

general model is reproduced from [Hi90, page 386] in
Figure 2. The only picture of the outside world the "eye"
sees is that portion of the world it captures in the window.

& . ==
W

describes a complete scene. In order for Synthetica to
capture a scene as a cel, it requires a camera definition.
Therefore, the first construct of every scene that the
compiler expects is a camera definition (see Figure 3a,

1- /* an example file */
2- camera { position <0,1,0.5>
3- look_at < 0,0,0>
4- up <0,-0.5,1>
3- }
6- #define trapped = < object { sphere } object {cube } >
7- object { trapped rotate < 50,0,5 > scale <0.5,1,1.3 >}
8- end_scene
9-
10- camera { position <0,1,0.5>
11- lock_at <0,0,0>
12- up <0,-0.5,1 >
13- }
14- object { trapped rotate < 10,0,5 > translate < 5,0,0 > }
15- .
end_scene

lines 2 and 10).

Figure 3. a) An example file

The camera construct requires three

vectors; position, look at, and up (vector v shown in
Figure 2). These vectors give the camera's position, where

to
is

focus, and which direction is up. In Synthetica a vector
represented by a 3-tuple of the form <x,y,z>. Once the

camera is defined a description of a scene can be made.

Primitives can be placed anywhere and in any

manner that the user decides by using translations,
rotations, and scaling. They may also be grouped together

to

form larger more complex objects, like the “trapped”

object defined in Figure 3a. These groupings of objects
are created using the #define directive.

When the compiler encounters a #define

directive, it creates the necessary data structure to
accommodate the associated primitives and directives.
Finally, the object directive instructs Synthetica to draw
the object on a virtual screen and to store this information

for later use by the animator.

For a quantitative

description of the matrix operations involved in the
transformations: rotate, scale, and translate, the reader is

re

ferred to [Hill90].
As with any scene description in Synthetica,

Error
Generator

I

X y

Figure 3. b) Result of first scene

Figure 3a begins with a camera definition giving the
camera's position; x=0, y=1, z=0.5, the coordinates of
where the camera is looking: x=0, y=0, z=0 (the origin of
the world), and which direction is up: x=0, y=0.5, z=1.
Each triple represents a vector with its tail at the origin
and head at the position specified by the triple. Line 6 of
the example file gives the definition of the first object that
will be drawn in this scene. This line instructs Synthetica
to set up a data structure in the symbol table that will hold
two objects, a sphere and a cube, each with its origin at
the same position. Nothing is displayed until line 7. This
line instructs Synthetica to draw the “trapped" object onto
a virtual screen. Whenever the compiler encounters the
object statement outside of a #define statement it begins to
build a list of animation instructions. In this case, line 7
instructs Synthetica to draw "trapped" at the origin rotated
50 degrees about its x-axis, 0 degrees about its y-axis, and
5 degrees about its z-axis. Moreover, line 7 tells the
compiler to scale the "trapped" object 0.5 times along its
x-axis, 1.3 times along the z-axis, and no scaling along its
y-axis. The overall effect will shrink "trapped” along its
x-axis and stretch "trapped" along its z-axis. Once these
operations are completed, the
compiler will then draw "trapped"
on a virtual screen. The
information drawn on this screen is
captured in a cel for later use by the

ﬁ \
Input File | —> aL°“i§§Lr - s;':er .

Animator

animator. Figure 3b represents
what is captured in a cel after the
execution of line 7, the coordinate

Video

| Monitor

NN

Symbol
Table

Lexeme
Stack

Figure 4. The Compiler Environment

axis are shown only as an aid to the
figure-they would not appear in the
generated cel. In the next section
we give a more detailed description
of Synthetica's compiler.

341

T E— - -
another. 1he input file (similar to our example shown in

Figure 3a) is read and broken into tokens by the lexical
analyzer. These tokens are retrieved one by one from the
input file, via a buffer, and fed to the parser upon request.
The SLR parser, modeled in Figure 1, then begins
syntactic analysis of these tokens. During this phase the
compiler makes the appropriate semantic actions to
produce the animation instructions.

The first phase of the Synthetica compiler is
lexical analysis. Synthetica's lexical analyzer uses a
13x19 state table reproduced in part in Figure 5, for
generating tokens and detecting errors. In the top row of
the table, "1" stands for letter, "d" stands for digit, "sp" for
space, and "p" for general punctuation. The column
labeled "Back up" informs the analyzer when to move
back one character in the input string. The underlined
states in the table represent accepting states, which signal
the acceptance of a token.

The analyzer is a basic finite state machine with
a few embellishments. It handles several special cases,
such as when to ignore white spaces and when it signifies
the end of a token, the removal of comments, the
separation of keywords and identifiers, and notification of
illegal characters. Each state of the analyzer is found by
consulting the lexical analyzer state table (see Figure 5).
Depending on the current state and current input
character the analyzer knows what action to perform:
produce a token, generate an error, or move to another

”

o B of

floating point values. These data are pushed onto the
lexeme stack, shown in Figure 4, and later popped from
this stack by the parser during a semantic action. Without
this lexeme stack any identifiers, triples, or floating point
values, would be lost when converted to a token.
Therefore, when the lexical analyzer encounters an object
name, vector triple, or floating point value, it immediately
pushes these values onto the lexeme stack, thus saving
their values for later use. Using a stack for storing this
data accomplishes two things: conservation of memory
and increased speed. The code for Synthetica's analyzer is
based on the procedure LEX SCAN given in [Pars92].

The second phase of the Synthetica compiler is
syntactic analysis. This is the heart of Synthetica and is
accomplished through the use of the bottom-up SLR
parser. This parser is constructed with four major
interfaces (see Figure 1), and several small support
systems. The major interfaces are: a stack, a table, an
input, and an output. The support systems include a
lexeme stack, a symbol table, and an error generator (see
Figure 4). The stack for the parser is simply a state stack,
similar to that for the bottom-up SLR parser discussed
earlier and in [Pars92]. Synthetica's SLR stack only holds
the states of the parser, no grammar symbols are pushed.
As described earlier in part 4 of the LR parser model, each
action is found by consulting the SLR parsing table and
the top of the SLR stack.

The SLR table for Synthetica has 68 states and

Current 1 n p u t Back
state 1 d { } / * = < > # sp p up
1 2 4 7 8 9 13 14 15 16 17 19 1 19 yes
2 2 2 3 3 3 3 3 3 3 3 3 3 3 no
3 1 1 1 1 1 1 1 1 1 1 1 1 1 yes
4 5 4 5 5 5 5 5 5 5 5 6 5 5 no
5 1 1 1 1 1 1 1 1 1 1 1 1 1 yes
19 1 1 1 1 1 1 1 1 1 1 1 i 1 no

Figure 5. Lexical Analyzer State Table

342

