
association

• Knows where the
inclusion is to be
done

Collaborations

• Use-case
Controller

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

In Figure 7. it is shown the UML class diagram representative of the
pattern structure.

The following guidelines are suggested to implement this pattern.

Identify candidate use cases by looking in the use case model for use
cases that may benefit from the solution proposed by this pattern.
Use cases usually involve interface objects and entity objects. In a
first approach, all use cases can be defined as candidates. However,
use cases whose behaviour is completely placed in interface objects
and entity objects do not need to be implemented with use-case
controllers because no behaviour is left to the control object. The
same happens when one decide that control objects are better
encapsulated within interface objects. On the other hand, a control
object can be so complex that it is better to encapsulate it in two or
more use-case controllers. Examples of functionality typically placed
in use-case controllers are transaction-related behaviour, sequencing
behaviour specific to one or more use cases, or behaviour to couple
together interface objects and entity objects [8].

* In the example presented, Place Order can be considered a good use
case candidate, as it involves specific functionality that do not
assign well either to interface objects or entity objects. On the
other hand, the use case Save Order for Later Use is not a good
candidate because its behaviour is very simple and do not involve
coordination of interface objects and entity objects.

For each one of the use cases above create a use-case controller class.
Although it is possible, and sometimes convenient, to create a
use-case controller class for each use case candidate, this decision
must be made by the developer after refinement of the use-case
participant classes and, thus, knowing well the events exchanged
between them. At this stage, it can be decided to assign one, two or
more use-case controllers to a single use-case, or even none.
Typically, a use-case controller class includes methods to start and
finish its execution, to invoke specific use-case actions, and to fire
events to interface objects and entity objects.

* The use-case Place Order can be conveniently implemented with one
single use-case controller class.

abstract public class UseCaseController {
abstract public void start();
abstract public void finish();

}

public class PlaceOrderUseCase extends UseCaseController {

…
public void start() { displayForm(); }
public void finish() { … }
public void displayForm() { … }
public void setCustomerInfo(String name, String address) { … }
public void newItem() { … }
public void saveItem(String item) { … }
public void deleteItem() { … }
public void setPaymentInfo(String paymentType) { … }
public void submitOrder() { … }
public void cancelOrder() { … }

}

Implementation

1.

2.

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

Create the model and view objects needed to implement each use case.
Use-case controller classes are responsible to coordinate the
communication between entity objects and interface objects. After
analysing the classes needed to perform the use case's flow of events,
the behaviour must then be distributed to the interacting objects. All
participating classes can be divided at least in two groups: a model,
aggregating all entity objects; and views, which aggregate interface
objects.

Different strategies can be used to allocate the functionality to entity
objects, interface objects and control objects [7][8]. The strategy to
choose must be decided from application to application. In most
cases, the balanced strategy, where control is placed separately from
both interface and entity objects, is the one that reaches higher
locality in changes of the functionality.

* The model for Place Order use case can be simply obtained by
providing a common access-point to the entity objects needed, as
shown in the code below, or including also helper methods that make
more convenient the usage of the model, such as methods for
automating data conversions. Views may be obtained using a similar
approach.

public class PlaceOrderModel {
 public Order order;
 public Vector products;
 public Vector paymentTypes;
}

public class PlaceOrderDialog extends javax.swing.JDialog
{

PlaceOrderUseCase useCase;
public PlaceOrderDialog(UseCaseController useCase) {

this(null);
this.useCase = useCase;
…
submit.setText("Submit order");
submit.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent event) {
useCase.submitOrder();

}
});

}
}

Create extension and inclusion hooks for related use cases. Extensions
and inclusions can be simply implemented with direct calls between
use cases. Extension and inclusion hooks must be implemented
when pretending to connect use-case implementations at run-time.
In these cases, some implementation mechanism must be supported
by use-case components for achieving the effect of plug-points and
plug-ins.

The patterns TEMPLATE METHOD and STRATEGY [3] document two
well-known solutions to the problem of connecting a component at
run-time. Use-case inclusions can be connected only at predefined
plug-points of the base use-case, but use-case extensions can be
connected at any point, assuming they satisfy the requirements of
the base use-case.

3.

4.

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

* For clarity reasons, the example presented here is very simple and do not justify
the implementation of a plug-in mechanism. However, both inclusion and
extension hooks are implemented to demonstrate here a simple way of supporting
hooks in the Place Order use-case.

public class PlaceOrderUseCase extends UseCaseController {
…
Hook updateAccount = null;
Vector extensionHooks = new Vector();
…
public void connectUpdateAccount(UseCaseController useCase) {

updateAccount = new Hook(useCase);
}

public void connectExtension(UseCaseController useCase) {

extensionHooks.add(new Hook(useCase));
}

public void submitOrder() {

…
updateAccount.call();
…

}
}

Package use-case controllers using a similar organization as the
underlying use-case model. One of the benefits of implementing
use-case realizations using use-case controllers is that the code can
be traced back to the originating use-case model. In systems with
many use cases it may help to package use-case controllers using
similar criteria to the one followed in the use-case model, thus
creating a use-case layer at the application logic layer.

The Use-Case Controller pattern provides the following benefits:

• Localization of business rules and policies. Use-case controllers
work as glue between user interfaces and domain entities and
place much of the application logic separate from dialogue and
system components. Therefore, it will be easier to incorporate
changes without affecting interfaces, system objects or database
schemas, because future changes of the functionality will have a
high locality in use-case controllers.

• Easy replacement of user interfaces and system components.
Use-case controllers are separated from the user interface and
system components. Therefore, multiple user interface
components and system components can be implemented and
used by a single controller, and can be easily substituted
statically and dynamically.

• Visibility of the originating use case model in the implementation
code. The pattern suggests a straightforward design and
implementation of use-case realizations. Assuming that the
pattern is consistently instantiated following some coding
convention, use-case implementations will be easy to recognize
at the code level and to be traced back to the respective model.

5.

Consequences

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

• Flexible configuration of applications using pluggable use case
implementations. Use-case controllers encapsulate the most
important functionality specified in the use case, and can be
easily replaced even at run-time. Therefore, the pattern allows
the configuration of applications by plug-in of use case
components having use-case controllers at their heart.

In contrast, the pattern imposes the following liabilities:

• Increased number of classes. As the pattern introduces a
conceptual separation between user interface, model and
controller objects, more classes are needed to implement the
same functionality. This aspect must be considered having in
mind the benefits of an increased separation of concerns and
changeability.

• Increased complexity. The pattern suggests the assignment of a
control object for each use case, which can result in code more
complex than the original. When the use-case behaviour is not
complex enough to justify the usage of a separate control object,
the control object should be avoided.

• Control flow of the application slightly harder to trace directly from
a strict reading of the code as one must be aware of the design
principles and coding convention that lead to the application
logic being organized around the concept of use cases. On the
other hand, once known the underlying use-case model, the
readability and modularity of the implementation is largely
improved.

• Close relation between models and views to controllers.
Controllers directly invoke functionality from models and views,
thus implying that changes to interfaces of models and views
may have impact on controllers. This problem can be reduced
with the use of FACADE, ADAPTER or BRIDGE [3].

• Potential instability of the implementation mainly when the
underlying use case model is unstable or badly organized. For
these situations it may help to decompose use-cases into more
fine-grained components, usually called actions [8] or action
steps [1], which are generally more stable as they closely map
from essential system requirements. The aggregation of these
actions around use-cases can improve usability but at the cost of
being more specific and constrained. Therefore, it is important to
separate this use-case layer from the overall application logic, to
improve system changeability.

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

MODEL-VIEW-CONTROLLER [4] differs from this pattern, because its
applicability is wider and thus less useful for the particular problem
of implementing use case realizations.

COMPOSITE and FACADE [3] may be used to combine several user
interface components or views in one single object. The same applies
for entity objects and models, respectively.

ADAPTER [3] can help on the conversion of interfaces of system and
user interface components. BRIDGE [3] can decouple user interface
abstractions from their implementation so that both can vary
independently without disrupting use-case controller's interfaces.

Use-case controllers can be implemented using the COMMAND [3] or
COMMAND PROCESSOR [4] patterns so that their execution may be
started uniformly using a single method.

CHAIN OF RESPONSIBILITY [3] or BUREAUCRACY [16] can be useful for
implementing the handling of requests on a use-case controller.

J2EE patterns catalogue [19] include FRONT CONTROLLER, SESSION

FACADE, DISPATCHER, COMPOSITE VIEW and AGGREGATE ENTITY patterns,
all of them related to the problem dealt by this pattern, but not so
adapted to the realization of use-cases. FRONT CONTROLLER and
DISPATCHER, both together, aggregate functionality similar to that of
use-case controller. FRONT CONTROLLER provides a centralized
controller for handling requests and it typically works in coordination
with a DISPATCHER component, responsible for view management and
navigation. SESSION FACADE deals with the problem of reducing the
number of use-case controller objects when implementing each
use-case as a session bean. COMPOSITE VIEW and AGGREGATE ENTITY

simplify the handling of multiple views and multiple entities by
aggregating them in a uniform composite object, thus having a role
similar to the view and model participants defined in this pattern.

In [7][8][9] are presented several examples of using controllers to
manage the flow of use cases, although they are not detailed at the
code level, but only at a design level.

SIMATWARE application framework [15] provides a dynamic
configuration of applications based on the plug-in of use case
components implemented with use-case controllers.

JAVA 2 ENTERPRISE EDITION has many uses of this pattern documented
in [19]. J2EE PATTERNS catalogue includes specific patterns to help
solving some of the problems that arise when instantiating this
pattern to J2EE platform, namely: FRONT CONTROLLER, SESSION

FACADE, DISPATCHER, COMPOSITE VIEW and AGGREGATE ENTITY patterns.

Thanks to those who had contributed to this work, for their ideas
and critics on its early drafts, specially, Gabriel David and José
Bonnet.

Special credits goes to Kevlin Henney, our EuroPLoP’2001 shepherd,
for the inspiring questions and valuable feedback to this pattern.

Related
Patterns

Known Uses

Credits

Use-Case Controller

Copyright © 2001 Ademar Aguiar, Alexandre Sousa and Alexandre Pinto. 10-06-2001
All rights reserved. Permission granted to copy for all purposes of EuroPLoP’2001.

[1] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, 2000.

[2] D. Rosenberg, K. Scott, Use Case Driven Object Modelling with UML: A
Practical Approach, Addison Wesley Longman, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern
Oriented Software Architecture – a System of Patterns, John Wiley and Sons,
1996.

[5] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modelling Language User
Guide. Addison-Wesley, 1999.

[6] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modelling Language,
version 1.3, Object Management Group, June 1999.

[7] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Development
Process, Addison-Wesley, 1999.

[8] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley,
Reading, Massachusetts, 1992.

[9] I. Jacobson, M. Griss, P. Jonsson, Software Reuse: Architecture, Process and
Organization for Business Success, Addison-Wesley, Reading,
Massachusetts, 1997.

[10] I. Jacobson, S. Bylund, P. Jonsson, Using Contracts and Use Cases to Build
Pluggable Architectures, JOOP, May-June, 1995.

[11] I. Jacobson, Use Cases in Large-Scale Systems, ROAD, March-April 1995.

[12] J. Rumbaugh, Getting Started: Using use cases to capture requirements,
JOOP, September 1994.

[13] K. Henney, Design - Concepts and Practices, ACCU Conference,
www.accu.org, September 1999.

[14] OMG. Unified Modeling Language Specification, Object Management Group,
www.omg.org, 1998.

[15] ParadigmaXis. SIMATWARE Application Framework, Internal Report,
ParadigmaXis, SA, March 2001.

[16] R. C. Martin, D. Riehle, and F. Buschmann, Pattern Languages of Program
Design 3, Addison-Wesley, 1997.

[17] R.J.A. Buhr, and R.S. Casselman: Use Case Maps for Object-Oriented
Systems, Prentice-Hall, USA, 1995.

[18] R.J.A. Buhr, Use Case Maps as Architectural Entities for Complex Systems,
in Transactions on Software Engineering, IEEE, December 1998.

[19] SJC, J2EE Patterns, Sun Java Center, java.sun.com, March 2001.

References

