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Abstract: This paper introduces a geometric representa-
tion that can be applied (o illustrate (he complexity of some
combinatorial optimization problems. [n this work, it is ap-
plied to the 0/1 knapsack problem and to a special case of
a scheduling problem. This representation gives insight into

the difference between tractable and intractable problems. [t

can therefore be used as a stepping stone to compare poly-
nomial (P) and nondeterw”nistic polynomial (NP) problems,
before venturing into the world of NP-completeness.

1 INTRODUCTION

Whether teaching a course on algorithms as suggested

in [ACM68], or similar to CS2 in [ACM79], or C02

in [GT86], or more recently in [Tur91 ], we are al ways faced

with a big challenge when the task of explaining the qualita-

tive increase in computation in going from a P running time

atgorithm to an NP. The paper uses a geometric representa-

tion of the knapsack problem to explicate this increase. Un-

derstanding this geometric representation should make the

formal definition of the classes of tractable and intractable

problems much easier to comprehend.

The rational and integer knapsack problems are defined in

the first section. Then an example and a feasible solution

are given. The geometric representation of the solution is

then introduced and from that representation we derive the

polynomial time algorithm that yields the optimum solution

to the rational knapsack problem. From [he same example

and its geometric representation we show how much more

complicated is the integer problem than its ration,al counter-

part.

As mentioned earlier, the geometric representation and its

anatysis will prepare the reader to plunge into the formal

definition and study of NP problems.
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The geometric representation can be used in other com-

binatorial optimization problems. For example, we end the

article by using it for the maximum profit scheduling problem

with equal deadlines.

2 THE KNAPSACK PROBLEM

In this problem, we have a knapsack of capacity M and n

different objects. Each object has a weight Wi and a profit Pi.

M, wi, and pi for i = 1,2, ..., n are positive integers, We

would like to fill the knapsack with objects that will yield the

maximum profit.

If we allow a fraction of an object to be placed in the

knapsack then the problem is known as the Rational Knapsack

Problem (RatKnap). On the other hand, fractions of objects

are not allowed to be put into the knapsack in the 0/1, or
Binary Knapsack Problem (0/lKnap).

The following is a formal definition of the knapsack prob-

lem in which we make use of Stinson’s terminology for com-

binatorial optimization problems [Sti87].

Problem instance: Positive integers: WI, ~, . . .

P~, E,. ... pn; and M.

Feasible solution: A vector Z = (zl, ZZ, . . . . z~,

El<i<. ‘i’* S ‘t where

Wn;

such that

Zi e [0, 1], for the RatKnap, (thus allowing fractions of

objects to be chosen); or

Zt ~ {O, 1}, for the O/l Knap, (i.e., each object is either

chosen ~i = 1, or not Zi = O)

Objective function: A profit P(i) = xl <i<n Xipi, where

Z = (xl, X2, . . . ,Zn) is a feasible vect~r~

Optimal solution: Maximum-profit feasible solution.

Martello, et al., cite three reasons for which the O/lKnap

is one of the most studied discrete programming prob-
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lems [MT90]. It is the simplest integer linear programming

problem. It can often be considered as a subproblem to more

complex ones. And finally, it is a very practical problem

that appears in many situations. We would like to add, that

atthough its constraining parameter (the knapsack capacity)

is different from the optimization parameter (the profit), and

thus making it a difficult problem to solve, it is an easy prob-
lem to comprehend. It is thus a good representative of the

class of problems that are very easy to grasp, but very difficult

to solve. In other words, it is a good introductory problem to

the world of NP-complete problems.

We proceed by introducing a small example which we

make use of in the next section to illustrate the geometric

representation.

EXAMPLE 1

The following is an instance of the Knapsack Problem with

six objects and a knapsack capacity of twenty:

‘w] = 1, W2 = 2, W3 = 5,

W4 = 8, Ws = 12, wh = 14; and

pl = 1, gv =6, p3 = 10,
p4 = 12, p~ = 15, p6 = 20.

The vector (1, O, 1, 1, 0, ~) represents a feasible solution

for the RatKnap since:

Z:=, Z,W,=1+5+8+$14<20.
The profit associated with this solution is given by:

D:=, P*W*=1+10+12+; ”20.
That is P = 31.57.

Likewise, the vector (1, 1, 1, 1,0, O) represents a feasible

solution for the O/lKnap with a profit = 29.

3 GEOMETRIC REPRESENTATION

In the rectangular coordinate system given in Figure 1, the

horizontal P-axis represents the cumulative profits and the

vertical W-axis represents the cumulative weights. The

straight line parallel to the P-axis intersecting the W-axis at

20 represents the knapsack capacity of Example 1. Each cho-

sen object in the feasible solution for the RatKnap problem in

Example 1 can be plotted in the PW-coordinate system. The

first, third, fourth, objects, and $th of the sixth object (which

constitute the solution to the RatKnap problem of Example

1), are represented by the points A, B, C, and Din Figure 1.

The coordinates of A are PI and WI, i.e. 1 and 1. The point B
has coordinates pi + P3 = 11 and WI + W3 = 6. while the Co-

ordinates of C are PI +P3 +P4 = 23 and WI + W3 -t W4 = 14,

and those of D are pi +p3 +P4+ $ .p6 = 31.57 and

WI + W3+W4+ ~. W6=20.
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Figure 1: Geometric representation for the

solution given in Example 1.

In Figure 1, line segments are formed by jc~ining O to A,
A to B, B to C and finally C to D. We remark that the slope

of line segment OA is fi and that of line segment AB is ~.

Similarly, the slope of hne segment BC is &, while the slope

of line segment CD is ~.
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Figure 2: Geometric representation for the

RatKnap.

The geometric representation and the above observation

provide us with the framework for an algorithm for the RatK-
nap problem. Since we want to maximize the cumulative

profit, we would like to reach the line representing the knap-

sack capacity as slowly as possible. We thus want to choose

the objects that result into line segments that are ordered

from “flattest” to “steepest”. See Figure 2. Due to the one
to one correspondence between the chosen objects and the

slopes of their corresponding line segments, ordering line
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tractable and intractable problems.
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