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Abstract
Motivation: Database searching algorithms for proteins
use scoring matrices based on average protein properties,
and thus are dominated by globular proteins. However,
since transmembrane regions of a protein are in a
distinctly different environment than globular proteins,
one would expect generalized substitution matrices to be
inappropriate for transmembrane regions.
Results: We present the PHAT (predicted hydrophobic
and transmembrane) matrix, which significantly outper-
forms generalized matrices and a previously published
transmembrane matrix in searches with transmembrane
queries. We conclude that a better matrix can be con-
structed by using background frequencies characteristic
of the twilight zone, where low-scoring true positives have
scores indistinguishable from high-scoring false positives,
rather than the amino acid frequencies of the database.
The PHAT matrix may help improve the accuracy of
sequence alignments and evolutionary trees of membrane
proteins.
Availability: http://www.blocks.fhcrc.org/∼pauline
Contact: steveh@muller.fhcrc.org

Introduction
Given a protein sequence, database searching for ho-
mologues can be used to infer the protein’s function
and structure. Database searching and other alignment
algorithms for proteins use an amino acid substitution
matrix to score protein alignments. The matrix contains
log-likelihood scores that reflect how likely one amino
acid is substituted for another; a positive score indicates
that the substitution is favored over a chance event, a
negative score indicates the substitution is less likely
to occur than predicted by chance alone. Typically,
amino acids with similar physiochemical properties have
positive scores while amino acids that are unlike each
other have negative scores. A substitution score for amino
acid i to j can be calculated from alignment data by:

∗To whom correspondence should be addressed.

si j = λ−1 ln(qi j/(pi p j )) whereλ is a scaling factor,qi j ’s
are target or observed frequencies of amino acid pairs
taken from alignments andpi ’s are the background fre-
quencies (Altschul, 1991). The widespread use of database
searching and other protein alignment tools in modern
biology underscores the importance of using substitution
matrices that most accurately resemble biological reality.

The point accepted mutation (PAM) and blocks sub-
stitution matrices (BLOSUM) are the two most popular
matrix series (Dayhoff, 1978; Henikoff and Henikoff,
1992). The PAM matrix is computed by counting muta-
tions between closely related sequences and an inferred
common ancestral sequence to obtain PAM 1 target
frequencies. The PAM 1 scores are extrapolated by
matrix multiplication to get a matrix series corresponding
to evolutionary distance. The PAM 1 matrix estimates
scores for accepting one mutation per 100 positions; the
PAM 170 is constructed by multiplying PAM 1 by itself
170 times and estimates 170 accepted point mutations per
100 positions. In 1992, Jones and colleagues modified
the collection of PAM 1 counts (Joneset al., 1992). They
automated the process by counting substitutions between
pairs of highly similar sequences from a protein sequence
database to obtain target frequencies (qi j ’s). Background
frequencies (pi ’s) were taken from the database and the
JTT PAM series was computed.

Whereas the PAM model is based on closely related
sequences, the BLOSUM model is based on blocks,
which are multiple alignments of distantly related but
conserved regions (Henikoff and Henikoff, 1991). The
target frequencies (qi j ’s) are calculated by counting
the substitutions observed in blocks. Instead of using
background frequencies from a protein database, thepi ’s
are calculated as the marginal frequencies:pi = � j qi j .
Closely related sequences are downweighted by cluster-
ing based on the percentage of identical residues. The
BLOSUM series is constructed by varying this cluster
percentage. For example, BLOSUM 62 is derived from
counts between clusters of sequence segments that are
less than 62% identical.
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Matrices based on different models that have similar
relative entropies can be compared to each other (Altschul,
1991). The relative entropy (H ) of a matrix is defined as
the average information per aligned residue pair and is
calculated by: H = �i� j qi j si j . By comparing BLOSUM
matrices to other matrices with similar relative entropy, it
was shown that the BLOSUM series performed as well
as or better than other published matrices (Pearson, 1995;
Henikoff and Henikoff, 1993).

For transmembrane proteins, the hydrophobic environ-
ment for amino acids located in the lipid bilayer is very
different from the aqueous cytosolic and extracellular
compartments. Thus a matrix specialized for transmem-
brane regions should work better than matrices which
have been generalized for all proteins.

In this paper, we describe a matrix built from predicted
hydrophobic and transmembrane (PHAT) regions of
the Blocks database (Henikoff et al., 1999). We demon-
strate that in searches on queries consisting of putative
transmembrane regions, the PHAT matrix significantly
outperforms both the generalized matrices, BLOSUM
and JTT PAM, as well as the JTT transmembrane matrix
(Jones et al., 1994). When nontransmembrane regions
were included in the query, the PHAT matrix performed
better than most of the generalized matrices. We attribute
the success of the PHAT matrix to using background
frequencies characteristic of the twilight zone, rather than
background frequencies of the entire database. The PHAT
matrix may be useful for structural alignments and
phylogenetic trees of membrane proteins.

Methods
Matrix construction
In order to obtain target (qi j ) and background frequencies
(pi ) for a transmembrane matrix series, membrane pre-
diction methods were applied to the Blocks + database
(Henikoff et al., 1999). Block families were submitted
to PHDhtm, a prediction program that achieves 86%
transmembrane prediction accuracy per residue (Rost et
al., 1996). PHDhtm can accept multiple alignments but
needs the context of neighboring residues to predict trans-
membrane topology. Therefore blocks for a given family
were linked with the sequence of the intervening segments
from a representative sequence of that family (Henikoff
and Henikoff, 1997) to reconstruct a multiple alignment
that could be submitted to PHDhtm. Out of 2935 families,
598 were predicted to contain transmembrane segments
(20.3%); out of 8909 blocks, 844 had transmembrane
segments (9%). Blocks lacking transmembrane regions
were discarded, and nontransmembrane regions were
removed from blocks containing putative transmembrane
regions. Blocks containing more than one predicted
transmembrane region were split. The resulting blocks

containing only predicted transmembrane regions were
clustered, and matrices were constructed by the BLOSUM
method (Henikoff and Henikoff, 1992). The resulting
matrix series was termed PHDhtm.

A second matrix series was built from hydrophobic
blocks. Persson and Argos obtained propensity values
of amino acids for transmembrane regions (Persson and
Argos, 1994). When eight or more consecutive amino
acids have an average transmembrane propensity value
exceeding 1.23, the sequence is predicted to be the core
of a transmembrane segment. These values were used
to predict blocks that were entirely hydrophobic. The
average transmembrane propensity value of an entire
block was calculated. If the block’s value exceeded 1.23,
the entire block was used to construct a hydrophobic
matrix. 514 of the 8909 blocks passed this criterion, 383 of
which were also identified as transmembrane by PHDhtm.
These hydrophobic blocks were clustered by percentage
identity to construct the Persson–Argos matrix series.

Using the target frequencies from the PHDhtm matrix
and background frequencies from the Persson–Argos
matrix with corresponding relative entropy, scores
for a third transmembrane matrix were calculated by
sPHAT

i j = λ−1 ln(qPHDhtm
i j /(pP−A

i pP−A
j )). We termed this

matrix series PHAT because it was built from predicted
hydrophobic and transmembrane regions of blocks.

Tested matrices
Matrices of similar relative entropies were compared, we
compared BLOSUM 55 (H = 0.5637), JTT PAM 170
(Jones et al., 1992) (H = 0.5655), and the JTT
transmembrane matrix 170 (H = 0.5655) with our
own matrices PHDhtm 80 (H = 0.5550) and Persson–
Argos 80 (H = 0.5725). The PHAT 75/73 matrix was
constructed from PHDhtm 75 (H = 0.5007) target
values and Persson–Argos 73 (H = 0.5038) background
frequencies. PHAT 75/73 has H = 0.5605, a relative
entropy similar to the other matrices, so can be used for
comparison. Although BLOSUM 62 has a higher relative
entropy (H = 0.6979), we also used it as a test matrix
since it is the default matrix in BLASTP searches.

Test set
To test the matrices, 100 sequences from 74 different
Prosite (release 14.0) (Hofmann et al., 1999) protein
families documented as transmembrane were used as
queries. Sequences closest to the consensus sequence for
the blocks (Henikoff and Henikoff, 1997) corresponding
to these Prosite families resulted in 74 of the 100 queries.
Twenty six of the 74 Prosite families listed false negative
sequences. From each of these, one false negative se-
quence was randomly chosen to be used as a query to give
a total of 100 queries. The percentage of transmembrane
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residues in a query protein ranged from 2 to 82%; the
number of predicted segments from 1 to 14.

To restrict the database search to transmembrane
segments, queries were filtered by HMMTOP, a trans-
membrane prediction method based on a hidden Markov
model (Tusnady and Simon, 1998). Nontransmembrane
segments were replaced by the character ‘X’ . X-ed out
sequences were subjected to the tests described below.

Database searching
Ungapped BLASTP (v. 1.4.7) searches (Altschul et al.,
1990) were executed on the X-ed out sequences containing
only putative transmembrane regions to search against
the SWISS-PROT database (release number 36). Reported
sequences (E < 1) were compared with the sequences
listed in the same Prosite family.

To carry out searches on the entire sequence of trans-
membrane protein, we employed a bipartite scheme,
as introduced by Jones et al. (1994). In their bipartite
scheme, a generalized matrix is used on the nontransmem-
brane regions and a test matrix (either transmembrane
or generalized) on the transmembrane regions. SWAT
(http://bozeman.mbt.washington.edu), a Smith–Waterman
alignment tool that can accept profiles as input, was
used for testing the entire sequence. Nontransmembrane
regions, as predicted by HMMTOP, were given BLO-
SUM 62 scores and putative transmembrane regions were
given values from the test matrix. The resulting profile
was searched against the SWISS-PROT database (release
number 36).

Matrix evaluation
In order to assess the performance of a matrix, the equiv-
alence number was calculated for each search (Pearson,
1995). The equivalence number is the rank at which the
number of false positives equals false negatives. A lower
equivalence number indicates better performance. To test
whether two matrices perform differently we used the sign
rank test as described by Pearson (1995). Z -scores and
corresponding p-values for this test are reported.

Results
Matrices based solely on transmembrane regions
Jones et al. (1994) built a matrix for transmembrane
proteins using the PAM model in order to investigate the
evolutionary constraints imposed by the lipid environ-
ment. Counts were taken from 3155 pairwise alignments
of documented transmembrane segments. The matrix
showed hydrophobic residues to be variable and polar
amino acids to be highly conserved. Jones et al. proposed
using a bipartite scheme for database searching. Using a
general matrix for nontransmembrane regions and their
transmembrane matrix for the transmembrane regions, the

Fig. 1. The lower half of the matrix is the PHDhtm 80 matrix
(H = 0.5550). The upper half of the matrix gives the difference
between PHDhtm 80 and JTT transmembrane 170 (H = 0.5599).

transmembrane protein bacteriorhodopsin was searched
against membrane proteins extracted from the SWISS-
PROT database (Bairoch and Apweiler, 1999). Higher
z-scores were observed for two rhodopsin sequences with
the bipartite scheme using the JTT transmembrane matrix
compared to using only the generalized matrix.

Since the search by Jones et al. was limited to a trans-
membrane protein database rather than the entire database,
we tested the JTT transmembrane matrix against the entire
SWISS-PROT database, a more realistic situation. Using
a large data set of transmembrane sequences, we found
that the JTT transmembrane matrix performed poorly
compared with the generalized matrices when searching
against the entire SWISS-PROT database (Table 1).

The PHDhtm matrix, like the JTT transmembrane
matrix, was built from transmembrane segments. Figure 1
shows the differences between the JTT transmembrane
and PHDhtm matrices. The PHDhtm matrix performs
similarly to the JTT transmembrane matrix for database
searching. Both these matrices perform worse than the
generalized matrices (Table 1).

Effect of background frequencies
Surprisingly, the Persson–Argos matrix based on hy-
drophobic blocks performed similarly to BLOSUM 55
and better than the PHDhtm matrix, which was built from
predicted transmembrane regions (Table 1). A comparison
of the Persson–Argos matrix with the PHDhtm matrix
show that while many of the scores are similar, the largest
differences are observed for the charged amino acids (K,
R, H, D, E) (Figure 2). We noticed that the PHDhtm
background frequencies for the charged amino acids were
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Table 1. Performance results for ungapped BLASTP (v. 1.4.7) searches of predicted transmembrane regions of 100 protein sequences against the SWISS-
PROT36 database. All matrices tested had similar relative entropies. Z -scores and p-values are calculated as described by Pearson (1995). See Methods for
details

Test matrix No. of queries No. of queries No. of queries for which z-score p-value
BLOSUM 55 better test matrix better matrices performed the same

JTT 33 10 57 3.51 0.0002
Transmem-
brane 170
PHDhtm 80 29 12 59 2.65 0.0040
Persson– 16 23 61 −1.12 0.63
Argos 80

C S T P A G N D E Q H R K M I L V F Y W

2 -2 -1 -2 -1 -1 -1 2 0 -1 0 -1 0 -1 -1 -1 0 -2 0 1 C

0 -1 1 0 0 1 1 1 0 0 2 0 0 0 0 0 0 0 0 S

C 11 1 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 T

S 0 6 -1 3 2 1 2 1 1 2 2 -4 2 0 0 1 1 1 1 P

T -1 1 6 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 A

P-10 -2 -3 12 0 0 0 0 0 1 1 -3 0 1 0 1 1 1 0 G

A 0 2 1 -1 4 -2 0 1 -1 0 1 -1 0 0 1 1 1 0 1 N

G -3 1 -1 -2 1 8 -2 -1 0 1 4 1 0 0 0 0 0 0 2 D

N -2 2 0 -3 -1 -1 9 -3 0 -1 4 2 0 0 0 0 0 -1 1 E

D -3 -2 -3 -2 -4 -1 3 13 -2 -1 1 0 -1 0 0 -1 0 -1 -2 Q

E -5 0 -2 -2 -3 -2 2 8 13 -3 3 3 0 0 1 0 -1 0 -2 H

Q -4 0 -1 -1 -2 -1 2 3 3 10 -3 1 -1 0 -1 0 -1 1 0 R

H -5 -1 -2 -3 -2 -3 5 2 1 3 11 -5 -2 -2 -2 0 -2 -2 0 K

R -6 -2 -3 -3 -3 -3 0 0 2 3 2 11 1 1 1 0 1 1 0 M

K -5 -1 -2 -3 -3 -3 2 2 4 5 3 7 10 0 0 0 1 0 0 I

M -2 -2 0 -4 -1 -2 -3 -5 -4 -1 -4 -5 -4 6 0 1 0 0 0 L

I -4 -3 -1 -5 -1 -3 -4 -5 -5 -3 -5 -5 -6 2 4 0 0 0 0 V

L -2 -3 -1 -5 -1 -3 -2 -5 -4 -2 -3 -5 -5 2 1 3 1 0 0 F

V -1 -2 0 -4 1 -2 -3 -5 -4 -3 -4 -5 -4 1 2 1 3 1 -1 Y

F -2 -2 -2 -5 -2 -2 -1 -4 -4 -2 -1 -6 -5 0 -1 0 -2 6 -1 W

Y -2 -3 -3 -5 -4 -3 0 -3 -3 -1 3 -4 -3 -3 -4 -3 -4 3 10

W -2 -5 -6 -4 -4 -5 -3 -4 -3 1 -3 -4 -2 -3 -4 -3 -4 1 0 13

C S T P A G N D E Q H R K M I L V F Y W

Fig. 2. The lower half of the matrix is Persson–Argos 80 (H =
0.5725). The upper half of the matrix gives the differences between
Persson–Argos 80 and PHDhtm 80 (H = 0.5725). Most of the
difference values are 0; charged amino acids account for most of
the large non-zero difference values (bold).

lower than the Persson–Argos background frequencies,
and both PHDhtm and Persson–Argos background fre-
quencies for the charged amino acids were lower than
the SWISS-PROT database (Table 2). This suggested
to us that the differences in performance were due to
differences in background frequencies.

Database searching requires not only identification of
related sequences (sensitivity) but elimination of false
positives (selectivity). The twilight zone is the region
where high-scoring false positives overlap with related
sequences. An improvement in database searching implies
that there is better separation of false positives and
related sequences in the twilight zone. We suspected the
twilight zone of a search with a transmembrane query
consisted of sequences with hydrophobic patches as well
as transmembrane regions. We reasoned the Persson–

Fig. 3. The PHAT 75/73 matrix (H = 0.5605) constructed from
PHDhtm 75 (H = 0.5007) target values and Persson–Argos 73
background frequencies (H = 0.5038). The PHAT 75/73 matrix
was used for evaluating database searching performance.

Argos matrix outperformed the PHDhtm matrix (Table 1)
because its background frequencies resembled the twilight
zone, and hence, better separation could occur. Then
to build a matrix for searching with a transmembrane
region, we surmised that the scores should be calculated
with target frequencies from transmembrane regions and
background frequencies from hydrophobic regions. We
built the PHAT matrix series using target frequencies from
the PHDhtm matrices and background frequencies from
the Persson–Argos matrix with corresponding relative
entropy. The PHAT 75/73 matrix (Figure 3) with target
frequencies from PHDhtm 75 and background frequencies
from Persson–Argos 73 was subjected to tests described
below.

Performance in searching
BLASTP database search results on transmembrane
regions for the PHAT matrix were compared with the
other matrices. The PHAT matrix performs significantly
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Table 2. Amino acid composition (pi s) of the matrices. As expected, the percentage of the hydrophobic residues is higher in the PHDhtm and Persson–Argos
matrices compared to BLOSUM and the SWISS-PROT database. Major differences in amino acid composition for the charged amino acids (K, R, H, D, E)
are observed between Persson–Argos and PHDhtm

Matrix Ala Arg Asn Asp Cys Gln Glu Gly His lle

Persson– 8.3 3.7 2.3 2.0 3.2 1.5 1.5 5.4 4.5 10
Argos
PHDhtm 8.8 2.1 2.2 1.4 2.6 1.2 1.0 5.7 1.1 11
SWISS-PROT 7.6 5.1 4.5 5.3 1.7 4.0 6.4 6.8 2.2 5.8
BLOSUM 62 7.4 5.2 4.5 5.4 2.5 3.4 5.4 7.4 2.6 6.8

Matrix Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Persson– 14 2.6 3.6 8.1 3.3 6.5 6.3 2.5 3.8 10
Argos
PHDhtm 16 .9 4.1 9.3 3.2 6.5 5.3 1.9 4.7 11
SWISS-PROT 9.4 5.9 2.4 4.1 4.9 7.1 5.7 1.2 3.2 6.6
BLOSUM 62 9.9 5.8 2.8 4.7 3.9 5.7 5.1 1.3 3.2 7.3

better than the generalized matrices BLOSUM and JTT
PAM, as well as the JTT transmembrane matrix for
BLAST searches on queries consisting of transmembrane
regions (Table 3). BLOSUM 55 was used in addition to
BLOSUM 62 because it has a relative entropy similar to
the transmembrane matrix. To show that the better perfor-
mance of the PHAT matrix is independent of the search
algorithm used, SWAT was used with the aforementioned
matrices on queries consisting of only transmembrane
regions. As expected, similar results were obtained (data
not shown).

Blocks containing the test queries were represented
in the data set used to build the PHAT matrix. To show
that the success of the PHAT matrix was not due to
overrepresentation of these blocks, blocks from families
containing a test query were removed from the data set
and the PHAT matrix reconstructed. Database searching
using these reconstructed PHAT matrices gave similar
results to the original PHAT matrix (data not shown). We
also constructed a matrix from PHDhtm target values and
SWISS-PROT database background frequencies. This
matrix performed poorly in the BLAST searches (data not
shown), supporting the notion that the twilight zone of the
search consists of hydrophobic patches and transmem-
brane regions rather than a sample that is compositionally
similar to the entire SWISS-PROT database.

Jones et al. (1994) introduced a bipartite scheme for
transmembrane proteins by using generalized matrix val-
ues on nontransmembrane regions and a transmembrane
matrix on the transmembrane. We applied this strategy
using the SWAT program. When nontransmembrane
regions were included in the search, performance was

increased overall for all matrices, thereby decreasing the
differences in performance between matrices (Table 4).
The PHAT matrix still performed significantly better
than BLOSUM 62 and the JTT transmembrane matrix,
albeit with lower z-scores. Using the bipartite scheme, the
PHAT matrix performed among the best of the matrices.

Protein sequence alignment
The Smith–Waterman alignments given by the gener-
alized matrices were usually identical with that of the
bipartite BLOSUM/PHAT matrix scheme. However, we
noticed several examples in which the alignment resulting
from the bipartite search using the PHAT matrix was
more likely to be true than the alignment given by the
generalized matrices. One example is in the heme copper
oxidase family (PS00077), to which NORB PSEAE and
COX1 DIDMA both belong. It appears the alignment
given by the BLOSUM matrices is incorrect since the
Prosite patterns do not align (Figure 4). The alignment
given by the bipartite scheme using the PHAT matrix has
a lower Smith–Waterman z-value and a shorter alignment
compared to the BLOSUM alignment. However, it is
apparent that the ‘HH’ motif for COX1 DIDMA and
NORB PSEAE are aligned.

Since these data suggest that the PHAT matrix may
perform better for aligning transmembrane proteins, we
tested the ability of the PHAT matrix to align transmem-
brane proteins whose structures are known. We tested
pairs of transmembrane proteins with known structures:
the photosynthetic reaction center L and cytochrome c
oxidase. Identical alignments were obtained from the
bipartite scheme using BLOSUM 62 on the nontrans-
membrane regions and either BLOSUM 62, BLOSUM 55
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Table 3. PHAT performance results for ungapped BLASTP (v. 1.4.7) searches of the transmembrane regions of 100 protein sequences against SWISS-PROT 36.
All matrices tested had similar relative entropies (H ≈ 0.56) except for BLOSUM 62 (H = 0.70)

Test matrix No. of queries No. of No. of z-score p-value
PHAT 75/73 queries queries for
better test which

matrix matrices
better performed

the same

BLOSUM 62 36 6 58 4.63 < 0.0001
BLOSUM 55 35 5 60 4.74 < 0.0001
JTT PAM 170 39 3 58 5.56 < 0.0001
JTT Trans- 44 0 56 6.63 < 0.0001
membrane 170

Table 4. SWAT results using the bipartite scheme. BLOSUM 62 values were used on nontransmembrane regions. Values from the test matrix were used for
transmembrane regions predicted by HMMTOP. Comparison tests were done as described in Table 1

Test matrix No. of queries No. of No. of z-score p-value
PHAT 75/73 queries queries for
better test matrix which

better matrices
performed
the same

BLOSUM 62 15 4 81 2.52 0.0059
BLOSUM 55 8 11 81 −0.69 0.7451
JTT PAM 170 15 7 78 1.71 0.0436
JTT Transmem- 19 4 77 3.13 0.0009
brane 170

or the PHAT 75/73 matrix on the transmembrane regions.
From this small data set, we are unable to determine
whether using the bipartite scheme with the PHAT matrix
gives better alignments overall.

Discussion
The PHAT matrix presented here performs significantly
better in database searches than generalized matrices and
the JTT transmembrane matrix on queries consisting of
transmembrane regions. When nontransmembrane re-
gions were included in the queries and a bipartite scheme
employed, the disparity between searching performance
using different matrices on transmembrane regions was
reduced. An explanation for these results is that trans-
membrane regions may not contribute significantly to the
score. This could be because transmembrane regions are
not well conserved in comparison with nontransmem-
brane regions and/or they represent a small fraction of the
region of alignment. Using the PHAT matrix specialized
for transmembrane regions improves database searching,
and the PHAT matrix may improve alignment of distantly
related transmembrane proteins. The PHAT matrix may

also be useful for pairwise and multiple alignment ap-
plications such as evolutionary trees. However, there is
insufficient data to test this because too few homologous
transmembrane protein structures are available.

A key step in constructing the PHAT matrix series was
to use target frequencies of transmembrane regions and
background frequencies of hydrophobic patches. As can
be seen in Table 2, the background frequencies between
Persson–Argos and PHDhtm are similar except for the
charged amino acids. Without replacing the background
frequencies, the substitution scores for conservation
of charged amino acids are extremely high. This may
increase the possibility of a spurious match with a hy-
drophobic patch that may have a composition similar to
the transmembrane segment, and by chance have charged
amino acids in the appropriate positions. When matching
a transmembrane segment with all other sequences in
the database, there is little chance that the sequence
will match with sequences that have ‘normal’ amino
acid frequencies of a generalized protein because the
query itself has an abnormal amino acid content of more
hydrophobic amino acids. The twilight zone for searching
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(a)

NORB_PSEAE|Q59647 NITRIC-OXIDE REDUCTASE SUBUNIT B

Length: 466 Score: 120 z: 7.94 E: 1.54

Subject 91 PKLAWILFWVFAAAGV--LTILGYLLVPYAGLARLTGNELWPTMGREFLE 138

Query 228 PILYQHLFWFFGHPEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVW-A 276

Subject 139 QPTISKAGIVIVALGFLFNVGMTV-LRGRKTAISMVLMTGLIGLALLFLF 187

Query 277 MMSIGFLGFIVWA-HHMFTVGLDVDTRAYFTSATMIIAIP-TGVKVFSWL 324

Subject 188 SFYNPENLTRDKFYWWWVVHLWVEG-VWELIMGAILAFVLVK----ITGV 232

Query 325 ATLHGGNIK------WSPAMLWALGFIFLFTIGGLTGIVLANSSLDIVLH 368

Subject 233 DREVIEKWLYVIIAMALISGIIGTGHHYFWIGVPGYWL---WLGSVFSAL 279

Query 369 DTYYVVAHFHYVLSMGAVFAIMGGFVHWFPL-FTGYMLNDMWAKIHFFIM 417

Subject 280 ---EPLPFFAMVLFAFNTINRRRRRDYPNRAVALWAMGTTVMAFL 321

Query 418 FVGVNLTFFPQHFLGLSGMPRRYS-DYPD-AYTMWNVVSSIGSFI 460

(b)

NORB_PSEAE|Q59647 NITRIC-OXIDE REDUCTASE SUBUNIT B

Length: 466 Score: 81 z: 5.49 E: 35.8

Subject 238 EKWLYVIIAMALIS-GIIGT---GHHYFWIGVPGYWLWLGSVFSALEPLP 283

Query 266 EPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGLDVDTRAYFTSATMIIAIP 315

Subject 284 FFAMVLFAFNTINRRRRRDYPNRAVALWAMGTTVMAFLGAGVWGFMHTLA 333

Query 316 TGVKVFSWLATLHGGNIKWSP---AMLWALGFIFLFTIG-GLTGIVLANS 361

Subject 334 PVNYYTHGTQLTAAHGHMAFYGAYAMIVMTIISYAMP 370

Query 362 SLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFVHWFP 398

Fig. 4. SWAT alignment of NORB PSEAE (Subject) with
COX1 DIDMA (Query). The PROSITE pattern for the heme cop-
per oxidase family PS00077 is [YWG]-[LIVFYWTA](2)-[VGS]-
H-[LNP]-X-V-x(44,47)-H-H (bold). (a) Shows the alignment given
using BLOSUM 62 on the transmembrane regions in the bipartite
scheme; (b) shows the alignment using the PHAT 75/73 matrix on
the transmembrane regions. Note the ‘HH’ motif is aligned in (b)
and not in (a). JTT PAM 170 and BLOSUM 55 gave the same align-
ment as (a). NORB PSEAE was not found with the JTT transmem-
brane matrix.

with transmembrane segments is not a random sample
of the whole database, but rather of hydrophobic patches
and transmembrane regions. By changing the background
frequencies to reflect this, the PHAT matrix outperformed
generalized matrices and other transmembrane matrices
for searching on transmembrane regions. In general,
one should consider using the background frequencies
characteristic of alignments found in the twilight zone
rather than of those in the entire database when making a
specialized substitution matrix.
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