2. Edge-magicness of \((p, p)\)-graphs

In this section, we consider the edge-magicness of a multigraph whose order and size are equal.

Theorem 2.1: Let \(G \) be a \((p, p)\)-graph. \(G \) is edge-magic if and only if \(G \) is isomorphic to one of the following graph:

1. \(mK_2[2] \),
2. \(G_1 + mK_2[2] \),
3. \(K_2 + G_2 + mK_2[2] \),

for some \(m \), where \(G_1 \) is isomorphic to \(H_1 \) or \(H_2 \) and \(G_2 \) is isomorphic to \(H_3, H_4, H_5 \) or \(H_6 \) (Figure 2.1).

![Figure 2.1](image)

Proof: Suppose \(G = (V, E) \) is edge-magic. Since the order and the size of \(G \) are the same, the labels of edges are distinct. Hence every 1-vertex of \(G \) must be incident to the same edge (a vertex of degree \(d \) is called a \(d \)-vertex). Consequently, \(G \) contains at most two 1-vertices, and if \(G \) contains two 1-vertices then these two vertices induce a component of \(G \) isomorphic to \(K_2 \). Moreover, if \(G' \) is a component of \(G \) with two adjacent 2-vertices, then \(G' \cong K_2[2] \).

Case 1: Suppose each component of \(G \) has the same order and size. In this case, \(G \) contains at most one 1-vertex. If \(G \) contains no 1-vertex and \(V^* \) is a component of \(G \), then from

\[
\sum_{v \in V^*} \deg(v) = 2e^*,
\]

where \(e^* \) is the size of \(G[V^*] \), we have \(\deg(v) = 2 \) for all \(v \in V^* \). Because order of \(G[V^*] \) is at least 2, then by last sentence of the first paragraph \(G[V^*] \cong K_2[2] \). Therefore \(G \cong mK_2[2] \), where \(m = \frac{e}{2} \).

Suppose \(G \) contains one 1-vertex. From (2.1), the component, say \(G_1 \), containing the 1-vertex must contain one 3-vertex and a number of 2-vertices. If the 1-vertex is adjacent to the 3-vertex, then \(G_1 \cong H_1 \). If the 1-vertex is adjacent to a 2-vertex, then this 2-vertex must be adjacent to the 3-vertex and \(G_1 \cong H_2 \). Since other components of \(G \) contain no