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ABSTRACT

Motivation: Many important biological processes such as cell

signaling, transport of membrane-impermeable molecules, cell–cell

communication, cell recognition and cell adhesion are mediated by

membrane proteins. Unfortunately, as these proteins are not water

soluble, it is extremely hard to experimentally determine their

structure. Therefore, improved methods for predicting the structure

of these proteins are vital in biological research. In order to improve

transmembrane topology prediction, we evaluate the combined use

of both integrated signal peptide prediction and evolutionary

information in a single algorithm.

Results: A new method (MEMSAT3) for predicting transmembrane

protein topology from sequence profiles is described and bench-

marked with full cross-validation on a standard data set of 184

transmembrane proteins. The method is found to predict both the

correct topology and the locations of transmembrane segments for

80% of the test set. This compares with accuracies of 62–72% for

other popular methods on the same benchmark. By using a second

neural network specifically to discriminate transmembrane from

globular proteins, a very low overall false positive rate (0.5%) can

also be achieved in detecting transmembrane proteins.

Availability: An implementation of the described method is available

both as a web server (http://www.psipred.net) and as downloadable

source code from http://bioinf.cs.ucl.ac.uk/memsat. Both the server

and source code files are free to non-commercial users. Benchmark

and training data are also available from http://bioinf.cs.ucl.ac.uk/

memsat.

Contact: dtj@cs.ucl.ac.uk

1 INTRODUCTION

Integral membrane proteins mediate a wide range of funda-

mental biological processes such as cell signaling, transport of

membrane-impermeable molecules, cell–cell communication,

cell recognition and cell adhesion. Not surprisingly, therefore,

understanding the structure and function of membrane proteins

is of great importance in biological and pharmacological

research.
Analysis of the complete genomic sequences for several

organisms indicates that 20–25% of all genes code for

transmembrane proteins (Jones, 1998; Wallin and von Heijne,

1998). Despite this, only around 1% of all 3-D protein

structures deposited in the Protein Data Bank are of membrane

proteins (Berman et al., 2000), mainly because they are

difficult to crystallize and are generally too large for study by

NMR. This provides a strong impetus for the development of

efficient structure prediction methods for transmembrane

proteins.
The main principle underlying the structure and stability of

membrane proteins is the high energetic cost of dehydrating the

peptide bond during its transfer into a non-polar environment

(Bowie, 2005; White, 2001). This has two consequences. Firstly,

and perhaps most obviously, most of the amino acid side chains

found within transmembrane segments should be non-polar.

Secondly, the polar groups of the main chain of transmembrane

segments must ‘self-satisfy’ their own hydrogen bonding

potential in order to lower the energetic cost of membrane

insertion. This second constraint is typically accomplished by

exploiting two structural motifs: the first is the membrane-

spanning alpha-helix and the second is the beta-barrel (White

and Wimley, 1999).
Although there has been some recent progress in predicting

the full 3-D structure of transmembrane proteins (e.g. Yarov-

Yarovoy et al., 2006), the most widely applied prediction

technique for these proteins is to determine the transmembrane

topology, i.e. the inside–outside location of the N and C termini

relative to the cytoplasm, along with the the number and

sequence locations of the membrane spanning regions.

Knowing a membrane protein’s topology can be a significant

step toward inferring both its structure and function.

Transmembrane protein topology prediction methods rely on

two major topological features. The first is that, as already

discussed, transmembrane helices are generally formed by

hydrophobic sequence stretches; the second is the bias towards

positively charged residues in the regions flanking the hydro-

phobic stretches, especially on the intracellular side of

the membrane. The feature is commonly known as ‘the

positive-inside rule’, where short loops are found to be enriched

with Lys and Arg residues on the intracellular side and

depleted on the outside (von Heijne, 1992; Wallin and von

Heijne, 1998).

Many methods have been developed for predicting the

topology of helix-bundle membrane proteins, and here

we review a few of the better known and representative

methods. For a more extensive recent review of progress,
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see Chen et al., (2002) and Fleishman and Ben-Tal (2006) for
a detailed analysis of methods published prior to 2002.
In the earliest transmembrane prediction methods, simple

hydrophobicity plots were used (e.g. Kyte and Doolitle, 1982)
to detect probable transmembrane segments. Kyte and Doolitle
used a ‘sliding window’ approach to identify membrane

segments where a fixed window of width 19 residues was
moved along the protein sequence and the average hydro-
phobicity was calculated for amino acids within the window.

Using these mean hydrophobicity values, a threshold could be
identified for deciding whether the centre of the window is
within a membrane–spanning membrane helix or not. The Kyte

and Doolitle method, along with other similar approaches, only
identifies likely transmembrane segments, and the approach is
not able to predict the inside–outside phasing of the segments

relative to the cytoplasm.
The first attempt at a method for predicting transmembrane

topology was the TopPred method proposed by von Heijne

(1992). TopPred again makes use of hydrophobicity plots to
predict transmembrane segments, but combines these predic-
tions with the ‘positive-inside rule’ mentioned earlier. The

observation that there was a strong bias for positively charged
residues on the inside-facing segments of a transmembrane
protein provided a means for identifying which predicted

topology was correct from a small number of alternatives.
The MEMSAT method of Jones et al. (1994) was the first

prediction method to fully integrate the prediction of trans-

membrane topology with the prediction of transmembrane
segments. Rather than simply deciding between a few possible
topological models, MEMSAT was able to calculate the most

probable length, location and topological orientation for each
transmembrane segment, guaranteeing a mathematically opti-
mal solution. The method made use of scores compiled from

membrane protein data and a dynamic programming algorithm
to search through all possible topological models by a process
of expectation maximization. The propensity of each amino

acid to be in one of five states (inside loop, outside loop, inside
helix end, helix middle and outside helix end) was calculated
from experimentally well-described membrane proteins and was

expressed as a log-likelihood ratio. This approach can be seen as
a forerunner of more recent approaches based on hidden markov
models. MEMSAT2 (Jones, 1998) made use of the same

scoring tables as MEMSAT and the same dynamic programming
algorithm, but used sequence profiles to produce a consensus
topology score across an aligned family of sequences.

PHDhtm (Rost et al., 1996) was the first method to use
neural networks for the prediction of transmembrane protein
structure. It used multiple sequence alignments to do a

consensus prediction of transmembrane segments in the target
protein, and then predicted the overall topology by applying
the positive-inside rule.
TMHMM (Sonnhammer et al., 1998) and HMMTOP

(Tusnady and Simon, 1998) were the first methods to employ
hidden markov models to the problem of transmembrane
topology prediction. TMHMM implements a cyclic model with

seven states for transmembrane helix, whereas HMMTOP uses
hidden Markov models to distinguish between five structural
states [helix core, inside loop, outside loop, helix caps (C and N)

and globular domains]. The states are connected by transition

probabilities. As with the earlier MEMSAT approach, dynamic

programming is used to match a sequence against the model in

order to find the most probable topology.
Finally, in line with developments in methods for predicting

globular protein structure, a few consensus methods have been

proposed. The first such approach has been developed by

Nilsson et al. (2002), which uses the consensus of five topology

prediction methods (TMHMM, HMMTOP, MEMSAT, PHD,

TopPred). They find that for the 50% of Escherichia coli

proteins where high agreement is observed between methods,

the topology is found to agree with experimental evidence

around 90% of the time. Another approach is to make a variety

of predictors available via a single Web site to allow users to use

their own judgment in deciding a consensus prediction (Amico

et al., 2006).

In this paper, the widely used MEMSAT method has been

combined with a neural network trained on sequence profiles.

This should allow the method to directly take into account

sequence conservation information that has proven to be very

powerful in globular protein secondary structure prediction,

as demonstrated by the success of the PSIPRED method

(Jones, 1999). To date, few methods have made use of multiple

sequence alignments in making transmembrane topology

predictions. Martelli et al. (2003) made use of a neural network

along with two HMM predictors. The neural network in this

case only has a single output, which indicates whether the target

residue is in a TM segment or not. Topology prediction is

handled by a set of ad hoc rules. In contrast to this, here we use

a neural network to predict not only TM segments but also to

score the topology and to identify possible signal peptides.
Another interesting recent attempt at using multiple-

sequence information is PolyPhobius (Käll et al., 2005), based

on their original Phobius method (Käll et al., 2004), which

makes use of an HMM to predict both transmembrane

topology and signal peptide cleavage sites. In PolyPhobius, a

multiple-sequence alignment is used to calculate the best

‘average’ path through the states of the HMM. Some

improvement in prediction accuracy is observed over the

single-sequence approach, but clearly a more explicit treatment

of evolutionary information is needed to provide significant

improvements in accuracy.

2 METHODS

The first step in the MEMSAT3 algorithm makes use of a feed-forward

neural network comprising 399 inputs, 15 hidden units and 4 output

units. The inputs correspond to a window size of 19 residue positions

and 21 inputs per residue. This encoding is the same as that used by the

PSIPRED secondary structure prediction method (Jones, 1999), though

with a slightly longer window in this case. A number of different output

encodings were considered, but it was decided that a minimal encoding

of just four outputs would be preferable for optimal neural

network training. The four output targets are: cytoplasmic (Oin),

non-cytoplasmic (Oout), transmembrane segment (Otm) and

signal peptide (Osig).

As a testing and training set, the widely used data set of Möller et al.

(2001) was used. This comprises 188 proteins where experimental

evidence exists for the given topology and includes 10 artificially

mutated E.coli leader peptidase sequences that provide a particular

challenge to topology prediction methods. Of the 188 proteins in the
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original set, four were excluded. Entry 60IM_ECOLI had no TM

segments annotated. Entry MEL_APIME is a bilayer disrupting

peptide found in bee venom and not a native integral membrane

protein. Both CLC1_HUMAN and CITN_KLEPN were excluded

because their topologies could not be reconciled with more recent

annotations in SWISS-PROT (Boeckmann et al., 2003). The final

makeup of the final data set is shown in Table 1.

As with PSIPRED, PSI-BLAST (Altschul et al., 1997) was used to

calculate position-specific scoring matrices for each of the 184 proteins.

As transmembrane proteins are prone to picking up false positives in

PSI-BLAST searches, in this case only two iterations were used (�j 2)

with a profile-inclusion E-value threshold of 0.001 (�h 0.001). In order

to avoid partial sequences being included in the alignments, which can

affect topology predictions, the SWISS-PROT sequence data bank was

used, with any sequences labeled with keywords such as ‘FRAGMENT’

being excluded.

To allow proper cross-validation, separate training runs were carried

out for every target protein, giving 184 sets of neural network weights in

total. In training, the target sequence, along with any proteins in the

training set found to be significantly similar, were excluded. The PSI-

BLAST results were used for determining which sequences should be

excluded, again using an E-value threshold of 0.001.

To calculate the most probable topology based on the neural network

output, the MEMSAT dynamic programming algorithm (Jones et al.,

1994) was used. In the original MEMSATmethod, five different regions

of a transmembrane protein were defined as follows: inside-loop, inside-

helix-cap, middle helix segment, outside-helix-cap and outside-loop.

At every position in the target sequence, the four neural network

outputs were combined as follows to generate scores for the MEMSAT

topology search:

Sinside-loop ¼ 1=2 ðOin �Oout �OtmÞ

Soutside-loop ¼ 1=2 ðOout �Oin �OtmÞ

Soutside-tm ¼ 2ðOtm þOout �OinÞ

Sinside-tm ¼ 2ðOtm þOin �OoutÞ

Smiddle-tm ¼ 2Otm

Where Ox represents the raw neural network output x. For evaluating

segments of the target sequence within the first 25 residues of the target

protein, the signal-peptide output is subtracted from the inside-loop

term and added to the outside-loop term as follows:

Sinside-loop ¼ 1=2 ðOin �Oout �OtmÞ �Osig

Soutside-loop ¼ 1=2 ðOout �Oin �OtmÞ þOsig

In this way, predicted signal peptides biased predictions towards

having a non-cytoplasmic N-terminus.

In order to avoid the use of floating point arithmetic in the topology

calculation algorithm, all of the above scores are scaled by a factor of

1000 and rounded to the nearest integer.

In evaluating methods using the data set in Table 1, predictions were

assessed using three criteria. Firstly, has the correct number of TM

helices been predicted; secondly, has the correct topology been

predicted; and thirdly, are the TM segments correctly located. To

decide on the correct TM segment location, the author has followed the

lead of other groups (e.g. Käll et al., 2004), where a segment is deemed

correctly located if there is at least a five-residue overlap with the

observed segment in the testing set. For completeness, results based on

a 10 residue overlap are also collated.

In evaluating MEMSAT3, the appropriate cross-validated neural

networks were used in calculating performance statistics. When

evaluating other methods, we were not able to cross-validate results,

and the reported accuracies may therefore be slightly overestimated in

those cases. All of the cross-validated neural nets are available, should

users need to reproduce the fully cross-validated results described

below.

In an attempt to improve the discrimination of transmembrane

proteins from globular proteins, a second neural network was trained

with the same number of inputs (399), seven hidden units and just a

single output. In this case, the network was trained on the same set of

184 transmembrane proteins, but with the addition of 416 randomly

chosen globular proteins (giving a total training set of 600 proteins)

taken from a set of 2685 non-redundant chains from known protein

structures. The single target output in this experiment indicated the

presence of a TM segment at the centre of the sequence window. Signal

peptides were included in the list of negative training cases. For cross-

validation, each transmembrane protein was removed from the training

set along with all homologues (as described above). Given the large

surplus of globular protein test cases, cross-validation was carried out

by evaluating on the full set of 2685 PDB entries, but excluding all of

the 416 entries used for training (2269 test cases remaining). The

complete test set therefore comprised 184 transmembrane proteins and

2269 globular proteins, giving a total of 2453 test cases.

3 RESULTS

Table 2 shows the overall results of applying MEMSAT3 to the

test set of 184 proteins, with results for MEMSAT2 (Jones,

1998), along with more recent methods included for reference.

MEMSAT3 results are fully cross-validated with all proteins

homologous to the target removed from the neural net training

set. For TMHMM, Phobius and PolyPhobius, the results were

obtained from the respective Web servers and therefore are not

cross-validated. In determining a correct prediction, both the

predicted topology and the positions of prediction TM

segments are assessed. Signal peptides are included in the

target sequences but are not considered part of the observed

Table 1. Composition of transmembrane data set

Protein class Number in set

Prokaryotic 98

Eukaryotic 65

With signal peptides 45

Single-spanning TM segment 52

Multiple-spanning TM segments 132

Total 184

Table 2. Benchmark results for MEMSAT3 compared to other

representative methods

Method Correct no.

of TM

segments

Correct

topology

Correct

topology

and locations

Correct

(overlap

of 10)

MEMSAT2 125 (67.9%) 108 (58.7%) 104 (56.5%) 98 (53.3%)

TMHMM 131 (71.1%) 116 (63.0%) 114 (62.0%) 108 (58.7%)

Phobius 152 (82.6%) 134 (72.8%) 126 (68.4%) 120 (65.2%)

PolyPhobius 148 (80.4%) 133 (72.2%) 133 (72.2%) 132 (71.7%)

MEMSAT3 156 (84.8%) 150 (81.5%) 147 (79.9%) 141 (76.6%)
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topology (i.e. a signal peptide predicted to be a TM segment

would be considered an incorrect topology prediction).

To allow comparison to previous benchmarking studies, the

most relevant results are those in the third column, where a

correct prediction must have not only the correct topology, but

also an overlap of at least five residues between the predicted

transmembrane segments and those which have been experi-

mentally determined. In this case, MEMSAT3 is correct in 80%

of cases (147 out of 184) compared to the next best method

(PolyPhobius), which predicted 72.3% (133 out of 184) of cases

correctly. Using a more stringent criterion of a 10-residue

overlap gives a success rate of 76.6% for MEMSAT3, with

PolyPhobius unchanged at 72.3%. In terms of the most basic

criterion, predicting the correct number of TM segments

irrespective of correct topology and location, both

MEMSAT3 and Phobius achieve a similar level of accuracy.

In terms of over- and underpredictions, MEMSAT3 is fairly

balanced. Over the set of 184 test cases, there are a total of

20 overpredicted TM segments and 24 missed (underpredicted)

segments.
Table 3 shows a breakdown of the MEMSAT3 benchmark-

ing results for difference subsets of the testing set. Compared to

other methods, the performance of MEMSAT3 shows a

stronger preference for prokaryotic sequences, with 87% (85

out of 98) of these proteins being correctly predicted. For

eukaryotes, 71% (46 out of 65) of the targets are correctly

predicted.
Despite the inclusion of limited signal peptide prediction in

MEMSAT3, sequences without signal peptides are still overall

more accurately predicted than sequences with them. For

sequences without signal peptides present, 83% (123 out of 149)

are correctly predicted. For sequences with signal peptides,

MEMSAT3 is less effective than both Phobius and TMHMM,

with only 63% (22 out of 35) correctly predicted.

The fact that MEMSAT3 does not show a marked difference

between correctly predicting the number of TM segments and

the correct topology clearly indicates that the topogenic signals

picked up by the neural network are much stronger than the

single amino acid scoring schemes employed in the other

methods. To better quantify this, the neural network was

evaluated in order to benchmark its ability to predict whether

each residue in the test set is located in the cytoplasm or not.

Each loop in the data set was evaluated by both the
MEMSAT scoring tables and the MEMSAT3 neural network
(with cross-validation) to see how many could be correctly

classified as cytoplasmic or non-cytoplasmic. In the case of the
MEMSAT3 neural network, 84% (805/964) of loops were

correctly assigned compared to only 72% (690/964) for the
original MEMSAT scoring tables. For the longest loops (length
450), the difference is more striking, with 85% (141/166)

correctly assigned by MEMSAT3 compared to only 65% (106/
166) by the MEMSAT scoring tables.
Perhaps the most interesting aspect of the performance of

MEMSAT3, however, is the very high success rate on single-
spanning TM proteins in the data set. In the single-spanning

case, 98% (51 out of 52) accuracy is achieved, compared to only
72% for multiple-spanning proteins.

3.1 Segment end point prediction accuracy

Figure 1 illustrates the reliability of MEMSAT3 in terms of TM
segment end point prediction. For this, the analysis had to be

limited to the 28 proteins in the data set with known 3-D
structure and no large gaps in the structure. Across the total of
157 segments in this set, the mean error in predicting the start of

each TM segment is 2.9 (standard deviation 2.4) and, for the
ends, the mean error is 3.7 (standard deviation 2.7).

3.2 Overall reliability of topology predictions

Figure 2 illustrates the reliability of MEMSAT3 in terms of
false-positive rate (i.e. fraction of predictions with incorrect
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Table 3. Benchmark results for MEMSAT3 compared to other

representative methods on different subsets of the benchmark data

Subset TMHMM PolyPhobius MEMSAT3

Prokaryotic (98) 63 (64.3%) 73 (74.5%) 85 (86.7%)

Eukaryotic (65) 43 (66.2%) 52 (80.0%) 46 (70.8%)

With signal peptides (35) 26 (74.3%) 35 (100.0%) 22 (62.9%)

Without Signal peptides (149) 88 (59.1%) 99 (66.4%) 124 (83.2%)

Single-spanning (52) 36 (69.2%) 35 (67.3%) 51 (98.1%)

Multiple-spanning (132) 78 (59.1%) 100 (75.8%) 95 (72.0%)

All (184) 114 (62.0%) 133 (72.2%) 147 (79.9%)

Standard errors for all percentages were estimated with the

bootstrapping procedure used by Chen et al. (2002) and were found to be

below 0.5% in all cases.
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topology or mislocated TM segments) plotted against reliability

score. The reliability score is simply the difference between the

overall model score for the top prediction and the score for the
next best scoring model (Melen et al., 2003).

3.3 Discriminating globular and transmembrane proteins

Using the combined set of 2453 transmembrane and globular

proteins, the topology prediction algorithm was evaluated in
terms of its ability to discriminate transmembrane from

globular proteins (Fig. 3).
As a discrimination criterion, a threshold was set on the

number of residues predicted to be part of a transmembrane

segment by the neural network. Increasing this threshold thus
decreases the number of proteins predicted to be transmem-

brane. At the crossover point (threshold of 14), the method has

a false-positive rate and false-negative rate of 2%.
To improve upon this, a second neural network was trained

specifically to discriminate transmembrane from globular
protein segments, as described earlier. In this case, the

crossover point is found to give a much more satisfactory

false-positive and false-negative rate of 0.5% (Fig. 4).

4 DISCUSSION AND CONCLUSIONS

The benchmarking results clearly show that MEMSAT3 is an
effective method for transmembrane topology prediction, with

higher overall prediction accuracy than other popular methods

and the previous version of the method (MEMSAT2) based on
statistical scoring tables. The major new source of information

in MEMSAT3 is the evolutionary information manifest in the

PSI-BLAST-derived sequence profiles, from which the neural

network is able to determine much more reliable topogenic
scores than could be obtained through single residue statistics.

Although HMM-based methods (e.g. PolyPhobius) have

attempted to make some use of multiple sequence information,

the limitations of an HMM representation is such that multiple

sequence information only ends up being used for finding a

weighted average path through the underlying model states

and thus only ends up improving prediction accuracy by

a modest amount. What is missing from this simplified

treatment of evolutionary information is the information that

can be derived from an analysis of the conservation patterns

themselves. For example, we know in globular proteins that

conserved hydrophobic residues are likely to be buried in the

core. From this, we can infer patterns of solvation that help

identify strands and helices in secondary structure prediction.

Similarly, for transmembrane proteins, we observe that highly

variable hydrophobic positions in multiple-sequence alignments

tend to indicate residues that are in contact with the lipid

groups in the membrane (Donnelly et al., 1993; Taylor et al.,

1994). Observing a pattern of conserved and variable hydro-

phobic positions with the correct periodicity of an alpha helix

can help identify transmembrane helices and thus improve the

overall accuracy of predictions. This information is not

accessed when sequence profiles are used simply in a weighted

average of match scores.

It is likely that the significant improvement in prediction

accuracy for single-spanning TM proteins is a direct result of

the use of sequence conservation. The membrane-spannning

regions in monotopic TM proteins are very distinguishable due

to the fact that all of the residues in the spanning regions are

generally in contact with lipid, and thus these regions are

overall highly mutable (yet still highly hydrophobic in

character) compared to other TM segments and other hydro-

phobic regions in proteins. Hydrophobic regions in globular

domains that are frequently predicted incorrectly as single-TM

segments generally correspond either to buried secondary

structural elements or to binding sites. In both of these cases,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Threshold

R
at

e

Fig. 3. False-positive rate (solid line) on identifying globular proteins

and false-negative rate on transmembrane proteins (broken line) for the

topology prediction algorithm is plotted against an overall score

threshold. The threshold in this case is the number of residues predicted

to be in a transmembrane segment.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Threshold

R
at

e

Fig. 4. False-positive rate (solid line) on globular proteins and false-

negative rate on transmembrane proteins (broken line) for the neural

network trained specifically to discriminate transmembrane from

globular proteins. The threshold in this case is again the number of

residues predicted to be in a transmembrane segment.

D.T.Jones

542



the sequences could be highly hydrophobic, but in both cases
we would expect them to be evolutionarily highly conserved.
The use of a neural network to evaluate windows of a

sequence profile in the scoring of protein topologies is clearly
much more effective than applying ad hoc rules or single-residue
statistical scoring tables. Individual residues in fact contribute

very little topogenic information when taken in isolation. The
positive-inside rule, for example, is a compositional rule where
a greater concentration of positively charged residues are

expected inside the cytoplasm, compared to outside. It is clearly
of little sense to assume that every positively charged residue is
found in the cytoplasm. In contrast, the neural network is able

to detect useful topogenic information across the majority of
the sequence and, in some cases, apparently strong localized
topogenic features (i.e. short regions strongly predicted to be

either inside or outside) are detected by the neural network in
long loops (450 residues) that seem (at least by eye) to have few
distinguishing features. This hints at the fact that there could be

as yet unknown topogenic sequence features buried in
sequences that the neural network is able to pick up but
which are not yet characterized in the literature. We hope to

follow this up in a future study.
Although the overall prediction accuracy of MEMSAT3 was

higher than other popular methods, its innate ability to

discriminate transmembrane proteins from globular proteins
was found to be slightly poorer than for other methods.
Although overall accuracy is the most important issue

for individual predictions (i.e. predictions made on proteins
already suspected to be transmembrane proteins), the discri-
mination rate is important when a method is applied to whole-

genome annotation. A simple but effective compromise
solution was found whereby a second neural network was
employed specifically to decide whether the target protein is

likely to contain transmembrane segments or not. The key
difference for this second network was to train it on a mixture
of transmembrane and globular proteins. In practice, this

network is employed as a pre-filter to decide whether or not the
MEMSAT3 algorithm should be applied.
Some recent X-ray structures of alpha-helical integral

membrane proteins (e.g. the voltage-gated potassium channels)
have shown some unexpected features, such as very short
helices that do not span the bilayer or very long membrane-

spanning helices. Long helices prove not to be a particular
problem, as MEMSAT3 easily allows longer helices to be
generated, but helices that only traverse the bilayer halfway and

then return to the same membrane face violate the assumption
that the topology is a simple meander from one bilayer face to
the other. In the case of subunits of the potassium channel,

for example, MEMSAT correctly predicts three TM segments
(24–42; 50–66; 78–95), but predicts that only the N-terminus is
cytoplasmic, whereas in reality both termini are located in the

cytoplasm. Interestingly, the raw neural network output clearly
indicates a preference for the C-terminus to be cytoplasmic and
the second best scoring topology (with a score very close to the

optimum) skips the partial TM helix and allows both termini to
be cytoplasmic. It is possible that a rule-based approach might
be used in future to help identify these situations.

One major area where MEMSAT3 can clearly be improved
further is in the handling of signal peptides. The Phobius

method has already demonstrated how powerful the use of

signal peptide prediction can be in helping to improve

transmembrane topology prediction, and outperforms

MEMSAT3 on proteins with signal peptides. Although

MEMSAT3 already includes a simple signal peptide predictor,

the relative contribution of the signal peptide output from the

neural network was surprisingly small. This is likely due not

just to the simple algorithm but also the small sample size of

signal peptides in the training set. Clearly there also needs to be

some consideration as to whether the origin of the target

sequence is prokaryotic or eukaryotic in the prediction of signal

peptides and the lack of this information also no doubt

contributes to the poor performance on signal peptides. It is

expected in future developments of the MEMSAT method that

the addition of an explicit signal peptide prediction stage will

give significant benefit in prediction accuracy.
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