For example, Fig. 4(b) gives a felicitous labelling of $C_{11} \otimes S_5$.

Remark. The labelling in Theorem 4 for $C_{2k+1} \otimes S_m$ is harmonious.

Let $C_n \ast S_m$ be a graph obtained by joining any vertex of C_n to any vertex (not the center) of S_m by an edge. We have the following.

Theorem 5. $C_{2k+1} \ast S_m$ is felicitous for all k and m.

Proof. We first label the connecting vertex of C_{2k+1} with $m+2k+1$ and that of S_m with k. We then label the cycle C_{2k+1} with $m+2k+1$, $m+k+1$, 0, $m+k+2$, 1, ..., $k-1$, the center of S_m with $m+2k+2$ and the remaining vertices with $k+1$, $k+2$, ..., $k+m-1$. \qed

For example, $C_{15} \ast S_6$ is labelled as in Fig. 5.

A harmonious labelling of the Petersen graph is given in [4] as in Fig. 6(a), while (b) shows a second labelling.

It is found that the second labelling can be continued to produce harmonious labelling of the generalized Petersen graph. The generalized Petersen graph $P(n, k)$ has vertex set

$$V = \{x_0, x_1, \ldots, x_{n-1}, y_0, y_1, \ldots, y_{n-1}\}$$