Theorem 3. C_n is felicitous if:

(i) n is odd, or
(ii) $n = 4k$, $k = 1, 2, \ldots$

Proof. (i) C_{2k+1} is harmonious [4].
(ii) Let the vertices of C_{4k} be $v_0, u_0, v_1, u_1, \ldots, v_{2k-1}, u_{2k-1}$. We label u_i and v_i by $f(u_i)$ and $f(v_i)$ respectively, where

$$f(u_i) = \begin{cases}
4k & \text{for } i = 0, \\
i & \text{for } 1 \leq i < k, \\
i + 1 & \text{for } i \geq k,
\end{cases}$$

$$f(v_i) = \begin{cases}
0 & \text{for } i = 0, \\
2k + i & \text{for } i = 1, 2, \ldots, 2k - 1.
\end{cases}$$

Example 2. A felicitous labelling of C_5 and C_{12} are shown in Fig. 3(a) and (b) respectively.

Let S_m be a star with m edges. Let $C_n \odot S_m$ (resp. $C_n \otimes S_m$) be a graph obtained by identifying any vertex of C_n with the center (resp. any vertex not the center) of S_m.

Theorem 4. $C_{2k+1} \odot S_m$ and $C_{2k+1} \otimes S_m$ are felicitous for all k and m.

Proof. For $C_{2k+1} \odot S_m$, we label the identified vertex with k, the cycle with $k, 0, k + 1, 1, \ldots, k - 1, 2k$ and the remaining vertices with $2k + 1, 2k + 2, \ldots, 2k + m$.

For example, $C_9 \odot S_4$ is labelled felicitously as shown in Fig. 4(a).

For $C_{2k+1} \otimes S_m$, we label the identified vertex with $m + k + 2$, the cycle with $m + k + 2, 2, m + k + 3, 3, \ldots, k + 1, 1$, the center of S_m with 0, and the remaining vertices with $k + 3, k + 4, \ldots, m + k + 1$.

![Fig. 3](attachment:image.png)