8.2 Functional Dependencies

Proceeding

- DB schema + functional dependencies
- decomposition of the given database schema into an equivalent schema without redundancy and anomalies (**normalization**)
- integrity constraints: conditions for the permitted instances of a database schema
- A **functional dependency** (FD) is a special integrity constraint.
- In the following let R be the relation schema of a relation R.
- definition of functional dependency

 Let $A, B \subseteq R$. B is **functionally dependent** on A, or A determines B functionally (uniquely), written $A \rightarrow B$, iff to each value in A exactly one value in B belongs:

 $$A \rightarrow B \iff \forall t_1, t_2 \in R(R) : t_1[A] = t_2[A] \Rightarrow t_1[B] = t_2[B]$$

 for all possible relations R over R.
- A functional dependency depends on the **semantics** of the **schema**, and not on the instance of a relation.
example:

- `supplier(sname, saddr, product, price)`
- functional dependencies:
 + `{sname} → {saddr}`
 A supplier’s name determines uniquely the supplier’s address.
 + `{sname, product} → {price}`
 The key `{sname, product}` determines uniquely the price.
 + `{sname} → {sname}, {sname, product} → {product} are trivial.
 + `{sname, product} → {saddr} is partial

A dependency is called **trivial** if \(B \subseteq A \) holds.

A functional dependency \(X \rightarrow Y \) is called **full**, if there is no proper subset \(Z \subset X \) so that \(Z \rightarrow Y \) holds. If such a subset exists, \(X \rightarrow Y \) is called **partial** dependency.

Let \(X, Y \subset R \), and let \(X \rightarrow Y \). Let \(A \in R \) be an attribute with \(A \not\in X, A \not\in Y \), and let \(Y \rightarrow \{A\} \). Then \(A \) is **transitively dependent** on \(X \), i.e., \(X \rightarrow \{A\} \).
Checking the preservation of a functional dependency

- Alternative characterization of a FD $A \rightarrow B$

 Let $A = \{A_1, \ldots, A_n\}$, and let $\text{dom}(A) = \text{dom}(A_1) \times \ldots \times \text{dom}(A_n)$.

 The FD $A \rightarrow B$ holds on R if $\forall v \in \text{dom}(A) : |\pi_B(\sigma_{A=v}(R))| \leq 1$

 ($A = v$ stands for $A_1 = v_1 \land \ldots \land A_n = v_n$)

- This leads to a simple algorithm which computes whether a given relation R satisfies the FD $A \rightarrow B$:

 algorithm FDPreservation($R, A \rightarrow B$)

 // input: relation R and FD $A \rightarrow B$

 // output: true, if $A \rightarrow B$ holds on R; false otherwise

 sort R with respect to A-values

 if all groups consisting of tuples with equal A-values also have equal B-values **then**

 return true

 else

 return false

end.
Computation of FDs

- Goal: Compute for a given set F of FDs all **logically implied** FDs.

- Let F^+ be the set of all FDs that can be logically implied from the FDs in F. F^+ is called the **closure** of F.

- Let R be a relation schema, F a set of FDs and $A, B, C \subseteq R$.

 The following **inference rules** are used to compute F^+ (Armstrong’s axioms):
 - **reflexivity rule**: Let $B \subseteq A$. Then always $A \rightarrow B$ (special case: $A \rightarrow A$) holds.
 - **augmentation rule**: If $A \rightarrow B$ holds, then also $A \cup C \rightarrow B \cup C$ holds.
 - **transitivity rule**: If $A \rightarrow B$ and $B \rightarrow C$ holds, then also $A \rightarrow C$ holds.

- It can be formally shown that these rules are **sound** and **complete**.
 - **soundness**: Inferred FDs hold for all relations of this schema.
 - **completeness**: All valid FDs in F^+ can be logically implied with these rules.

Although Armstrong’s axioms are complete, it is comfortable to add three further inference rules:

- **union rule**: If \(A \rightarrow B \) and \(A \rightarrow C \) holds, then also \(A \rightarrow B \cup C \) holds.
- **decomposition rule**: If \(A \rightarrow B \cup C \) holds, then also \(A \rightarrow B \) and \(A \rightarrow C \) holds.
- **pseudotransitivity rule**: If \(A \rightarrow B \) and \(B \cup C \rightarrow D \) holds, then also \(A \cup C \rightarrow D \) holds.

example:

- **supplier** relation with the schema \(\text{supplier}(\text{sname}, \text{saddr}, \text{product}, \text{price}) \)
 - Valid FDs: \(\{\text{sname}\} \rightarrow \{\text{saddr}\} \), \(\{\text{sname}, \text{product}\} \rightarrow \{\text{price}\} \), \(\{\text{sname}\} \rightarrow \{\text{sname}\} \), \(\{\text{sname}, \text{product}\} \rightarrow \{\text{product}\} \)
 - It is to be shown: \(\{\text{sname}, \text{product}\} \rightarrow \{\text{saddr}\} \) is also satisfied.

 We have: \(\{\text{sname}\} \rightarrow \{\text{saddr}\} \).

 Due to the augmentation rule we obtain: \(\{\text{sname}, \text{product}\} \rightarrow \{\text{saddr}, \text{product}\} \).

 Due to the decomposition rule we hence obtain: \(\{\text{sname}, \text{product}\} \rightarrow \{\text{saddr}\} \).
computing the closure F^+

$F^+ = F$

repeat

for each functional dependency f in F^+ do

apply reflexivity and augmentation rules to F^+
add the resulting functional dependencies to F^+

od;

for each pair of functional dependencies f_1 and f_2 in F^+ do

if f_1 and f_2 can be combined using transitivity then

add the resulting functional dependency to F^+

fi

od;
until F^+ does not change any further