
Understanding the Bottom-Up SLR Parser

SafniKhuri Jason Williams

(408) 924-5081 (408) 996-1388

khuri@sjsumcs.sjsu. edu

Department of Mathematics

and Computer Science
Ssn Jose State University

One Washington Sqttsre

Ssn JOSI+, CA 95192-0103

ABSTRACT
This paper describes an application of one of the

important abstract concepts taught in a compiler

construction course. It demonstrates how the techniques

behind the bottom-up SLR parser can be used to perform

computer animation. The ditlerent phases of the

implementation presented are identical to the ones used by

the traditional compiler for parsing source codes written
in high-level languages. This application can be used

either to explain the different phases of the traditional

compiler, or as an illustration of the bottom-up SLR

parsing techniques applied in a non-traditional

environment,

1. INTRODUCTION

In this work we show how the techniques behind the

bottom-up SLR parser can be used to construct a computer

animatio~ Synthetics. Recall that in SL~ the S is for

simple, the L is for left-tcAght scan of tokens, and the R

is for rightmost derivation. We believe that through the

use of Syhthetic% one can unravel the workings and better

un&rstand the techniques behind bottom-up SLR parsing.

Since it provides insight into the mechanisms of these

otherwise theoretical concepts, the contents of this paper

are of interest primarily to compiler construction students.

Using visual tools to clarify abstract concepts in

computer science education is not a novel endeavor. In a

way similar to Clarke’s work [Clar93] in which he uses a

visual model to represent propositional expressions, or

Khuri’s paper ~ur86] in which binary trees are used to

represent fhmilies of first or&r recurrence relations,

Synthetics can be used in a compiler construction course

to give a visual representation of how eaeh phase of a

compiler performs individually and how it interacts with

the other phases.

This paper is of interest not only to new comers

Perrrission to copy without fee all or part of this meterial is
Oranted provided that the copies ore not made or distributed for
tirect commercial advantage, the ACM cowieht notice ad the
titla of the pubficetion and its date appear. ati notica ia 9iVen
thet copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires e fee
ar-dor epecific permission.
SIGSCE 94-3/94, Phoenix, ArfzoI@JSA

@ 1994 ACM O-89791446494_..$3.5o

to compiler construction, but to those already familiar

with the subject who wish to follow the development of a

compiler for a software application. It can therefore be

used as an extensive programming project in a software

engineering setting.

In the second section we review the bottom-up

SLR parser. Synthectica is introduced in the third section.

A full &velopment of its diflerent phases and its relation

to bottom-up SLR parsing is explained. We conclude by

discussing the benefits that can be derived from

Synthetic% especially when used as a tool for shedding

some light on the concepts behind the bottom-up SLR

parser.

2. THE BOTTOM-UP SIX PARSER

The LR parser is a shift-reduce parser that constructs a

parse tree for an input string of tokens. The construction

is conducted by starting at the bottom (the leaves labeled

with the input tokens) and moving up towards the root
node via reduction, The latter takes place when children

nodes are replaced by their corresponding left hand side

production rule. Aho et al. [Aho86] give rea~ons behind

the importance and popularity of the ILR parsing

technique.

First, this technique can be used to construct

parsers that recognize context-free languages. This is

very usefhl considering that most high-level programming

languages can be generated by context-free grammars.

Secont LR parsers are predictive descent parsers, i.e.,

they avoid the use of backtracking which is quite

expensive and slow. Inste@ they use the technique of

reduce-shift, an efficient and easy method to implement.

Thir4 grammars amenable to LR parsing are more

powerful than grammar s that can be parsed by other

predictive parsers such as the LL(l) parser. And finally,

no other left-to-right input scanner can detect a syntax

error in the input string as fast as the LR parsers.

The general model of the LR parser is reproduced

from [Aho86, page 217] in Figure 1, Basically, the model
consists of

1) An input string of tokens. These are produced by

the previous phase, the lexical analyzer, to which

339

the source program is fed. An end of string

marker $ is appended to the string of tokens.

2) A stack to store the grammar symbols and states.

3) A two-fold parsing table constructed from the

given grammar.

A) The action part &ci&s on whether the parser

should

a) shift: push the next token onto the stack

b) reduce: use the grammar production rules and

move up the parse tree,

c) accept the input string or

d) reject the input string.

B) The go to part of the table, used right after a

reduction, instructs the parser which state to

visit next.

4) An LR parsing driver program which uses the

parsing table in a lookup fashion to decide on the

next move based on the current input character,

and the current state obtained from the stack.

The success of the LR parsing technique can be

measured by the number of parser generators, such as

YACC [John75], that are commercially available.

Input

[

7-
S.

SLR
Parsing
Program

SLR Table

Figure 1. Z4e SLR Parser

In the next section we introduce an application in

computer animation which makes use of these concepts.

3. SYNTHETICA

3.1 SYNTHETICA AT WORK

Our application, called Syntheti% uses the concept of a

“synthetic camera” and is baaed on a paper written by Jim

Blinn ~lin87]. As Hill explains, “A ‘synthetic’ camera is

a way to describe a camera positioned and oriented in

three-dimensional space” ~1190, page 385].

A synthetic camera basically consists of an “eye”

that looks at the outside world through a window. A

general model is reproduced from ~1190, page 386] in

Figure 2. The only picture of the outside world the “eye”

sees is that portion of the world it captures in the window.

4=

Window in

~, the viewplane
y ,

i[\;..

Figure 2. The S’thetic Camera

A descriptive scene consists of placing objects in

the three-dimensional world coordinate system. The

scene that the “eye” views in the window is then captured

and we thus have a eel. Vaxying the scenes and taking

their pictures, we store the eels in memory for further use.

We can then reproduce these eels one after the other to
form an animation. This process is similar to a film

animatofs photographing a sequence of slightly altered

clay models (also known as claymation).

In Synthetic the animation is constructed scene

by scene, using a small number of predefine shapes and

commands. By scene we mean a still image consisting of

shapes arranged in some fashion by the user. Every scene

in Synthetics is modeled using three pre&fined geometric

shapes, called primitives. These are spheres, cubes, and

planes. Each of these primitives can be manipulated by

ditlerent transformations. Moreover, these

transformations are the only tools in Synthetics that a user

has to construct a scene.

There are three types of transformations that can

be used in Synthetic& rotation, scaling and translation.

Once a scene is definez it is captured by the camera as a

cel and placed in memory. These eels are then collected

and displayed in a sequence to create the animation.

A scene can be described by using a small set of

commands, similar to those in [Wells93]. These

commands comprise the scene descriptive language. Thus

through the use of the descriptive language the user has
the ability to create computer animation. The bottom-up

SLR parser implemented in Synthetics is used to convert

the scene &scriptive commands into animation

instructions. These concepts are illustrated in Figure 3.

The upper half of figure 3a (lines 2 to 8)

&scribes a complete scene. In or&r for Synthetics to

capture a scene as a eel, it requires a camera &finition.

Therefore, the first construct of every scene that the

compiler expects is a camera definition (see Figure 3%

340

1- /*an example file*/
2- camera { position <0,1,0.5>

3- look_at <0,0,0>

4- Ssp <0,-0.5,1>

5- }
6- #detine trapped=< object { sphere } object {cube} >
7- object{ trapped rotate< 50,0,5> scale< 0.5,1,1.3>}

8- end_scene

9-

10-camera {position <0,1,0.5>

11- look_at <0,0,0>

12- Up <0,-0.5,1>

13- }
14- object { trapped rotate< 10,0,5> translate< 5,0,0>}

15- .

.

.

end_scene

Figure3. a) Anexample$le

lines 2 and 10). The camera construct requires three

vectors: position, look_at, and up (vector v shown in

Figure 2). These vectors givethe camera’s position, where

to focus, andwhich direction is up. In Synthetica avector

isrepresented bya3-tuple of the form <x,y,z>. Once the

camera is defined a description of a scene can be made.

Primitives can be placed anywhere and in any

manner that the user decides by using translations,

rotations, and scaling. They mayalso be grouped together

to form larger more complex objects, like the “trapped”

object &fined in Figure 3a. These groupings of objects

are created using the #define directive.

When the compiler encounters a #define

directive, it creates the necessary data structure to

accommodate the associated primitives and directives.

Finally, the object directive instructs Synthetics to draw

the object on a virtual screen and to store this information

for later use by the animator. For a quantitative

&scription of the matrix operations involved in the

transformations: rotate, scale, and translate, the reader is

referred to ~1190].

As with any scene description in Synthetic

z

Figure 3. b) Result ofjirst scene

Figure 3a begins with a camera definition giving the

camera’s position: x=O, Y=l, z=O.5, the coordinates of

where the camera is linking x=O, y=O, z=O (the origin of

the world), and which direction is up x=O, Y=-O.5, =1.

Each triple represents a vector with its tail at the origin

and head at the position specified by the triplle. Line 6 of

the example file gives the definition of the first object that

will be drawn in this scene. This line instructs Synthetics

to setup a data structure in the symbol table that will hold

two objects, a sphere and a cube, each with its origin at

the same position. Nothing is displayed until line 7. This

line instructs Synthetics to draw the “trappecl” object onto

a virtual screen. Whenever the compiler encounters the

object statement outside of a #define statement it begins to

build a list of animation instructions. In this case, line 7

instructs Synthetics to draw “trapped” at the origin rotated

50 degrees about its x-axis, O &grees about its y-axis, and

5 degrees about its z-axis. Moreover, line 7 tells the

compiler to scale the “trapped” object 0.5 times along its

x-axis, 1.3 times along the z-axis, and no scaling along its

y-axis. The overall effect will shrink “trapped” along its

x-axis and stretch “trapped” along its z-axis Once these

uError
Generator

7 ‘RA

(=kq-–-i$+=+[=’
flk

I I

operations are cornpletec$ the

compiler will then dnaw “trapped”

on a virtual screen. The

information drawn on this screen is

captured in a cel for later use by the

animator. Figure 3b represents

what is captured in a cel after the

execution of line 7; the coordinate

axis are shown only as an aid to the

figure-they would not appear in the
generated eel. In the next section

we give a more detailed description

of Synthetics’s compile:r.

Figure 4. The Compiler Environment

341

3.2 SYNTEETICA’S COMPILER

There are two phases in the process of creating animation

with Synthetics the SLR parsing phase and the display

phase. The SLR parser was &veloped to convert the

scene descriptive language into information that

Synthetics’s animator can use. As is the case with the

traditional use of parsing in our application, the SLR

parser has three distinct phases: lexical analysis, syntactic

analysis, and intermediate code generation. Each of these

phases work in conjunction with one another to produce

the final animation (see Figure 4).

In Figure 4, the three phases of the compiler are

shown graphically to depict their relation with one

another. The input file (similar to our example shown in

Figure 3a) is read and broken into tokens by the lexical

analyzer. These tokens are retrieved one by one fkom the

input file, via a btier, and fed to the parser upon request.

The SLR parser, modeled in Figure 1, then begins

syntactic analysis of these tokens. During this phase the

compiler makes the appropriate semantic actions to

produce the animation instructions.

The first phase of the Synthetics compiler is

lexical analysis. Synthetics’s lexical analyzer uses a

13x19 state table reproduced in part in Figure 5, for

generating tokens and detecting errors. In the top row of

the table, “l” stands for letter, “d” stands for digit, “sp” for

space, and “p” for general punctuation. The column

labeled “Back up” informs the analyzer when to move

back one character in the input string. The underlined

states in the table represent accepting states, which signal

the acceptance of a token.

The analyzer is a basic finite state machine with

a few embellishments. It handles several special cases,

such as when to ignore white spaces and when it signifies

the end of a token, the removal of comments, the

separation of keywords and identifiers, and notification of

illegal characters. Each state of the analyzer is found by

consulting the lexical analyzer state table (see Figure 5).

Depending on the current state and current input

character the analyzer knows what action to perform:

produce a token, generate an error, or move to another

character in the buffer and change states. All input to the

lexical analyzer comes from a btier which holds a small

amount of data read from the input file.

Synthetics’s lexical analyzer uses a buffering

technique similar to double btiering ~s92]. Each time

that the parser requests a token the lexical analyzer

retrieves a string ffom the buffer and converts it to the

appropriate token. Once the lexeme is converted to a

token, it is passed to the parser as a single character. A

token is only collected from the input bufl’er on request by

the parser. Retrieving tokens is not the only function of

Synthetics’s lexical analyzer. The analyzer also saves

critical da@ such as: identifiers, vector triples, and

floating point values. These data are pushed onto the

lexeme stack shown in Figure 4, and later popped horn

this stack by the parser during a semantic action. Without

this lexeme stack any identifiers, triples, or floating point

values, would be lost when converted to a token.

Therefore, when the lexical analyzer encounters an object

name, vector triple, or floating point value, it immediately

pushes these values onto the lexeme stack thus saving

their values for later use. Using a stack for storing this

&ta accomplishes two things: conservation of memory

and increased speed. The code for Synthetics’s analyzer is

based on the procedure LEX_SCAN given in ~s92].

The second phase of the Synthetics compiler is

syntactic analysis. This is the heart of Synthetics and is

accomplished through the use of the bottom-up SLR

parser. This parser is constructed with four major

intert%ces (see Figure 1), and several small support

systems. The major interfaces are a stack a table, an

input, and an output. The support systems include a

Iexeme stack a symbol table, and an error generator (see

Figure 4). The stack for the parser is simply a state stack

similar to that for the bottom-up SLR parser discussed

earlier and in ~s92]. Synthetics’s SLR stack only holds

the states of the parser, no grammar symbols are pushed.

As described earlier in part 4 of the LR parser model, each

action is found by consulting the SLR parsing table and

the top of the SLR stack.

The SLR table for Synthetics has 68 states and

.

●

Input Back

ld {}/* =<># Sp P w

2 4 7 8 9 13 14 15 16 17 19 1 19 yes
2233333 333333no
1111111 111111 yes
5455555 555655no

1111111 111111 yes

. .

. ●

● ●

1111111 llllllno

Figure 5. Lexical Analyzer State Table

342

21 input tokens (21x68 entries). As is the case with SLR

tables in general [Aho86, Pars92], each entry in the table

represents one of four possible actions: shift, reduce,

generate an error message, or accept the string.

Synthetics’s SLR table is modeled in a fashion similar to

those in (jPars92].

The symbol table stores object data in a linked

list. These data include items such as: the object’s matrix,

the type of primitive it is, its name, and if it is a

compound object or a floating point number. Each time

that an object is &fined with an i&ntifier, the parser

performs a semantic action which adds the object’s name,

its associated matrix, and its primitive (shape) data to the

list (symbol table). The parser then uses these data

whenever a reference is made to its identifier. Each time

that a floating point number is defined the parser

performs a semantic action which adds the number’s

identifier and its value to the list (symbol table). The

parser is then able to substitute this value in all later

references to its identii3er. With these added

conveniences, complex animation files become much

easier to develop using Synthetics.

Synthetics is a single pass compiler that halts

and generates an error message when one occurs. If no

errors are encountered the parser will generate a list of

animation instructions as its output.

The output is a linked list of integer numbers and

instructions that the animator uses to produce images on

the screen. The details of how the animator uses this

information to produce the animation sequences is beyond

the scope of this paper.

In the next section, we give the reasons for which

we believe Synthetics is adequate for a compiler class.

4. CONCLUSIONS

In this paper we have illustrated the concepts behind the

bottom-up SLR parser. These concepts were used to

create our computer animation example, Synthetics. We

believe that our application is suitable for students

enrolled in a compiler class for the following reasons:

1) Hands-on experience: It offers the hands-on use of

the LR parsing technique in a novel and

interesting application.

2) Simplicity The model is comparatively easy to

understand. It consists of 3 camera actions and 3

geometric symbols.

3) Realistic: Most parsing examples in the popular

compiler textbooks are based on grammars with at

most twenty to twenty-five states. Our model has

sixty-eight states. It is far from matching the huge

number of states found in commercially available

parsers, but nevertheless, it is closer to reality and
yet not too huge for tracing through the parser

with pencil and paper.

4) Expandability The application can be expanded to

include other geometric shapes, thus obtaining

more interesting animation.

5) Inherent interest The capability to produce

animation with Synthetics is appealing. The art of

compiler construction is one that is now being

used in innovative softxvare applications such as,

LaTeX, Pegasys, and Persistence of Vision.

We conclude by observing that animation in

education, such as algorithm animation, facilitates the

understanding of abstract concepts ~093]. We have used

Synthetics as lecture material to illustrate the bottom-up

SLR parsing concepts and techniques in two compiler

design courses and have found that it aides students in

appreciating these concepts and their implementation in a

non-traditional application. Interested readers can obtain

a copy of Synthetics via gopher at sundance.sjsu. edu.

5. ACKNOWLEDGMENTS

The authors would like to thank Wes Williams from

Advent Systems Inc. and Dr. Frederick Stem from San

Jose State University for their helpfid comments.

6. REFERENCES

[M086]

~lin87]

[clar93]

~l190]

p3093]

[John75]

~ur86]

~s92]

[Wells93]

Aho, A. V., R. Sethi, and J. D. Unman,

Compilers: Principles, Techniques, and

Tools. Mass.: Addison-Wesley, 1986.

Blinn, J. “Nested Transformations and

Blobby Man.” IEEE Computer Graphics

&Applications. October 1987:59-65.

Clarke, M. C. “PossilAe Models

Diagrams: A visual alternative to truth
tables.” ACM SIGSCE Bulletin. Vol.

25(l), February 1993:232-236.

Hill, F. S. Computer Grqphzcs. New

York Macmillan, 1990.

Ho C. F., Morgan C. L. & Simon. “An

Advanced Classroom Computing

Environment and its AWlications. ”

ACM SIGSCE Bulletin. Vol. 25(l),

February 1993:228-231.

Johnson, S. C. “YACC--yet another

compiler-compiler.” C.S. Tech. Report

no. 32., Murray Hill, N.J., Bell

Telephone Laboratories, 1975.

Khuri, S. “Counting Nodes in Binary

Trees.” ACM SIGCSE Bulletin. Vol.

18(1), February 1986:182-185.

Parsons, T. W. Introduction to compiler

construction. New York Computer

Science Press, 1992.

Wells, Drew and Cris Young. Ray

Tracing Creations: Generate 3-D
Photorealistic Images on t,ke PC. CA

Waite Group Press, 1993.

343

