A LABELING ALGORITHM FOR MAGIC GRAPH

Gwong C. Sun
Department of Engineering Mathematics and Computer Science
University of Louisville

Jian Guan
Department of Information Science and Data Processing
University of Louisville
e-mail: j0guan01@ulkyvm.louisville.edu

Sin-Min Lee
Department of Mathematics and Computer Science
San Jose State University

Abstract

A graph $G(p, q) = (V, E)$ is magic if we can find an edge labeling assignment $L: E \rightarrow \{1, 2, \ldots \}$ such that the sum of all edge labels incident to each vertex has the same value, and this value is called the magic index w.

In this paper we present an efficient labeling algorithm for a magic graph. Given a graph, the algorithm uses a modified depth-first search strategy to label the graph. If the graph is magic, there exists at least one value of $w \leq q$. Heuristics based on properties of magic graph are employed to terminate the search for a magic labeling if the graph is not magic and to reduce the search space if the graph is magic.

1. Introduction

Let G be a graph having p vertices and q edges, i.e., if $G = (V, E)$, then $|V(G)| = p$ and $|E(G)| = q$. The induced map $L' : V \rightarrow N$, also called the vertex sum, is defined by $L'(v) = \sum fL(u, v) :$ for all $(u, v) \in E$. A labeling, $L: E \rightarrow \{1, 2, \ldots \}$, is called magic with index w if the vertex sum of each vertex is w.

The concept of a magic graph was introduced first by J. Sedlacek [7, 8], where he used label values as distinct non-negative real numbers. The question of the precise structure of such labeling has been investigated from several viewpoints. Stewart [9] looked at the properties of the real vector space coordinatized by the edges. Doob [3] considered the label values in an abelian group or a ring. Jeurissen [5] called a magic labeling pseudo magic if the labels were pairwisely distinct. Berge [1] called a graph regularisable if a regular multigraph could be obtained from G by adding edges parallel to the edges of G. In fact, a graph is magic if and only if it is regularisable. Berge showed that the necessary and sufficient condition for a connected non-bipartite graph G to be regularisable is that $|N(S)| > |S|$ for every nonempty independent set of vertices S, where $N(S)$ is the set of neighbors of vertices in S. Jaeger and Payan [4] characterized regularisable graphs without $K_{1,2}$ as an induced subgraph. Recently, Lee, Saba and Sun [6] introduced the concept of magic strength and discussed the magic strength of the kth