We have thus proved Theorem 1. We illustrate this result by the following examples.

Example 1: \(n = 5, a_1 = a_2 = a_3 = a_4 = 1 \) (see Figure 2).

Example 2: \(n = 9, a_1 = 1, a_2 = 1, a_3 = 3 \) (see Figure 3).

We note the following corollaries, most of which have been proven elsewhere.

Corollary 4. The complete graph, \(K_n(= S(n; 1, 2, \ldots, (n - 1)/2)) \), is edge-graceful when \(n \) is odd [6].

Corollary 5. The \(k \)th power cycle, \(C_n^k(= S(n; 1, 2, \ldots, k)) \), where \(1 \leq k \leq (n - 1)/2 \), is edge-graceful when \(k < n/2 \) (see [9, 11, 13]).

Corollary 6. The multicycle \(kC_n \), where there are \(k \) multiple edges for each pair of adjacent vertices, is edge-graceful if \(n \) is odd.

Proof: We note that \(kC_n \) is \(S(n; a_1, a_2, \ldots, a_k) \), where \(a_1 = a_2 = \ldots = a_k = 1 \).

Corollary 7. The regular complete \(k \)-partite graphs, \(K_{n,n,\ldots,n} \), is edge-graceful if both \(n \) and \(k \) are odd [10].

Proof: It is not difficult to see that \(K_{n,n,\ldots,n} \) can be expressed as the step-multigraph \(S(nk; 1, 2, \ldots, k - 1, k + 1, \ldots, 2k - 1, 2k + 1, \ldots, jk - 1, jk + 1, \ldots, (nk - 1)/2) \); see also [10].

Acknowledgements.

The second author is supported by 1989 SJSU Foundation Research Grant, and the third author is supported by an NSERC grant.