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Abstract: This paper introduces a geometric representa-
tion that can be applied to illustrate the complexity of some
combinatorial optimization problems. In this work, it is ap-
plied to the 0/1 knapsack problem and to a special case of
a scheduling problem. This representation gives insight into
the difference between tractable and intractable problems. It
can therefore be used as a stepping stone to compare poly-
nomial (P) and nondeterministic polynomial (NP) problems,
before venturing into the world of NP-completeness.

1 INTRODUCTION

Whether teaching a course on algorithms as suggested
in JACM68], or similar to CS2 in [ACM79], or CO2
in [GT86], or more recently in [Tur91], we are always faced
with a big challenge when the task of explaining the qualita-
tive increase in computation in going from a P running time
algorithm to an NP. The paper uses a geometric representa-
tion of the knapsack problem to explicate this increase. Un-
derstanding this geometric representation should make the
formal definition of the classes of tractable and intractable
problems much easier to comprehend.

The rational and integer knapsack problems are defined in
the first section. Then an example and a feasible solution
are given. The geometric representation of the solution is
then introduced and from that representation we derive the
polynomial time algorithm that yields the optimum solution
to the rational knapsack problem. From the same example
and its geometric representation we show how much more
complicated is the integer problem than its rational counter-
part.

As mentioned earlier, the geometric representation and its
analysis will prepare the reader to plunge into the formal
definition and study of NP problems.
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The geometric representation can be used in other com-
binatorial optimization problems. For example, we end the
article by using it for the maximum profit scheduling problem
with equal deadlines.

2 THE KNAPSACK PROBLEM

In this problem, we have a knapsack of capacity M and n
different objects. Each object has a weight w; and a profit p;.
M, w;,and p; for i = 1,2, ..., n are positive integers. We
would like to fill the knapsack with objects that will yield the
maximum profit.

If we allow a fraction of an object to be placed in the
knapsack then the problem is known as the Rational Knapsack
Problem (RatKnap). On the other hand, fractions of objects
are not allowed to be put into the knapsack in the 0/1, or
Binary Knapsack Problem (0/1Knap).

The following is a formal definition of the knapsack prob-
lem in which we make use of Stinson’s terminology for com-
binatorial optimization problems [Sti87].

Problem instance: Positive integers: wy, wy, ...
PlaP27~-~,PnlandM.

y Wn;

Feasible solution: A vector £ = (z1, z2, .
Ligicn WiTy < M, where:

..,y Zn) such that

z; € [0, 1], for the RatKnap, (thus allowing fractions of
objects to be chosen); or

z; € {0, 1}, for the 0/1Knap, (i.e., each object is either
chosen z; = 1,ornotz; = 0)

Objective function: A profit P(Z) = ¥, ¢, <, *:pi, Where
£ = (z1,22,...,%,) is a feasible vector.

Optimal solution: Maximum-profit feasible solution.

Martello, et al., cite three reasons for which the 0/1Knap
is one of the most studied discrete programming prob-
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Figure 4: Different solutions of Example 1
for the 0/1Knap case.

segments from flattest to steepest (i.e., in increasing order of
their slopes: -‘;{L) is equivalent to considering the objects in
decreasing order of 5— The latter is the well known greedy
algorithm which always yields an optimal knapsack for the
RatKnap problem [Sti87].

STEPS OF THE GREEDY ALGORITHM

Put the objects in the knapsack according to the decreasing
order of profit/weight, updating at each stage the cumulative
weight, Stop if either the knapsack is full (usually by allowing
a fraction of the last considered object) or if all objects were
chosen without exceeding the capacity of the knapsack. O

The set of slopes is {1,1,1,%,2, %} and applying the

algorithm, we consider the objectsinthe order: 2,3,4,6,5, 1.
The solution is given by the vector (0, 1, 1, 1, 0, &) with

to solve the 0/1Knap problem. But what method will solve
it? Afterall, since the greedy technique does not work, the
first two choices in Example of Section 2 are suspect. A
solid class discussion yields the result that every one of the 6!
paths must be examined, the optimum solution being the path
whose endpoint is at or below 20 on the W-axis and farthest
to the right on the P-axis. We thus conclude that solving
the 0/1Knap problem requires substantially more enumera-
tion than the RatKnap problem. Indeed, as we all know, the
0/1Knap problem is an NP-complete problem (it is in NP and
the 3-Exact cover problem, which is NP-complete, can be
polynomially transformed to the 0/1Knap problem [PS82]).

The geometric representation can be used to model other
combinatorial problems such as the maximum profit schedul-
ing problem with equal deadlines.

4 THE MAXIMUM PROFIT SCHEDULING
PROBLEM

The maximum profit scheduling problem is a task scheduling
problem. A problem instance of the general scheduling prob-
lem consists of a set T'of n tasks, each of which hasalength [;,
the time it takes for its execution, a deadline d; before which
the task must be scheduled and its execution completed, and
a profit p;. Scheduling the tasks of a subset S of T consists
in finding the starting time of each task in S, such that at
most one task at a time is performed and such that each task
finishes before its deadline. Here we study the case where
all jobs have identical deadlines d; = d, = ... =d, = D.
The following is a formal definition of the maximum profit
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tractable and intractable problems.
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