Containment of a FD in a closure F^+

- question: Let F be a set of FDs and $A \rightarrow B$ a FD. Does $A \rightarrow B \in F^+$ hold?
- problem: explicit calculation of F^+ is too expensive
- instead: calculation of the closure A^+ of the attribute set A regarding the set F
 - A^+ consists of all attributes that are functionally determined by A.
 - If $B \subseteq A^+$ holds, then also $A \rightarrow B \in F^+$ holds.

- algorithm for inferring A^+

 algorithm AttrClosure(F, A)

 // input: a set F of FDs and a set A of attributes
 // output: the complete set A^+ of attributes for which holds: $A \rightarrow A^+$

 $A^+ := A$;
 repeat
 OldA^+ = A^+;
 foreach FD $B \rightarrow C \in F$ do
 if $B \subseteq A^+$ then $A^+ := A^+ \cup C$;
 until $A^+ = OldA^+$; return A^+
Canonical cover

- In general, distinct equivalent sets of FDs exist. Two sets F and G of FDs are called **equivalent** iff $F^+ = G^+$ holds.

- Definition of equivalence is convincing, because the equality of the closures for F and G implies that the same FDs can be inferred from F and G.

- Conclusion: For a given set F of FDs there exists a unique closure F^+.

- Drawbacks of the closure F^+:
 - in general very many FDs in F^+ so that the handling with F^+ becomes difficult
 - large redundant set of FDs that has to be checked as consistency tests for database modifications

- Goal: computation of a most possible small set of FDs which are equivalent to F
 → less effort for testing whether a new or updated tuple violates a FD
- F_c is called **canonical cover** of a given set F of FDs, if holds:

 - $F_c^+ = F^+$

 - In F_c there are no FDs $A \rightarrow B$ where A or B contain *extraneous* attributes, i.e.,

 $$\forall a \in A : (F_c - \{A \rightarrow B\} \cup \{(A - \{a\}) \rightarrow B\})^+ \neq F_c^+$$

 $$\forall b \in B : (F_c - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\})^+ \neq F_c^+$$

 - Each left side of the FDs in F_c occurs only once, i.e.,

 if $A \rightarrow B$ and $A \rightarrow C$ hold, then in F_c only the FD $A \rightarrow B \cup C$ is used.

- **algorithm for computing the canonical cover**

 - **step 1**: For each FD $A \rightarrow B \in F$ perform the **left reduction**: check for all $a \in A$ whether the attribute a is extraneous, i.e., whether

 $$B \subseteq \text{AttrClosure}(F, A - \{a\})$$

 holds. If this is the case, replace $A \rightarrow B$ by $(A - \{a\}) \rightarrow B$.
− step 2: For each remaining FD $A \rightarrow B \in F$ perform the **right reduction**: check for all $b \in B$, whether the attribute b is extraneous, i.e., whether

$$b \in AttrClosure(F - \{A \rightarrow B\} \cup \{A \rightarrow (B - \{b\})\}, A)$$

holds. If this is the case, replace $A \rightarrow B$ by $A \rightarrow (B - \{b\})$.

− step 3: Remove the FDs of the form $A \rightarrow \emptyset$ which perhaps have been produced in the previous step.

− step 4: By using the union rule replace all FDs of the form $A \rightarrow B_1, \ldots, A \rightarrow B_n$ by $A \rightarrow B_1 \cup \ldots \cup B_n$

![example](image)

− Given the set $F = \{A \rightarrow B, B \rightarrow C, A \cup B \rightarrow C\}$.

− step 1: $A \cup B \rightarrow C$ is replaced by $A \rightarrow C$, because B on the left side is extraneous (C is already functionally dependent from A by the first two FDs).

− step 2: $A \rightarrow C$ is replaced by $A \rightarrow \emptyset$, because C on the right side is extraneous. This results from the fact that $C \subseteq AttrClosure(\{A \rightarrow B, B \rightarrow C, A \rightarrow \emptyset\}, A)$.

− step 3: $A \rightarrow \emptyset$ is removed. We obtain: $F_c = \{A \rightarrow B, B \rightarrow C\}$.

− step 4: Nothing to be done.
Decomposition of a relation schema

- **Normalization**: In order to eliminate anomalies (redundancies, update, insertion and deletion anomalies), the relation schema R is decomposed into n relation schemas R_1, \ldots, R_n.

- Two fundamental correctness criteria for such a decomposition:
 - **Losslessness (lossless join decomposition)**: An arbitrary instance $r(R)$ must be reconstructable from the instances $r_1(R_1), \ldots, r_n(R_n)$.
 - **Dependency preservation**: All FDs which hold for schema R must be transferable to the schemas R_1, \ldots, R_n and must be efficiently checkable.

- **Losslessness**
 - It is sufficient to confine oneself to the decomposition of R into two relation schemas R_1 and R_2.
 - Of course, we must require: $R = R_1 \cup R_2$.
 - A decomposition of R into R_1 and R_2 is **lossless** if for all relations $r(R)$ holds:
 \[r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r). \]
 - That is, reconstruction must be possible by natural join.
criteria for the losslessness of a decomposition

Let R be a relation schema and F_R the set of FDs. A decomposition of R in R_1 and R_2 is lossless, if

$$(R_1 \cap R_2) \rightarrow R_1 \in F_R^+ \quad \text{or} \quad (R_1 \cap R_2) \rightarrow R_2 \in F_R^+$$

i.e., $R_1 \cap R_2$ is a **superkey** for R_1 or R_2.

Alternative formulation: Let $R = A \cup B \cup C$, $R_1 = A \cup B$ and $R_2 = A \cup C$ with pair-wise disjoint attribute sets A, B, C. Then:

$$B \subseteq \text{AttrClosure}(F_R, A) \quad \text{or} \quad C \subseteq \text{AttrClosure}(F_R, A)$$

must hold.

sufficient, but not necessary condition for losslessness

In a relation schema R, $X \subseteq R$ is called a **superkey**, if $X \rightarrow R$ holds.

example for a lossy decomposition:

The decomposition of the relation R(sname, saddr, product, price) in the two relations \textit{supplier}(sname, saddr, product) and \textit{offer}(product, price) is \textit{not} lossless, since in general $R \neq \textit{supplier} \bowtie \textit{offer}$ holds.

reasons:

+ Product does not functionally determine the price.
+ Product does not functionally determine supplier’s name and address.
dependency preservation

- goal: All FDs that hold for schema R are to be checkable locally on each of the decomposed schemas R_1, \ldots, R_n without the computation of joins (efficiency!).

- For that purpose determine for each R_i the restriction F_{R_i} of FDs in F_R^+, i.e., F_{R_i} contains those dependencies of the closure of F_R that contain only attributes of R_i. We require:

$$F_R^+ = (F_{R_1} \cup F_{R_2} \cup \ldots \cup F_{R_n})^+$$

(dependency-preserving decomposition)

example for a lossless but not dependency-preserving decomposition:

- given: schema $address$(street, city, state, zipcode).

- We assume the following simplified conditions:

 + Cities are uniquely characterized by their name (city) and their state (state).
 + Within a street the zipcode does not change.
 + Zipcode areas do not extend over city borders, and cities do not extend over state borders.

- FDs therefore: $\{\text{zipcode}\} \rightarrow \{\text{city, state}\}$, $\{\text{street, city, state}\} \rightarrow \{\text{zipcode}\}$

- Consider the decomposition of $address$ in $streets$(zipcode, street) and in $cities$(zipcode, city, state).
This decomposition is lossless, since zipcode is the only common attribute and \{zipcode\} → cities holds.

Since the FD \{street, city, state\} → \{zipcode\} cannot be assigned to one of the relations streets or cities, this decomposition is not dependency-preserving.

Normal forms

- By using FDs, we can define several normal forms that represent “good” database designs.

- assumptions for normalization:
 - A set of FDs is given for each relation.
 - Each relation has a primary key.

- This information combined with the conditions (constraints) for the different normal forms effects the normalization process.

- Some more general definitions of these normal forms consider all candidate keys instead of only the primary key.

- Further normal forms rest on other kinds of data dependencies.

- “relational design by means of analysis“
8.3 First Normal Form

- A relation schema is in **first normal form (1NF)**, if, and only if, the domains of all attributes contain only atomic values that cannot be subdivided any more.
- This property is a *fundamental component* of the relational model and is hence presupposed for further considerations.
- In particular: Composite, set-valued or even relation-valued attribute domains are not permitted.
- **NF²-relations (NF² = Non First Normal Form; nested relations)**
 - reason for introduction: The 1NF is frequently too inflexible when modeling data.
 - example:

<table>
<thead>
<tr>
<th></th>
<th>parents</th>
<th>father</th>
<th>mother</th>
<th>children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ben</td>
<td>Martha</td>
<td>{Liza, Lucia}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ben</td>
<td>Maria</td>
<td>{Theo, Josef}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John</td>
<td>Martha</td>
<td>{Cleo}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>father</th>
<th>mother</th>
<th>children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ben</td>
<td>Martha</td>
<td>Liza</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lucia</td>
</tr>
<tr>
<td></td>
<td>Ben</td>
<td>Maria</td>
<td>Theo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Josef</td>
</tr>
<tr>
<td></td>
<td>John</td>
<td>Martha</td>
<td>Cleo</td>
</tr>
</tbody>
</table>
8.4 Second Normal Form

- A relation schema is in **second normal form (2NF)**, if, and only if, it is in 1NF and for all FDs $X \rightarrow \{A\}$ holds: If attribute A is not part of a key and X is a key, then there is no FD $Y \rightarrow \{A\}$ with $Y \subset X$.

- Alternative formulation:

 A relation schema is in **second normal form (2NF)**, if, and only if, it is in 1NF and each non-key attribute $A \in R$ is fully functionally dependent on each key X of the schema, i.e., the FD $X \rightarrow \{A\}$ must hold, and this FD is left reduced.

- But: It is still possible for a relation in 2NF to exhibit transitive dependency; that is, one or more attributes may be functionally dependent on nonkey attributes.

- Example:
 - relation $StudentsLecture(reg-id, id, name, sem)$
 - corresponds to the join of the relations $attends$ and $students$
 - key $\{reg-id, id\}$ with all FDs having this key on the left side
 - in particular: $\{reg-id, id\} \rightarrow \{name\}$ and $\{reg-id, id\} \rightarrow \{sem\}$
 - additional FDs: $\{reg-id\} \rightarrow \{name\}$ and $\{reg-id\} \rightarrow \{sem\}$
 - \Rightarrow violation of the 2NF
The following anomalies can occur:

+ insertion anomaly: What do we do with students who do not attend a lecture?
+ update anomaly: If a student reaches the next semester, we must ensure that in all tuples containing information about the student the semester number is changed accordingly.
+ deletion anomaly: What happens if a student drops his/her only lecture?

Solution of these problems is relatively simple: decompose the relation in several subrelations which each fulfil the 2NF. Split $StudentsLecture$ in the two relations $attend$(reg-id, id) and $students$(reg-id, name, sem). Both relations satisfy the 2NF. Moreover, they represent a lossless decomposition.

Remarks:

- no description of a decomposition algorithm which splits a given relation schema R into several 2NF relation schemas R_1, ..., R_n, because always 3NF is strived for (low importance of 2NF)
- violation of 2NF only with composite keys
- conclusion: elimination of partial FDs between key and non-key attribute through 2NF