
Department of

Computing Science

Genome Rearrangement Problems

David Alan Christie

Submitted for the degree of Doctor of Philosophy

to

The University of Glasgow,

August, 1998.

c©1998, David Alan Christie.

Abstract

Various global rearrangements of permutations, such as reversals and transpositions,

have recently become of interest because of their applications in computational molec-

ular biology. A reversal is an operation that reverses the order of a substring of a

permutation. A transposition is an operation that swaps two adjacent substrings of a

permutation. The problem of determining the smallest number of reversals required

to transform a given permutation into the identity permutation is called sorting by

reversals. Similar problems can be defined for transpositions and other global rear-

rangements.

Related to sorting by reversals is the problem of establishing the reversal diameter.

The reversal diameter of Sn (the symmetric group on n elements) is the maximum

number of reversals required to sort a permutation of length n. Of course, diameter

problems can be posed for other global rearrangements.

These various problems are of interest because the permutations can be used to

represent sequences of genes in chromosomes, and the global rearrangements then rep-

resent evolutionary events. As a result, we call these problems genome rearrangement

problems.

Genome rearrangement problems seem to be unlike previously studied algorith-

mic problems on sequences, so new methods have had to be developed to deal with

them. These methods predominantly employ graphs to model permutation structure.

However, even using these methods, often a genome rearrangement problem has no ob-

vious polynomial-time algorithm, and in some cases can be shown to be NP-hard. For

example, the problem of sorting by reversals is NP-hard, whereas the computational

complexity of sorting by transpositions is open. For problems like these, it is natu-

ral to seek polynomial-time approximation algorithms that achieve an approximation

guarantee.

In this thesis, we study several genome rearrangement problems as interesting and

challenging algorithmic problems in their own right, including some problems for which

the global rearrangement has no immediate biological equivalent. For example, we

define a block-interchange to be a rearrangement that swaps any two substrings of the

permutation. We examine, in particular, how the graph theoretic models relate to the

genome rearrangement problems that we study.

The major new results contained in this thesis are as follows:

• We present a 3/2-approximation algorithm for sorting by reversals. This is the

best known approximation algorithm for the problem, and improves upon the

7/4 approximation bound of the previous best algorithm.

Abstract iii

• We give a polynomial-time algorithm for a significant special case of sorting by

reversals, thereby disproving a conjecture of Kececioglu and Sankoff, who had

suggested that this special case was likely to be NP-hard.

• We analyse the structure of the so-called cycle graph of a permutation in the

context of sorting by transpositions, and thereby gain a deeper insight into this

problem. Among the consequences are: a tighter lower bound for the problem,

a simpler 3/2-approximation algorithm than had previously been described, and

algorithms that, in empirical tests, almost always find the exact transposition

distance of random permutations.

• We introduce a natural generalisation of sorting by transpositions called sorting

by block-interchanges, and present a polynomial-time algorithm for this problem.

• We initiate the study of analogous problems on strings over a fixed length alpha-

bet. We establish upper and lower bounds and diameter results for the problems

over a binary alphabet. We also prove that the problems analogous to sorting by

reversals and sorting by block-interchanges are NP-hard.

The thesis has the following structure:

In Chapter 1 we introduce several genome rearrangement problems, review the

existing literature on the algorithmic aspects of these problems, and summarise the

fundamental results and notations.

We study the problem of sorting by reversals in Chapter 2. At the start of this

chapter, we introduce a new graph, called the reversal graph of a permutation, that

turns out to be useful for finding sequences of reversals that sort the permutation. We

then use these graphs to obtain the 3/2-approximation algorithm, and the polynomial-

time algorithm for the special case.

Chapter 3 contains a number of contributions that help to improve our understand-

ing of the algorithmic issues involved in the problem of sorting by transpositions. We

note that an optimal sequence of transpositions never has to break apart elements i

and i + 1 once they are together in a permutation. Then we analyse the structure

of cycles in the cycle graph leading to a better understanding of how these cycles af-

fect the general problem. This leads to a simpler 3/2-approximation algorithm for the

problem. We also obtain an improved lower bound for sorting by transpositions and

improve the lower bound for transposition diameter. This latter result is obtained by

describing an optimal sequence of transpositions that sorts the reverse permutation.

In Chapter 3 we also describe various approximation algorithms and an exact branch

and bound algorithm for sorting by transpositions. In empirical tests, described in this

chapter, we observe that our approximation algorithms require much fewer than 3/2

times the optimal number of transpositions to sort a random permutation (even though

we do not prove any approximation bound for the approximation algorithms we test).

We also observe that the exact algorithm could almost always find an optimal sequence

Abstract iv

of transpositions for random permutations. We note that for most permutations the

optimal length of sequence of transpositions is equal to or very close to the lower bound.

Chapter 4 is devoted to the problem of sorting by block-interchanges. We describe

a sequence of block-interchanges that sorts a given permutation. We then show that

properties of the cycle graph, in the context of this problem, mean that the sequence

we describe is optimal. We also establish the block-interchange diameter of Sn.

In Chapter 5 we study problems on strings, over a fixed length alphabet, that

are analogous to sorting by reversals, sorting by prefix-reversals (reversals that act on

prefixes), sorting by transpositions and sorting by block-interchanges. We adapt the

concept of the breakpoint, from problems on permutations, for use with these problems.

Then, for all of the problems, we obtain upper and lower bounds for the distance

between two binary strings, and we establish a diameter result on binary strings. We

also show that the problems analogous to sorting by reversals and sorting by block-

interchanges are NP-hard, even when the alphabet is binary.

Contents

Abstract ii

Contents v

List of Figures viii

List of Tables x

Preface xi

1 Introduction and Background 1

1.1 Introduction . 1

1.2 Sorting by reversals . 3

1.3 Sorting signed permutations by reversals 6

1.4 Sorting by prefix-reversals . 7

1.5 Sorting by restricted reversals . 9

1.6 Sorting by transpositions . 9

1.7 Sorting by restricted transpositions . 11

1.8 Sorting by block-interchanges . 12

1.9 Sorting by reversals and transpositions 12

1.10 Generating the symmetric group . 13

1.11 Sorting by translocations . 13

1.12 Syntenic edit distance . 14

1.13 Other related problems . 15

2 Sorting by Reversals 16

2.1 Introduction . 16

2.2 Definitions . 16

2.3 Reversal graphs simplify sorting by reversals 17

2.4 A 3/2-approximation algorithm for sorting by reversals 28

2.4.1 The 3/2-bound . 28

2.4.2 The cycle decomposition . 29

2.4.3 The sequence of reversals . 32

v

Contents vi

2.4.4 The algorithm . 34

2.4.5 Conclusion . 34

2.5 An easy case of sorting by reversals . 36

2.5.1 2-reversals, exposed and hidden 37

2.5.2 Kernels . 38

2.6 Conclusion and open problems . 46

3 Sorting by Transpositions 47

3.1 Introduction . 47

3.2 Fundamental definitions and results . 48

3.2.1 Definitions . 48

3.2.2 Transposition equivalent permutations 48

3.2.3 The transposition cycle graph . 49

3.2.4 Even length cycles . 52

3.3 Fully oriented cycles . 52

3.3.1 Fully oriented triples . 53

3.3.2 Canonical labellings . 53

3.3.3 Fully oriented cycles . 55

3.3.4 Knots . 58

3.3.5 Strongly oriented cycles . 62

3.3.6 Super oriented cycles . 62

3.4 A new 3/2-approximation algorithm . 63

3.5 A tighter lower bound . 77

3.5.1 Hurdles . 77

3.5.2 How tight are the lower bounds? 79

3.5.3 The transposition diameter . 81

3.6 Solving instances of sorting by transpositions in practice 83

3.6.1 The algorithms . 84

3.6.2 Permutations . 89

3.6.3 How the algorithms performed 92

3.6.4 Analysis of the performance of the algorithms 100

3.7 Conclusion and open problems . 105

4 Sorting by Block-Interchanges 107

4.1 Introduction . 107

4.2 Minimal block-interchanges . 108

4.3 The graph model . 109

4.4 Block-interchange distance . 110

4.5 Block-interchange diameter . 110

4.6 Conclusion . 113

Contents vii

5 Sorting Strings by Global Transformations 114

5.1 Introduction . 114

5.2 Definitions . 115

5.3 Reversal distance between binary strings 116

5.3.1 A lower bound . 116

5.3.2 An upper bound . 118

5.3.3 Reversal diameter of Bn . 119

5.3.4 Sorting by reversals . 121

5.4 Prefix-reversal distance between binary strings 122

5.4.1 A lower bound . 122

5.4.2 An upper bound . 122

5.4.3 Prefix-reversal diameter of Bn . 123

5.4.4 Sorting by prefix-reversals . 126

5.5 Transposition distance between binary strings 127

5.5.1 A lower bound . 127

5.5.2 An upper bound . 128

5.5.3 Transposition diameter of Bn . 129

5.5.4 Sorting by transpositions . 130

5.6 Block-Interchange distance between binary strings 131

5.6.1 A lower bound . 131

5.6.2 An upper bound . 132

5.6.3 Block-interchange diameter of Bn 135

5.6.4 Sorting by block-interchanges . 136

5.7 NP-completeness of reversal distance and block-interchange distance . . 137

5.8 Conclusion . 142

Glossary 144

Bibliography 147

List of Figures

1.1 Some example reversals. 1

1.2 Some example transpositions. 2

1.3 Some examples of reversals on signed permutations. 6

1.4 Some example prefix-reversals. 8

1.5 Some example block-interchanges. 12

1.6 Some example translocations. 14

1.7 An example syntenic edit distance problem. 15

2.1 An example cycle decomposition of rG′(π). 19

2.2 An example reversal graph . 19

2.3 The effect of ρ(u) when u is red. 20

2.4 The effect of ρ(u) when u is blue. 21

2.5 The resulting cycle decomposition. 22

2.6 The resulting reversal graph. 22

2.7 A type 1 vertex. 24

2.8 A type 2 vertex. 25

2.9 Some short ladders. 30

2.10 rG(π) for π = [0 4 2 6 8 7 3 5 1 9 14 15 12 13 10 11 16]. 31

2.11 rF (π) for π = [0 4 2 6 8 7 3 5 1 9 14 15 12 13 10 11 16]. 31

2.12 rL(M) where M = {a, b, c, d, e} in Figure 2.11. 31

2.13 The cycle decomposition C. 31

2.14 Part of a long ladder. 33

2.15 A short ladder. 33

2.16 The 3/2-approximation algorithm . 34

2.17 Finding an elimination sequence for rR(C). 35

2.18 rF ∗(π3) . 43

2.19 rF ∗(π4) . 44

2.20 rF ∗(π5) . 44

3.1 tG(π), for π = [3 4 1 2]. 49

3.2 tG(π), for π = [6 1 5 7 12 4 11 2 9 3 8 10]. 51

3.3 How a transposition changes the cycle graph. 54

3.4 tG(π), for π = [4 3 2 1]. 54

viii

List of Figures ix

3.5 How to sort a knot of length 5. 59

3.6 A sequence of transpositions that sorts ω5. 60

3.7 The oriented cycle obtained by an applying an transposition that inter-

leaves with an unoriented cycle. 65

3.8 How C and D are interleaved initially. 66

3.9 How the cycles are interleaved after the 0-transposition. 67

3.10 How the cycle graph changes. 69

3.11 How tG(π) changes as the result of the transposition. 70

3.12 The first transposition of a (0, 2, 2)-sequence. 72

3.13 Special case of (d). 73

3.14 Special case of (e). 74

3.15 The new 3/2-approximation algorithm 75

3.16 Bafna and Pevzner’s 3/2-approximation algorithm 76

3.17 A cycle graph with three components. 78

3.18 An optimal length sorting of κ2. 80

3.19 A sequence of transpositions that sorts R11. 83

3.20 The algorithm: approx . 85

3.21 The algorithm: tlis . 87

3.22 The algorithm: random . 88

3.23 The algorithm: branch . 90

3.24 Performance of best. 103

3.25 A sequence of 13 transpositions that sorts π. 104

4.1 An example of sorting by block-interchanges 108

4.2 The black edges that change when a block-interchange is applied: (a)

when the block-interchange is not a transposition, and (b) when the

block-interchange is a transposition. 109

4.3 How a minimal block-interchange changes tG(π). 111

4.4 An algorithm to calculate bd(π). 112

4.5 An algorithm to perform an optimal sequence of block-interchanges. . . 112

List of Tables

3.1 random permutations, lower bound . 94

3.2 random permutations, approx . 94

3.3 random permutations, alt approx . 94

3.4 random permutations, tlis . 94

3.5 random permutations, random . 95

3.6 random permutations, rpt random . 95

3.7 random permutations, branch . 95

3.8 random permutations, best . 95

3.9 3-cycle permutations, lower bound . 96

3.10 3-cycle permutations, approx . 96

3.11 3-cycle permutations, alt approx . 96

3.12 3-cycle permutations, tlis . 96

3.13 3-cycle permutations, random . 97

3.14 3-cycle permutations, rpt random . 97

3.15 3-cycle permutations, branch . 97

3.16 3-cycle permutations, best . 97

3.17 transposition tight permutations, lower bound 98

3.18 transposition tight permutations, approx 98

3.19 transposition tight permutations, alt approx 98

3.20 transposition tight permutations, tlis 98

3.21 transposition tight permutations, random 99

3.22 transposition tight permutations, rpt random 99

3.23 transposition tight permutations, branch 99

3.24 transposition tight permutations, best 99

4.1 The number of permutations of size n that achieve bD(n). 113

5.1 The 18 possible combinations of S and T 133

5.2 The complexity of the different problems, and the diameter of Bn. . . . 143

x

Preface

Acknowledgements

First of all I would like to thank Rob Irving for his supervision. Rob’s guidance has

been crucial in getting this thesis into its current state. In particular, I am grateful for

the many helpful comments he has given that have helped to improve the quality of

my writing. Thanks too to everyone else who has been part of my supervisory team.

I would like to thank my family for all their support, especially in this final year.

I would like to thank EPSRC (the Engineering and Physical Sciences Research

Council) for their financial support in the form of a Research Studentship from October

1994 to September 1997.

Lastly, I would like to un-thank Partick Thistle for being relegated twice during

the course of my postgraduate studies.

Publications and papers

• R. W. Irving and D. A. Christie. Sorting by Reversals: on a conjecture of Ke-

cecioglu and Sankoff. Technical Report TR-95-12, Department of Computing

Science of The University of Glasgow, May 1995.

The contents of this paper are presented in Section 2.5. However, the presentation

of this work has been changed, so as to make it more consistent with the rest of

Chapter 2.

Tran [Tra97] subsequently and independently obtained an identical result to that

presented in this paper.

• D. A. Christie. Sorting permutations by block-interchanges. Information Pro-

cessing Letters, 60(4):165–169, November 1996.

Chapter 4 is based on this paper.

• D. A. Christie. A 3/2-approximation algorithm for sorting by reversals. In Pro-

ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,

San Francisco CA., pages 244–252, January 1998.

xi

Preface xii

The contents of this paper are presented in Sections 2.3 and 2.4, with corrections

to a few minor errors in the paper.

• D. A. Christie and R. W. Irving. Sorting Strings by Global Transformations.

Submitted for publication.

This paper is based on parts of Chapter 5.

Statement of collaboration

The following summarises the role of my supervisor, Rob Irving, in work undertaken

jointly with him.

Chapter 2

The reversal graphs of Section 2.3 were developed from graphs in [IC95]. Rob is due

most credit for the graphs in [IC95], and suggested the method used to develop those

graphs into the form shown in Section 2.3. Rob proposed using the matching and

ladder graphs to generate the cycle decomposition used in Section 2.4. Section 2.5 was

originally ([IC95]) written jointly with Rob.

Chapter 3

The canonical labellings of cycles (Section 3.3.2) were suggested by Rob. He also

proposed Theorem 3.3.3. An initial proof of Theorem 3.5.5 was found by Rob, but the

proof presented in this thesis is quite different.

Chapter 5

The NP-completeness proofs in this chapter were developed with Rob.

Overlaps with work by other authors

Theorem 3.5.6 was proved independently by Meidanis, Walter and Dias, and this the-

orem appears as the main result in [MWD97b].

Declaration

This dissertation is submitted in accordance with the regulations for the degree of

Doctor of Philosophy in the University of Glasgow. No part of it has been previously

submitted by the author for a degree at any university and all results contained within

are claimed as original, except where indicated above.

Chapter 1

Introduction and Background

1.1 Introduction

It is common to compare strings by calculating the minimum number of operations

required to transform one into the other, where the set of allowable operations varies

according to the context. When the set of allowable operations consists of insertions,

deletions and substitutions, efficient algorithms to calculate such ‘edit distances’ are

well known , e.g., [WF74], and are described in most algorithms textbooks.

We say that insertions, deletions and substitutions are local operations. However,

it is possible to envisage global operations that can change the entire string in one

step. Global operations like this include the reversal and the transposition. A reversal

inverts the order of a substring of any length, and a transposition swaps two adjacent

substrings of any length. Examples of these global operations are shown in Figures

1.1 and 1.2. Note that in these figures, and in others too, the operations act on the

underlined substrings.

In this thesis we consider several edit distance problems based on global operations.

Motivation for studying these problems comes firstly from computational molecular

biology. At the chromosome level, genetic sequences mutate much more commonly

by global operations like reversals and transpositions, than by local operations. So

evolutionary relationships between genomes can be inferred by calculating such global

edit distances.

We call any problem to do with calculating edit distances based on global operations

7 6 3 1 5 8 2 4

7 6 3 1 2 8 5 4

7 6 3 1 5 8 2 4

1 3 6 7 5 8 2 4

Figure 1.1: Some example reversals.

1

Chapter 1. Introduction and Background 2

7 6 3 1 5 8 2 4

7 6 3 1 2 4 5 8

7 6 3 1 5 8 2 4

7 6 1 5 8 2 3 4

Figure 1.2: Some example transpositions.

a genome rearrangement problem. This definition is very broad, and includes problems

that are not directly motivated by biological applications, that involve more than two

strings, and that are based on sets instead of strings. Typically, however, we consider

genome rearrangement problems that involve calculating the edit distance between two

strings relative to one kind of global operation.

For each problem, we seek an efficient algorithm or, alternatively, a proof that

the problem is NP-hard. If we cannot obtain an efficient algorithm then we seek

good heuristics for solving instances of the problem, and efficient algorithms that find

provably good solutions. For minimisation problems, like all the problems we consider,

an algorithm is called an r-approximation algorithm if the solution produced by the

algorithm is guaranteed to be no greater than r times the optimal solution.

Genome rearrangement problems have been studied for only a relatively short while.

New methods have had to be developed for these problems, because the dynamic pro-

gramming solutions typical of local edit distance algorithms are not obviously applicable

in the new setting.

One step that is almost always taken to simplify the problems is to assume that

the sequences being compared contain no repeated characters. The resulting simplified

problem is still biologically valid since a genome is unlikely to contain duplicate genes.

If there are no repeated characters then the strings are actually permutations, since

the global operations we consider cannot insert or delete any characters.

In this thesis we use π and φ to denote permutations. The length of a permutation

is denoted by n. (We also occasionally use |π| to denote the length of π.) We denote

the ith element of π by π(i). So, for example, if π = [4 1 3 2], then π(1) = 4, π(2) = 1,

and so on. For reasons that will become apparent later, we always assume that π is

extended so that π(0) = 0 and π(n+1) = n+1. However, usually when we write π, as

above, we do not include these extra elements. The identity permutation [1 2 3 . . . n]

is denoted by ın, or ı when the length of the permutation is obvious. The set (actually

the symmetric group) containing all permutations of length n is denoted by Sn.

Global edit distance problems on permutations can be viewed as sorting problems.

For example, if π = [4 1 3 2], and φ = [2 4 1 3], we can relabel the elements of the

permutations so that φ = [1 2 3 4]. That is, we have relabelled 2 as 1 , 4 as 2 ,

1 as 3 , and 3 as 4 . With this relabelling π = [2 3 4 1], and finding the distance

between π and φ is equivalent to finding the shortest sequence of operations that sorts

π. Note that φ−1 ·π = [2 3 4 1], and, in general, the distance between π and φ is equal

Chapter 1. Introduction and Background 3

to the distance between φ−1 · π and the identity permutation.

For a particular global operation X, sorting by Xs (e.g., sorting by reversals) is the

problem of finding a shortest sequence of Xs that sorts a given permutation. For such

a problem the distance of π, d(π), is the minimum number of operations required to

sort π. Note that by relabelling elements the distance between ı and π is equal to the

distance between π−1 and ı, so d(π) = d(π−1). The diameter of the symmetric group,

D(n), is the maximum value of d(π) taken over all n element permutations.

In this thesis we prefix d(π) with letters representing the global operation(s) being

considered. Similarly, in general, we prefix all functions by letters representing the

operation(s) being considered.

A simple concept that is often useful when studying genome rearrangement prob-

lems is that of the breakpoint. It is a position in the permutation that needs to be

changed by an operation, at some point in the transformation to the identity per-

mutation. The exact definition of a breakpoint differs from problem to problem. A

lower bound for d(π) can be calculated from the number of breakpoints in π. Often

this lower bound can be improved by counting cycles in a graph, called the cycle graph,

that is particularly appropriate for capturing the ‘hidden’ difficulties that make genome

rearrangement problems non-trivial.

There are many different variations of genome rearrangement problems. One varia-

tion is derived from the fact that genes have an orientation in chromosomes. To model

this fact, elements of the permutations can be given signs, ‘+’ or ‘−’, that can change

when the elements take part in global operations. Other variations involve restricting

the size or positions of the rearrangements, e.g., to only allow reversals of length two.

Yet other variations involve different global operations to be described in detail later.

The genome rearrangement problems are interesting in an algorithmic sense, be-

cause some of the problems have been shown to be NP-hard, some are polynomial-time

solvable, and some have unresolved computational complexity. Sometimes changing a

problem’s definition just a little changes the problem from an NP-hard problem to a

problem in P, or vice-versa.

We can also view genome rearrangement problems as combinatorial puzzles like,

for example, the Rubik’s cube. In this way solving them is viewed as something of an

intellectual challenge, and motivation to solve the problems becomes intrinsic.

Recent textbooks by Setubal and Meidanis [SM97] and Gusfield [Gus97] both con-

tain a chapter on genome rearrangement problems and, in particular, the problem of

sorting by reversals. In the sections below we describe specific genome rearrangement

problems and review the literature on these and related problems.

1.2 Sorting by reversals

A reversal ρ = ρ(i, j) (where 1 ≤ i < j ≤ n+1) transforms π into π ·ρ = [π(0) . . . π(i−

1) π(j − 1) . . . π(i) π(j) . . . π(n + 1)]. The reversal distance, rd(π), between π and

Chapter 1. Introduction and Background 4

ı is the length of a shortest sequence of reversals that transforms π into ı. Sorting by

reversals is the problem of finding a sequence of reversals of length rd(π) that sorts π.

When dealing with reversals, a (reversal) breakpoint is defined as a position i (1 ≤

i ≤ n + 1) such that |π(i) − π(i − 1)| 6= 1. (Remember that π is extended so that

π(0) = 0 and π(n+1) = n+1.) The number of reversal breakpoints in π is denoted by

rb(π). The identity permutation is the only permutation with no reversal breakpoints,

and a permutation can have no more than n + 1 reversal breakpoints. A strip is a

substring π[i..j] (i ≤ j) of π such that i and j + 1 are breakpoints, but no breakpoints

lie between these positions. A singleton is a strip of length one. A strip is increasing

if π(j) > π(i), otherwise it is decreasing.

A reversal can reduce the number of breakpoints in a permutation by at most two.

Therefore, a simple lower bound for reversal distance is

rd(π) ≥
rb(π)

2
.

Watterson, Ewens, Hall and Morgan [WEHM82] describe a simple approximation

algorithm for sorting by reversals1 that moves 1 to the front of the permutation with

the first reversal, then moves 2 to the correct place with the next reversal, and so on

until the permutation is sorted. This algorithm requires at most n − 1 reversals to

sort any given permutation. However, this algorithm does not achieve any constant

approximation bound.

Kececioglu and Sankoff [KS95]2 present a greedy approximation algorithm that

repeatedly applies a reversal that removes the most breakpoints from the permutation,

resolving ties among reversals that remove one breakpoint in favour a reversal that

leaves a decreasing strip. They are able to show that, on average, their algorithm

removes at least one breakpoint with every reversal, and is therefore a 2-approximation

algorithm. The worst-case time complexity of this algorithm is O(n2).

Bafna and Pevzner [BP96]3 introduce the important concept of the (reversal) cycle

graph4 rG(π). It is an edge coloured undirected graph derived from π that contains

a vertex for each element in the permutation (including 0 and n + 1). So rG(π) has

vertex set {0, . . . , n + 1}. Vertices are joined by black edges if the elements they

represent form a breakpoint in π, i.e., rG(π) has black edge set {{π(i − 1), π(i)} :

1 ≤ i ≤ n + 1, i is a breakpoint}. Vertices i and i + 1 are joined by a grey edge if

these elements are not consecutive in π, i.e., rG(π) has grey edge set {{i, i + 1} : 0 ≤

i ≤ n, i and i + 1 are not consecutive in π}. Some example cycle graphs are shown in

Chapter 2.

The cycle graph is important because Bafna and Pevzner obtain an improved lower

bound for reversal distance by considering cycles in this graph. An alternating cycle is

1In fact, they actually consider a similar problem on circular permutations in which mirror image

permutations are considered to be identical.
2an earlier version of this paper appeared as [KS93]
3an earlier version of this paper appeared as [BP93]
4In fact, Bafna and Pevzner call these graphs breakpoint graphs.

Chapter 1. Introduction and Background 5

a cycle that has edges of alternating colours. The cycle graph can be completely decom-

posed into edge-disjoint alternating cycles, because each vertex has an equal number of

incident grey and black edges. The number of cycles in a maximum alternating-cycle

decomposition of rG(π) is denoted by rc(π). Bafna and Pevzner show that

rd(π) ≥ rb(π) − rc(π).

This is a better bound than the bound described earlier because each cycle accounts

for at least two breakpoints.

Bafna and Pevzner obtain a 7/4-approximation algorithm for sorting by reversals,

by considering signed permutations (Section 1.3) and properties of the cycle graph.

The worst-case time complexity of their algorithm is O(n2).

Christie [Chr98] presents a 3/2-approximation algorithm for sorting by reversals.

We describe this algorithm in Chapter 2. Frings [Fri98] describes experiments compar-

ing this 3/2-approximation algorithm with Kececioglu and Sankoff’s 2-approximation

algorithm. He finds that, on average, the 3/2-approximation algorithm finds ‘signifi-

cantly’ shorter sequences than the 2-approximation algorithm.

Hannenhalli and Pevzner [HP96] use their algorithm for sorting signed permutations

by reversals (Section 1.3) to prove a conjecture of Kececioglu and Sankoff [KS95] that

an optimal length sequence of reversals exists that sorts a permutation and does not

break apart strips of length three or more. They also explain precisely when strips of

length two must be split apart. In fact, for permutations that have fewer than log n

singletons they obtain a polynomial-time algorithm for sorting by reversals.

Kececioglu and Sankoff [KS95] describe some novel graphs that give improved lower

bounds for reversal distance that they use in an exact algorithm that can determine

the reversal distance of permutations of about 30 elements.

Caprara, Lancia and Ng [CLN95] describe an exact branch and bound algorithm

that sorts random permutations containing up to 100 elements in a few minutes.

Kececioglu and Sankoff [KS95] conjecture that deciding if a permutation can be

sorted with rb(π)/2 reversals is NP-complete and hence that sorting by reversals is NP-

hard. However, Irving and Christie [IC95], and Tran [Tra97] disprove this conjecture.

We explain this further in Section 2.5.

In fact, the general problem of sorting by reversals is NP-hard as proved by Caprara

[Cap97b] (see also [Cap97c]). Essentially, he obtains this result by proving that deter-

mining the value of rc(π) is NP-hard.

Caprara [Cap98] shows that the probability that the lower bound for rd(π) based

on rG(π) is not exact is low (asymptotically O(1/n5)) for a random permutation π. He

uses this result to explain the good experimental performance of algorithms like that

of Caprara, Lancia and Ng.

The reversal diameter, rD(n), of the symmetric group Sn is the maximum value of

rd(π) taken over all permutations of length n. Bafna and Pevzner [BP96] prove that

rD(n) = n − 1 and that the only permutations needing this many reversals are the

Chapter 1. Introduction and Background 6

−7 −6 +3 +1 +5 +8 −9 −2 −4

−7 −6 +3 +1 +2 +9 −8 −5 −4

−7 +6 +3 −1 +5 +8 −9 −2 −4

+1 −3 −6 +7 +5 +8 −9 −2 −4

Figure 1.3: Some examples of reversals on signed permutations.

Gollan permutation, γn, and its inverse, where the Gollan permutation is defined as

γn+1 =











[1], if n = 0,

[γn(1) γn(2) . . . γn(n − 1) n + 1 γn(n)], if n is odd,

[γn(1) γn(2) . . . γn(n − 2) n + 1 γn(n − 1) γn(n)], otherwise.

1.3 Sorting signed permutations by reversals

In fact, there is a more biologically relevant version of sorting by reversals in which every

element of the permutation is given a sign, ‘+’ or ‘−’, that indicates the orientation

of the gene in the chromosome. Such permutations are called signed permutations.

(Permutations with no signs are called unsigned permutations.) In this version of the

problem, a reversal flips the sign of all the elements it acts upon. Some examples of

reversals on signed permutations are shown in Figure 1.3.

The identity signed permutation is the permutation +ı = [+1 +2 . . . +n]. The

signed reversal distance srd(π) between π and +ı is the length of a shortest sequence

of reversals that transforms π into +ı. Sorting signed permutations by reversals is the

problem of determining a sequence of reversals of length srd(π) that sorts π.

For signed permutations, a signed reversal breakpoint is a position i (1 ≤ i ≤ n+1)

such that π(i) − π(i − 1) 6= 1.

It would appear that sorting signed permutations by reversals is more complicated

than sorting by reversals, since any algorithm to solve the signed problem has to keep

track of the orientation of the elements as well as sort the permutation. However,

despite the apparent extra complication, Hannenhalli and Pevzner [HP95b] show that

the problem of sorting signed permutations by reversals is solvable in polynomial-time.

They achieve this result by first of all transforming the signed permutation π into an

unsigned permutation π′ of length 2n by replacing +i by [2i−1 2i] and −i by [2i 2i−1].

Significantly, rG(π′) has a unique cycle decomposition.

By considering how reversals can affect this unique cycle decomposition Hannenhalli

and Pevzner are able to show that

srd(π) = rb(π′) − rc(π′) + rh(π′) + rf(π),

Chapter 1. Introduction and Background 7

where rh(π′) is the number of so-called hurdles in the cycle graph, and rf(π) is 1 if π

is a so-called fortress and 0 otherwise. An excellent explanation of this result is given

by Setubal and Meidanis [SM97].

Berman and Hannenhalli [BH96] improve the O(n4) algorithm contained in [HP95b]

by producing an O(n2α(n)) algorithm to solve the problem, where α is the inverse Ack-

erman function (a function that is unbounded but grows remarkably slowly). Kaplan,

Shamir and Tarjan [KST97] present an O(n2) algorithm that is also simpler. If the

value of srd(π) is required only, without a sequence of reversals, then Berman and

Hannenhalli’s method can be used in a O(nα(n)) algorithm.

Before Hannenhalli and Pevzner described their polynomial-time algorithm, Bafna

and Pevzner [BP96] had described a 3/2-approximation algorithm for the problem, and

Kececioglu and Sankoff [KS94] had observed that the lower bound based on the cycle

graph of π′ was very tight.5

We denote by Σn the set of n element signed permutations. The signed reversal

diameter of Σn, srD(n), is the the maximum value of srd(π) taken over all π in Σn. For

n > 3, srD(n) = n + 1. When n is even, the diameter is achieved by the permutation

+Rn = [+n +(n − 1) . . . +1]. When n is odd and n > 3, the diameter is achieved by

the permutation [+2 +1 +3 +n +(n − 1) . . . +4]. These permutations are described

by Knuth in [Knu98] (Exercise 5.1.4–43).

Caprara [Cap97a] considers a generalisation of sorting signed permutations by re-

versals called multiple sorting by reversals. In an instance of multiple sorting by rever-

sals we are given q signed permutations, π1, . . . , πq, and we must construct a signed

permutation φ such that Σq
i=1srd(φ, πi) is minimised, where srd(φ, πi) is the signed

reversal distance between φ and πi. Caprara shows that multiple sorting by reversals

is NP-hard, even when q = 3.

1.4 Sorting by prefix-reversals

A problem related to sorting by reversals is the problem of sorting by prefix-rever-

sals, alternatively known as the pancake problem because it was posed [Dwe75] in the

following way:

The chef in our place is sloppy, and when he prepares a stack of pancakes

they come out all different sizes. Therefore, when I deliver them to a

customer, on the way to the table I rearrange them (so the smallest winds

up on top, and so on, down to the largest on the bottom) by grabbing

several from the top and flipping them over, repeating this (varying the

number I flip) as many times as necessary. If there are n pancakes, what is

the maximum number of flips (as a function of n) that I shall ever have to

use to rearrange them.

5In fact, Kececioglu and Sankoff consider a version of the problem on circular permutations.

Chapter 1. Introduction and Background 8

7 6 3 1 5 8 2 4

2 8 5 1 3 6 7 4

7 6 3 1 5 8 2 4

1 3 6 7 5 8 2 4

Figure 1.4: Some example prefix-reversals.

A prefix-reversal is a reversal of the form ρ(1, j), for 2 ≤ j ≤ n + 1. Some example

prefix-reversals are shown in Figure 1.4. The prefix-reversal distance prd(π) of a permu-

tation π is the minimum number of prefix-reversals necessary to sort the permutation.

Sorting by prefix-reversals is the problem of finding a sequence of prefix-reversals of

length prd(π) that sorts π.

We define prefix-reversal breakpoints in the same way as we defined reversal break-

points except that we ignore the first position in the permutation since this value must

change with every prefix-reversal. So the total number of prefix-reversal breakpoints

prb(π) in π can be defined as

prb(π) =

{

rb(π), if π(1) = 1,

rb(π) − 1, otherwise.

A prefix-reversal can decrease the number of prefix-reversal breakpoints by at most

one, so

prd(π) ≥ prb(π).

A simple algorithm to sort a permutation is to bring n to the front of the permuta-

tion with the first reversal, then move it to the end with the next reversal. We can then

use two reversals to move n − 1 to the correct place, and so on until the permutation

has been sorted. This process requires at most 2n − 3 reversals to sort π.

Heydari and Sudborough [HS] show that sorting by prefix-reversals is an NP-hard

problem.

The prefix-reversal diameter prD(n) of the symmetric group Sn is the maximum

value of prd(π) taken over all n-element permutations. Gates and Papadimitriou

[GP79] show that

prD(n) ≤
5n + 5

3
.

Heydari and Sudborough [HS97] improve a lower bound in [GP79] and show that

15n

14
≤ prD(n).

A signed version of sorting by prefix-reversals, also called the burnt pancake prob-

lem, is introduced in [GP79]. The signed prefix-reversal distance of π, sprd(π), is the

minimum number of prefix-reversals that sort a signed permutation π. The signed

Chapter 1. Introduction and Background 9

prefix-reversal diameter, sprD(n), of Σn is the maximum value of sprd(π) over all n

element signed permutations. Cohen and Blum [CB95] tighten bounds in [GP79] and

show that
3n

2
≤ sprD(n) ≤ 2n − 2.

Cohen and Blum also conjecture that the signed permutation prefix-reversal diameter

is achieved by the permutation −ı = [−1 −2 . . . −n]. Heydari and Sudborough [HS97]

show that sprd(−ı) ≤ 3(n + 1)/2, and that if the conjecture is true then prD(n) ≤

sprD(n) ≤ 3(n + 1)/2.

1.5 Sorting by restricted reversals

Chen and Skiena [CS96]6 investigate the problem of sorting permutations using rever-

sals of a fixed-length only, i.e., using reversals of the form ρ(i, i + k) for some fixed k.

Note that sometimes it is impossible to sort a permutation using only reversals of a

certain length. For example, an odd length reversal does not change the parity of the

position of any element it acts on, so odd length reversals cannot sort any permutation

of the form π = [2 1 . . .].

Chen and Skiena give a complete description for all n and k of how many permu-

tations of length n can be sorted using only reversals of length k. They present upper

and lower bounds for the reversal diameter of the group of permutations of length n

that can be sorted by reversals of length k. They also study the problem on circular

permutations.

A reversal of length two simply swaps adjacent elements of π. Bubble sort is an

algorithm that sorts a permutation using the minimum number of reversals of length

two. The number of swaps it uses is the so called inversion number of the permutation.

Jerrum [Jer85] describes an algorithm that optimally sorts circular permutations using

only reversals of length two.

A short reversal is a reversal of the form ρ(i, i + 2) or ρ(i, i + 3). Vergara [Ver97]

studies the problem of sorting by short reversals. He presents a polynomial-time 2-

approximation algorithm for calculating the short reversal distance of a given permu-

tation. He also presents bounds for the short reversal diameter of Sn.

1.6 Sorting by transpositions

A transposition τ = τ(i, j, k) (where 1 ≤ i < j < k ≤ n + 1) transforms π into

π ·τ = [π(0) . . . π(i−1) π(j) . . . π(k−1) π(i) . . . π(j−1) π(k) . . . π(n+1)]. We view

a transposition as an operation that swaps two adjacent substrings in a permutation.

(An alternative and equivalent view is to think of a transposition as an operation

that removes the substring π[i..j − 1] from the permutation, before re-inserting this

6an earlier version of this paper appeared as [CS95]

Chapter 1. Introduction and Background 10

substring in front of the element in position k.) Transpositions are also sometimes

called block-moves. (Note that a cycle of length two in the disjoint cycle form of a

permutation is sometimes called a transposition, but we are not concerned with these

kinds of transpositions.)

The transposition distance td(π) of a permutation π is the length of a shortest

sequence of transpositions that transforms π into ı. Sorting by transpositions is the

problem of finding a sequence of transpositions of length td(π) that sorts π. The

transposition diameter, tD(n), is the maximum value of td(π) taken over all n element

permutations.

When dealing with transpositions a (transposition) breakpoint is defined as a po-

sition i (1 ≤ i ≤ n + 1) such that π(i) − π(i − 1) 6= 1. (Remember, π is extended so

that π(0) = 0 and π(n + 1) = n + 1.) A strip is a substring π[i..j] of π (i < j) such

that i and j + 1 are breakpoints and there are no breakpoints between these positions.

The number of breakpoints in a permutation π is represented by tb(π). The identity

permutation is the only permutation that contains no breakpoints. A permutation can

contain at most n + 1 breakpoints.

A transposition can remove at most three breakpoints from a permutation. So we

can immediately obtain the following lower bound:

td(π) ≥
tb(π)

3
.

Bafna and Pevzner [BP98]7 introduce the important concept of the transposition

cycle graph for sorting by transpositions. The transposition cycle graph of π, tG(π), is

a directed edge-coloured graph with vertex set {0, . . . , n + 1}, grey edge set {(i, i + 1) :

0 ≤ i ≤ n}, and black edge set {(π(i), π(i − 1)) : 1 ≤ i ≤ n + 1}. Note that the edge

(u, v) is directed from u to v.

Since every incoming edge of a vertex can be uniquely paired with an outgoing edge

of the alternative colour, the graph can be completely decomposed into alternating

cycles, and furthermore this decomposition is unique. An alternating cycle is odd if it

contains an odd number of black edges. The number of odd alternating cycles in tG(π)

is denoted by tcodd(π).

The transposition cycle graph is important because Bafna and Pevzner show that

td(π) ≥
n + 1 − tcodd(π)

2
.

This is generally a much better lower bound for transposition distance than the bound

based on breakpoints. It is still an open question as to whether sorting by transpositions

can be solved in polynomial time, but Bafna and Pevzner use properties of cycles in the

transposition cycle graph to obtain a polynomial time 3/2-approximation algorithm for

the problem.

7an earlier version of this paper appeared as [BP95b]

Chapter 1. Introduction and Background 11

The transposition diameter of the symmetric group, tD(n), is still unknown. Bafna

and Pevzner prove that
n

2
≤ tD(n) ≤

3n

4
.

They note that, for 3 ≤ n ≤ 10, tD(n) = bn/2c + 1, and that this value is achieved by

the reverse permutation Rn = [n n−1 . . . 1]. They also state that td(Rn) ≤ bn/2c+1.

In Chapter 3 we prove that td(Rn) = bn/2c+1, and therefore tD(n) ≥ bn/2c+1. This

result was obtained independently by Meidanis, Walter and Dias [MWD97b].

Guyer, Heath and Vergara [GHV95] describe heuristics for sorting by transpositions

that are based on the length of a longest increasing subsequence and the length of a

longest increasing substring of the permutation. In Chapter 3 we present evidence that

these heuristics are not very good.

Jordan [Jor95] makes an interesting connection between topology and sorting by

transpositions. He defines a surface based on tG(π), and shows that the lower bound

for td(π) based on tG(π) is the so-called genus of this surface.

1.7 Sorting by restricted transpositions

An insertion of the leading element is a transposition of the form τ(1, 2, i). Aigner

and West [AW87] investigate the problem of sorting a list by repeated insertion of the

leading element. They show that n − k insertions are required, where n is the length

of the list and k is the largest value such that the last k elements in the list form an

increasing sequence. This is proved by observing that the elements in positions n − k

and n− k +1 must be in the wrong relative order at first. The only way their ordering

can change is if the element at position n− k reaches the front. This can only happen

after at least n − k − 1 insertions of the leading element. By extending the increasing

sequence at the end of the list with every insertion of the leading element, the list can

be sorted by n − k insertions.

An insertion of any element is a transposition of the form τ(i, i+1, j) or τ(i, j, j+1).

Knuth [Knu73] (Exercise 5.2.1–39), and Heath and Vergara [HV97] show that exactly

n − lis(π) insertions are required to sort π, where lis(π) is the length of a longest

increasing subsequence of π. The result is obtained because every element that is not

in the longest increasing subsequence must be moved, and every such element can be

moved into the correct position in the increasing subsequence by one insertion.

A bounded block-move is a transposition of the form τ(i, j, k), where k ≤ i + b

for some fixed parameter b. Heath and Vergara [HV97] investigate the problem of

sorting by bounded block-moves. A short block-move is a transposition of the form

τ(i, i + 1, i + 2), τ(i, i + 2, i + 3), or τ(i, i + 1, i + 3), i.e., a bounded block-move with

b = 3. Heath and Vergara [HV97] show that the short block-move diameter of Sn is

d
(n
2

)

/2e. In [HV98] they obtain a polynomial-time 4/3-approximation algorithm for

calculating the short block-move distance of a given permutation. They also describe

Chapter 1. Introduction and Background 12

7 6 3 1 5 8 2 4

7 6 3 1 2 4 5 8

7 6 3 1 5 8 2 4

1 5 6 3 7 8 2 4

Figure 1.5: Some example block-interchanges.

classes of permutations for which they can calculate the exact short block-move distance

in polynomial-time.

1.8 Sorting by block-interchanges

A block-interchange is a generalisation of a transposition. In a block-interchange two

non-intersecting substrings of any length are swapped in the permutation, whereas in

a transposition the substrings must be adjacent. Some example block-interchanges

are shown in Figure 1.5. The block-interchange distance of π, bd(π), is the length of

a shortest sequence of block-interchanges that transforms π into ı. Sorting by block-

interchanges is the problem of finding a sequence of block-interchanges of length bd(π)

that sorts π.

Christie [Chr96] introduces the problem of sorting by block-interchanges, describes

a polynomial time algorithm for sorting by block-interchanges, and determines the

block-interchange diameter of Sn. We present these results in Chapter 4.

1.9 Sorting by reversals and transpositions

All of the problems considered so far, allow only one kind of global rearrangement

operation. However, we can, of course, define problems in which more than one kind of

global rearrangement can be performed. For example, Sorting by reversals and transpo-

sitions is the problem of finding a shortest sequence of reversals and/or transpositions

that sorts a given permutation. Walter, Dias, and Meidanis [WDM98] investigate this

problem. It remains open as to whether the problem can be solved in polynomial time,

but they describe a 3-approximation algorithm for the problem.

They also investigate a signed version of sorting by reversals and transpositions.

For this problem they describe a 2-approximation algorithm, and show that the reversal

and transposition diameter of Σn is at least bn/2c+ 2. Hannenhalli, Chappey, Koonin

and Pevzner [HCKP95] use exhaustive search to solve a particular instance of length

7 of sorting signed permutations by transpositions and reversals.

Gu, Peng and Sudborough [GPS96] investigate the the problem of sorting signed

permutations by reversals, transpositions and trans-reversals, where a trans-reversal is

a simultaneous transposition and reversal. More formally, the trans-reversal τρ(i, j, k)

Chapter 1. Introduction and Background 13

removes the substring π[i..j − 1] from π, reverses this substring, and inserts it in

front of the element in position k of π. They describe a polynomial time 2(1 + 1/k)-

approximation algorithm for their problem, where k ≥ 3 is any fixed integer 8. Gu,

Peng, Iwata, and Chen [GPIC97] describe a simple greedy approximation algorithm

for this problem that in tests finds solutions that are very close to optimal.

Blanchette, Kunisawa and Sankoff [BKS96] conclude from experimental evidence

that a weighted version of sorting signed permutations by reversals and transpositions

in which transpositions are given roughly twice the weight of reversals is likely to give

more biologically meaningful results than the unweighted version.

1.10 Generating the symmetric group

Let g1, . . . , gk be permutations of the set {1 . . . n}. The set containing all the

permutations that can be expressed as a product of these permutations is a group. We

say that g1, . . . , gk are generators of this group. The size of the group that is generated

may be exponential in n and k. However, Furst, Hopcroft and Luks [FHL80] describe

a polynomial-time algorithm to test for membership of such a group.

Reversals, transpositions and other global rearrangements can be represented by

permutations, e.g., [3 2 1 4 . . . n] is a permutation that reverses the first three elements

of a permutation. Finding d(π) for a particular kind of rearrangement is equivalent

to finding a minimum length sequence of such permutations that produces π. Even

and Goldreich [EG81] show, by a transformation from the 3-exact-cover problem, that

the general problem of finding a minimal length sequence of generators that produce a

given permutation from a given set of generators is NP-hard. Jerrum [Jer85] has shown

that the problem is PSPACE-complete even when there are only two generators given.

However, in the problems that we study, the generator sets are fixed, i.e., they are

not part of the problem instances. This can make the problems more tractable. Some

computationally tractable fixed generator set problems are described in [Jer85].

1.11 Sorting by translocations

Organisms with more than one chromosome can evolve by genome rearrangements

called translocations. This leads to a genome rearrangement problem based on translo-

cations.

A translocation as an operation that acts on two strings X and Y such that a

prefix X ′ of X is swapped with a prefix or a reversed suffix Y ′ of Y . Note that the

swapped strings can have different lengths, but must have length at least one and must

be shorter than the entire string (i.e. 1 ≤ |X ′| ≤ |X| − 1 and 1 ≤ |Y ′| ≤ |Y | − 1).

Some example translocations are shown in Figure 1.6. Sorting by translocations is the

8In a forthcoming paper Gu, Peng and Sudborough [GPS99] describe a 2-approximation algorithm

for this problem.

Chapter 1. Introduction and Background 14

[5 6 4] [1 2 3 7 8]

[1 2 3 4] [5 6 7 8]

[8 7 3 4] [5 6 2 1]

[1 2 3 4] [5 6 7 8]

Figure 1.6: Some example translocations.

problem of finding a shortest sequence of of translocations, of length tld(A, B), that

transforms A into B, where A and B are sets of strings. In this problem it is assumed

that each element appears in exactly one string of A and in exactly one string of B.

We also consider strings X and Y to be identical, if X = Y or X = Y , where Y is the

reverse of Y .

Kececioglu and Ravi [KR95] describe a 2-approximation algorithm for sorting by

translocations, and a 2-approximation algorithm for sorting by translocations and re-

versals. Hannenhalli [Han96]9 describes a signed version of sorting by translocations.

He shows, using methods similar to those used to study sorting signed permutations

by reversals, that the signed version of the problem can be solved in polynomial-time.

The time complexity of the unsigned version remains open.

It is possible to extend the definition of a translocation to include operations that

act on empty prefixes and suffixes, as well as prefixes and suffixes that are the entire

string (i.e. to allow 0 ≤ |X ′| ≤ |X| and 0 ≤ |Y ′| ≤ |Y | in the definition of translocation

given above). With this definition of translocation, a fusion is a translocation that

joins two strings together, and a fission is an translocation that splits a single string

into two strings. Hannenhalli and Pevzner [HP95c] describe a polynomial algorithm

for a signed version of sorting by translocations, fusions, fissions and reversals.

1.12 Syntenic edit distance

Ferretti, Nadeau and Sankoff [FNS96] introduce a problem that is similar to sorting

by translocations except that in their problem translocations act on sets instead of

strings. Their motivation for this problem is that, in practice, the order of genes in a

chromosome is often unknown, whereas the chromosomal assignment of genes is known.

They define a translocation to be an operation that transforms sets X and Y into

(X − X ′) ∪ Y ′ and (Y − Y ′) ∪ X ′, for some X ′ ⊆ X and Y ′ ⊆ Y . Note that if Y = {}

then the operation is a fission, and that if X = X ′ and Y ′ = {} then the operation is

a fusion.

The syntenic edit distance, sd(A, B), is the minimum number of these translocations

that can transform A into B, where A and B are sets of sets. We define |A| to be the

number of sets contained in A.

9an earlier version of this paper appeared as [Han95a]

Chapter 1. Introduction and Background 15

{1, 2, 3 4} , {1, 2, 3 4} , {1, 2, 3 4}, {1, 2, 3 4}

{1, 2}, {3, 4}, {1, 2, 3 4} , {1, 2, 3 4}

{1, 2} , {3, 4}, {1, 2} , {3, 4}

{1}, {3, 4} , {2}, {3, 4}

{1}, {3}, {2}, {4}

Figure 1.7: An example syntenic edit distance problem.

There is a compact representation of the problem in which we relabel all the elements

that occur in the first set of A by 1, and all the elements that occur in the second

set of A by 2, and so on (removing any duplicates in the same set). Solving the

problem, in this form, requires a sequence of translocations that transforms B into

{{1}, {2}, . . . , {|A|}}. So in a sense the syntenic edit distance problem is a set

sorting problem rather than a permutation sorting problem. An example syntenic edit

distance problem and its solution is shown in Figure 1.7.

Ferreti, Nadeau and Sankoff [FNS96] present a simple heuristic for approximating

the syntenic edit distance. DasGupta, Jiang, Kannan, Li, and Sweedyk [DJK+97] show

that calculating syntenic edit distance is an NP-hard problem. They also describe a

simple 2-approximation algorithm for the problem.

1.13 Other related problems

Pevzner and Waterman [PW95] present a list of open problems in computational molec-

ular biology that includes a section on genome rearrangement problems.

Lowrance and Wagner [LW75] study the problem of calculating the edit distance

between two strings where the set of allowable edit operations is extended to include

swapping two adjacent characters. They describe a polynomial algorithm for the prob-

lem when there are special restrictions on the weight of a swap operation. Wagner

[Wag83] shows that in general calculating the extended edit distance is NP-hard.

A mathematical puzzle that is somewhat related to sorting by reversals, is the

problem of reversing a train using a short spur line attached to the main track. This

problem is introduced by Dewdney [Dew87], and studied by Amato, Blum, Irani and

Rubinfeld [ABIR89] and Aggarwal and Leighton [AL90].

A shuffle operation on a deck of playing cards is similar to a rearrangement opera-

tion in a genome rearrangement problem. Aldous and Diaconis [AD86] and Diaconis,

McGrath and Pitman [DMP95] present statistical analyses of card shuffling techniques.

Similarly, twist operations on a Rubik’s cube are like rearrangements in genome

rearrangement problems. Eidswick [Eid86] presents some methods that are useful for

solving the Rubik’s cube and similar problems.

Chapter 2

Sorting by Reversals

2.1 Introduction

In this chapter we study the problem of sorting by reversals. The significant results of

this chapter are as follows:

• we define a graph called the reversal graph that is useful for finding sequences of

reversals that sort permutations (Section 2.3).

• we present a polynomial-time 3/2-approximation algorithm for sorting by rever-

sals (Section 2.4). This is currently the best known approximation guarantee for

sorting by reversals.

• we show that it is possible to decide in polynomial-time whether a permutation

can be sorted using only reversals that remove two breakpoints (Section 2.5).

This disproves a conjecture of Kececioglu and Sankoff [KS95] that this special

case of sorting by reversals is NP-hard.

We begin the chapter with a section of standard definitions and results that are useful

for studying sorting by reversals.

2.2 Definitions

Let π be a permutation of length n. As is standard, we assume that π is extended so

that π(0) = 0 and π(n+1) = n+1, so that the first and last elements of the permutation

can be dealt with in the same way as all the other elements of the permutation. The

reversal ρ = ρ(i, j) (where 1 ≤ i < j ≤ n + 1) transforms π into π · ρ = [π(0) . . . π(i−

1) π(j − 1) . . . π(i) π(j) . . . π(n + 1)]. The reversal distance, rd(π), between π and

ı is the length of a shortest sequence of reversals that transforms π into ı. Sorting by

reversals is the problem of finding a sequence of reversals of length rd(π) that sorts π.

We say that π(i) is to the left of π(j) if i < j. Similarly π(i) is to the right of π(j)

if i > j. A reversal breakpoint is a position i in the permutation such that 1 ≤ i ≤ n+1

16

Chapter 2. Sorting by Reversals 17

and |π(i) − π(i − 1)| 6= 1. The number of reversal breakpoints in a permutation π is

denoted by rb(π). A reversal adjacency is a position i in the permutation such that

1 ≤ i ≤ n + 1 and |π(i) − π(i − 1)| = 1. A strip is a substring π[i, j], (i ≤ j), of π

such that i and j + 1 are breakpoints, but no breakpoints lie between these positions.

Note that, for conciseness, in the rest of this chapter we may talk of breakpoints and

adjacencies where, of course, we mean reversal adjacencies and reversal breakpoints.

The identity permutation is the only permutation containing no breakpoints, and

a permutation of length n can have at most n + 1 breakpoints. For any reversal ρ,

rb(π)− rb(π · ρ) ∈ {−2,−1, 0, 1, 2}. A reversal ρ is a k-reversal if rb(π)− rb(π · ρ) = k.

The (reversal) cycle graph rG(π) is an edge coloured graph that was introduced

by Bafna and Pevzner [BP96]. The graph contains a vertex for each element in the

permutation (including 0 and n + 1). So rG(π) has vertex set {0, . . . , n + 1}.

Two vertices are joined by a black edge if the elements they represent form a break-

point in π. Therefore rG(π) has black edge set {{π(i − 1), π(i)} : 1 ≤ i ≤ n +

1, i is a breakpoint}. Two vertices i and i + 1 are joined by a grey edge if these ele-

ments are not consecutive in π. Therefore rG(π) has grey edge set {{i, i + 1} : 0 ≤ i ≤

n, i and i + 1 are not consecutive in π}. In fact, the relationship between vertices of

rG(π) and the elements of π that they represent is so close that we often treat both

objects as if they were the same thing. For example, we often refer to elements of

rG(π) instead of vertices of rG(π).

An alternating cycle is a cycle that has edges of alternating colours. Henceforth all

cycles referred to in the cycle graph will be alternating cycles. The length of a cycle is

the number of black edges it contains. A k-cycle is a cycle of length k. A long cycle is

a cycle of length greater than two.

The cycle graph can be completely decomposed into edge-disjoint cycles, because

each vertex has an equal number of incident grey and black edges. However there are

likely to be many different such cycle decompositions of rG(π). The maximum number

of cycles in any cycle decomposition of rG(π) is denoted by rc(π). The cycle graph and

cycle decompositions are important because they give us the following lower bound for

rd(π).

Theorem 2.2.1 (Bafna and Pevzner) For any permutation π,

rd(π) ≥ rb(π) − rc(π).

2.3 Reversal graphs simplify sorting by reversals

In this section we show how to use a cycle decomposition C of rG(π) to find a sequence

of reversals that sorts π. To help us find the sequence of reversals we use another graph

called the reversal graph rR(C). Note that, of course, rR(C) does depend on π, but for

conciseness we do not show this in our notation.

Chapter 2. Sorting by Reversals 18

To construct the reversal graph we shall use the augmented cycle graph rG′(π).

This graph is constructed from rG(π) by adding black edges and grey edges between

adjacent elements of π, and directing all black edges in the graph from π(i) to π(i+1).

In other words, rG′(π) is an edge coloured graph with vertex set {0, . . . , n + 1}, grey

edge set {{i, i + 1} : 0 ≤ i ≤ n}, and black edge set {(π(i), π(i + 1)) : 0 ≤ i ≤ n}. For

a particular black edge (π(i), π(i + 1)), π(i) is said to be the tail, and π(i + 1) is said

to be the head.

A (alternating) cycle in rG′(π) does not need to respect the directions of the black

edges. So the augmented cycle graph can be decomposed into cycles just like the cycle

graph. Note that an adjacency in π is a 1-cycle in rG′(π). We can use this fact to

transform a cycle decomposition C of rG(π) into a cycle decomposition of rG′(π). Let

C+ denote the cycle decomposition of rG′(π) obtained from a cycle decomposition C of

rG(π) by adding 1-cycles to C.

Given a permutation π, and a particular cycle decomposition C of rG′(π), we con-

struct the reversal graph rR(C) as follows. We begin with the vertex set {u0, . . . , un}.

Each vertex in this set is associated with a grey edge of rG′(π). The vertex associated

with grey edge {i, i + 1} is denoted by ui. We colour ui blue if {i, i + 1} is part of a

cycle, according to C, in which it connects the head of a black edge to the tail of a black

edge. Otherwise we colour ui red. The grey edge of rG′(π) associated with a vertex u

of rR(C) is denoted by g(u).

Let u be a vertex in rR(C) such that g(u) is part of cycle C of the cycle decomposi-

tion C. We define lg(u) and rg(u) to be the positions in π of the leftmost and rightmost

elements, respectively, that are incident to g(u). So lg(ui) = min(π−1(i), π−1(i + 1)),

and rg(ui) = max(π−1(i), π−1(i+1)). Similarly, we define lb(u) and rb(u) to be the po-

sitions of the leftmost and rightmost black edges, respectively, that are joined by g(u)

in C. (The position of a black edge is the position of the rightmost element it is incident

to.) Note that, unlike lg(u) and rg(u), the definitions of lb(u) and rb(u) depend on the

cycle decomposition C. However lg(u) ≤ lb(u) ≤ lg(u)+1, and rg(u) ≤ rb(u) ≤ rg(u)+1.

We connect vertices u and v of rR(C) with an edge if

(i) lb(u) < lb(v) < rb(u) < rb(v), or

(ii) lb(v) < lb(u) < rb(v) < rb(u), or

(iii) lg(u) < lg(v) < rg(u) < rg(v), or

(iv) lg(v) < lg(u) < rg(v) < rg(u).

Example A cycle decomposition of the augmented cycle graph of π = [7 5 6 3 2 4 1]

is shown in Figure 2.1. Given this cycle decomposition lg(u0) = 0, rg(u0) = 7, lg(u2) =

4, and rg(u2) = 5, whereas lb(u0) = 1, rb(u0) = 7, lb(u2) = 5, and rb(u2) = 5. The

reversal graph of this cycle decomposition is shown in Figure 2.2. Note that in this

figure vertex ui is given the label i. 2

Of course, reversal graphs are not unique for π, because cycle decompositions are

not unique.

Chapter 2. Sorting by Reversals 19

0 7 5 6 3 2 1 84

Figure 2.1: An example cycle decomposition of rG′(π).

Blue Red

Blue

Blue Blue

Red

Blue

Blue

1

2

3

4

5

6

70

Figure 2.2: An example reversal graph

Chapter 2. Sorting by Reversals 20

(i) (ii)

Figure 2.3: The effect of ρ(u) when u is red.

The reversal ρ(i, j) acts on the black edges (π(i − 1), π(i)) and (π(j − 1), π(j)) of

rG′(π). The augmented cycle graph of the resulting permutation is identical to rG′(π)

except that these two black edges are removed and replaced by (π(i− 1), π(j − 1)) and

(π(i), π(j)), and the direction is flipped of each black edge of the form (π(k), π(k + 1))

where i ≤ k ≤ j − 2.

Reversal graphs are given their name because each vertex u in the graph has a

reversal ρ(u) associated with it. We define ρ(u) to be the reversal that acts on the two

black edges of rG′(π) that are joined by g(u) in C, where C is the cycle of C containing

g(u). If C is a 1-cycle, then ρ(u) is the identity reversal (i.e. the reversal that does

nothing).

Now let us consider the effect of applying ρ(u) when this reversal is not the identity

reversal. As was described above rG′(π · ρ(u)) is identical to rG′(π) except that two

black edges have been removed, two have been added, and the direction of some black

edges has been flipped. Clearly every cycle in C, except the cycle C containing the

removed black edges, exists in rG′(π · ρ(u)). So we can find a cycle decomposition of

rG′(π · ρ(u)) that contains all the cycles in C except C. The edges of rG′(π · ρ(u)) that

are not part of these cycles form either one or two cycles depending on the colour of u.

If u is a red vertex then the edges of C now form two cycles in rG′(π · ρ(u)). These

cycles are length 1 and length l − 1, where l is the length of C. This is illustrated

in Figure 2.3. In this figure g(u) is represented by a grey edge, and the other path

connecting the black edges joined by g(u) is represented by a dotted grey edge.

If u is a blue vertex then the edges of C form a cycle in rG′(π · ρ(u)). This is

illustrated in Figure 2.4.

We denote by C · ρ(u) the cycle decomposition of rG′(π · ρ(u)) that contains all

the cycles in C except C, replacing C with one or two cycles as described above. The

following lemma can be used to generate the reversal graph rR(C ·ρ(u)) of π ·ρ(u) from

rR(C).

Lemma 2.3.1 Let u be a vertex of rR(C) such that g(u) is part of cycle C. Then

rR(C · ρ(u)) can be derived from rR(C) by making the following changes to rR(C):

(i) For each vertex v (v 6= u), change the colour of v if and only if {u, v} is an edge in

Chapter 2. Sorting by Reversals 21

(i) (ii)

Figure 2.4: The effect of ρ(u) when u is blue.

rR(C).

(ii) For each pair of vertices v and w in rR(C), such that {u, v} and {u, w} are edges

in rR(C), flip the adjacency of v and w.

(iii) If u is a red vertex, make it an isolated blue vertex.

Proof We first prove that these alterations to the graph are necessary.

(i) Suppose {u, v} is an edge of rR(C). Then ρ(u) changes the direction of one of the

black edges (in the augmented cycle graph) that is incident to g(v), but leaves the

direction of the other black edge alone. So the colour of v is different in rR(C · ρ(u))

than in rR(C).

(ii) Suppose that {u, v} and {u, w} are edges of rR(C). Then because the order of

elements of π between positions lb(u) and rb(u) − 1 (inclusive) are reversed by ρ(u) it

transpires that {v, w} is an edge of rR(C · ρ(u)) if and only if {v, w} is not an edge of

rR(C).

(iii) If u is red, then as shown in Figure 2.3, ρ(u) transforms rG′(π) so that g(u) is

part of a 1-cycle. So u should be blue and isolated in rR(C · ρ(u)).

We now prove that no more alterations need to be made to the graph.

(i) If {u, v} is not an edge of rR(C) then the directions of both black edges incident to

g(v) remain the same or are both reversed by the action of ρ(u). Therefore the colour

of any vertex not adjacent to u should remain the same.

(ii) If {u, v} is not an edge of rR(C) then ρ(u) does not change which vertices are

adjacent to v. So the adjacencies of vertices not adjacent to u remain the same.

(iii) If u is blue then as shown in Figure 2.4, u is still blue in rR(C · ρ(u)). It is also

clear that {u, v} is an edge of rR(C · ρ(u)) if and only if {u, v} was an edge of rR(C).

2

From this lemma we see that, if u is a red vertex in rR(C), then we obtain rR(C·ρ(u))

from rR(C) by flipping the colour of every vertex adjacent to u, flipping the adjacency

Chapter 2. Sorting by Reversals 22

0 7 1 842 3 6 5

Figure 2.5: The resulting cycle decomposition.

Blue Blue

Blue

Blue

1

2

3

4

5

6

70

Blue

Red Blue

Red

Figure 2.6: The resulting reversal graph.

of every pair of vertices adjacent to u, and making u an isolated blue vertex.

Similarly, if u is a blue vertex then we obtain rR(C · ρ(u)) from rR(C) by flipping

the colour of every vertex adjacent to u, and flipping the adjacency of every pair of

vertices adjacent to u. Note that in this case u remains blue and is still adjacent to

the same vertices.

Example Applying the reversal represented by vertex 4 in Figure 2.2 results in

the cycle decomposition in Figure 2.5. The reversal graph of this cycle decomposition

is shown in Figure 2.6. 2

As a simple consequence of Lemma 2.3.1 we state the following corollary without

proof.

Corollary 2.3.1 A reversal represented by a vertex u in rR(C) affects only vertices

that are in the same connected component as u.

Chapter 2. Sorting by Reversals 23

The reversal graph for the identity permutation consists of n + 1 isolated blue

vertices. So to sort π, a sequence of reversals is required that transforms the reversal

graph into a graph with n + 1 isolated blue vertices. A sequence of reversals, each of

the form ρ(u) for some vertex u in rR(C), that transforms rR(C) into n + 1 isolated

blue vertices is called an elimination sequence for rR(C). Similarly, a sequence of

reversals, each of the form ρ(u) for some vertex u in rR(C), that transforms a connected

component of rR(C) containing k vertices into k isolated blue vertices is called an

elimination sequence for that component. We now show that there are two kinds of

component in rR(C) and we show how to eliminate each kind, using only reversals

represented in the graph. But first, we need some lemmas about the structure of

rR(C).

Cycles C and D of C interleave if rR(C) contains vertices u and v, arising from

cycles C and D respectively, such that {u, v} is an edge of the reversal graph. Grey

edges of rG′(π) interleave if the vertices that represent them are adjacent in the reversal

graph.

Lemma 2.3.2 Isolated blue vertices in rR(C) correspond to 1-cycles in C.

Proof From the definition of cycle graphs it is easy to verify that all 1-cycles in C

have corresponding isolated blue vertices in rR(C).

Now, suppose, for a contradiction, that v is an isolated blue vertex that arises from

a cycle C in C of length greater than one. Then v represents a grey edge g that joins

two black edges of C. Name the elements of π incident to the grey edge, x and x′, and

the two remaining elements incident to these black edges, y and z. Since v is blue, π

can take only two forms as shown below.

π =
. . . x y . . . z x′ . . . (i)

. . . y x . . . x′ z . . . (ii)

Now consider an algorithm that visits each vertex of the augmented cycle graph

in the order 0, 1, . . ., n, n + 1. This algorithm follows each grey edge in the graph.

Now in order to visit the smallest value between x and x′ it must travel along a grey

edge that interleaves with g. But that would mean v was not isolated, so x must be

contiguous with x′ in π. But then the cycle containing the black edge (x, x′) must give

rise to vertices in rR(C) that are connected to v. This contradiction proves the lemma.

2

Let C be a cycle decomposition of rG′(π). A cycle C of C is said to be unoriented

if every grey edge in the cycle connects the head of a black edge to the tail of a black

edge. Otherwise, the cycle is said to be oriented. (Caprara, perhaps more logically,

calls unoriented cycles directed cycles, and oriented cycles undirected, but we keep

to the more standard terminology.) Note that all vertices of rR(C) arising from an

unoriented cycle are blue.

Chapter 2. Sorting by Reversals 24

RedRed
u

Red
w

v

Figure 2.7: A type 1 vertex.

Lemma 2.3.3 An unoriented 2-cycle of rG(π) must interleave with another cycle in

rG(π).

Proof Both of the grey edges in an unoriented 2-cycle connect a head to a tail, so both

of the vertices of rR(π) that represent the 2-cycle are blue. By the definition of rR(π)

these two vertices are not adjacent. Now by Lemma 2.3.2 the vertices are not isolated.

So the vertices must be adjacent to vertices arising from another cycle. Therefore, an

unoriented 2-cycle must interleave with another cycle. 2

A connected component of rR(C) is oriented if it contains a red vertex, or it consists

solely of an isolated blue vertex. Otherwise the component is unoriented. Let A be a

connected component of rR(C), and let u be a vertex in A. We define Au to be the

subgraph of rR(C · ρ(u)) that contains all the vertices of A.

Lemma 2.3.4 If a component A of rR(C) is oriented then it contains a red vertex u

such that every component of Au is oriented (or the component A consists of a single

isolated blue vertex).

Proof To set up a contradiction, suppose that A is not a single isolated blue vertex,

and that Au contains an unoriented component for every red vertex u in A. By the

definition of unoriented components, the unoriented component in Au cannot be an

isolated blue vertex. So in order that the unoriented component of Au contains two

blue vertices that are joined by an edge, it must be the case that, for every red vertex

u in A, there is a pair of distinct vertices v and w such that, either

1) v and w are both red, {u, v}, {u, w} are edges in A and {v, w} is not an edge in A

(Figure 2.7), or

2) v is red and w blue, {u, v}, {v, w} are edges in A and {u, w} is not an edge in A

(Figure 2.8).

Further, these vertices, v and w, are part of an unoriented component of Au.

Call u a type 1 vertex if only case 1) applies, and otherwise a type 2 vertex. Let

Vr be the set of red vertices in A, so that every vertex in Vr is either a type 1 or a

type 2 vertex. Define a mapping f : Vr → Vr by means of f(u) = v where v is defined

Chapter 2. Sorting by Reversals 25

Red
v

Red
u w

Blue

Figure 2.8: A type 2 vertex.

by either case 1) or case 2) above, depending on whether v is a type 1 or a type 2

vertex. For a given red vertex u in A, define the sequence u0 = u, ui+1 = f(ui) for

i ≥ 0. Then because the set Vr is finite, the sequence must cycle, i.e., there must be a

smallest integer k (k ≥ 2) such that uj = uj+k, for any j ≥ x, where x is some positive

integer.

Suppose that the cycle contains a type 2 vertex, us. Then there is a blue vertex

w such that {us+1, w} is an edge and {us, w} a non-edge of A. But since us+2 is

in a unoriented component of Aus+1 , it follows that {us+2, w} must be an edge of A.

Similarly, {us+3, w}, {us+4, w}, . . . must be edges of A, but this leads to a contradiction

since us = us+k, and {us, w} is a non-edge of A.

Therefore every vertex in the cycle is a type 1 vertex. Let us be a vertex in

the cycle. Since us is a type 1 vertex, there is a red vertex w such that {us, us+1},

{us, w} are edges, and {us+1, w} is a non-edge in A. Recall that us = us+k. Note

that it is impossible to have us+k−1 = w because then us would be connected to a red

vertex us+1 in Aus+k−1
. It follows that {us+k−1, w} must be an edge of A. Similarly,

{us+k−2, w}, {us+k−3, w}, . . . must be edges of A, but this leads to a contradiction since

{us+1, w} is a non-edge of A. 2

Lemma 2.3.5 Let B be an unoriented component of rR(C). Then Bv is an oriented

component for all vertices v in B.

Proof This is a simple consequence of Lemma 2.3.1. 2

It is possible to use Lemma 2.3.4 to find an elimination sequence for an oriented

component A of rR(C). We simply apply a reversal represented by a red vertex v, for

which all the components of Av are oriented, and repeat until A has been eliminated

completely. Note that this observation together with Lemma 2.3.5 mean that we can

always find an elimination sequence for rR(C).

A reversal ρ(u) is a k-move if the number of 1-cycles in C · ρ(u) is k greater than

in C. If u is a red vertex then ρ(u) is a 1-move or a 2-move. If u is a blue vertex then

ρ(u) is a 0-move.

The following simple proposition will help us prove an important lemma about

components of the reversal graph.

Proposition 2.3.1 Let v be a vertex in rR(C). Then ρ(v) is a 2-move if and only if

v arises from an oriented 2-cycle.

Chapter 2. Sorting by Reversals 26

Proof Suppose ρ(v) is a 2-move. Then C · ρ(v) contains two more 1-cycles than C by

Lemma 2.3.2. So v must be red because otherwise the lengths of cycles in C · ρ(v) are

no different from the lengths of cycles in C. Now because v is a red vertex, ρ(v) splits

a cycle into a 1-cycle and a cycle of length l − 1, where l is the length of the original

cycle. In order for the reversal to be a 2-move, l must be 2, because the lengths of the

other cycles are not altered by ρ(v). Therefore v arises from an oriented 2-cycle.

Clearly a reversal on an oriented 2-cycle is a 2-move. 2

Lemma 2.3.6 All the vertices that arise from the same cycle in C are part of the same

connected component of rR(C).

Proof Suppose, for a contradiction, that a cycle C in C, gives rise to vertices in rR(C)

that are in different components.

Now let us imagine an elimination sequence S for rR(C). Each reversal, ρ(u), in

this elimination sequence, where u is a red vertex arising from C, splits the cycle into a

1-cycle and a cycle of length l − 1. The last reversal of this kind, ρ(w), must therefore

be a 2-move, and it must increase the number of isolated blue vertices in the reversal

graph by two (Proposition 2.3.1). Let u be a vertex arising from C that is not part of

the same component as w.

By Corollary 2.3.1 two components of rR(C) never merge together as a result of

applying a reversal during the elimination sequence. So the elimination sequence S

defines elimination sequences for each of the components of rR(C), and u and w are

never part of the same component. Also by Corollary 2.3.1 the elimination sequence

on the component containing w can be applied before any of the other elimination

sequences. If we do this, then when we apply ρ(w) the number of isolated blue vertices

in the reversal graph must still increase by two (by Corollary 2.3.1). But by Proposition

2.3.1, C must be an oriented 2-cycle at that stage. However, by the definition of rR(C),

the two vertices representing an oriented 2-cycle are connected by an edge, whereas C is

represented by vertices u and w (at least) that do not share an edge. This contradiction

proves the lemma. 2

It is possible to use Lemma 2.3.4 and Lemma 2.3.6 to calculate how many reversals

are required to eliminate an oriented component of rR(C) as shown by the following

proposition.

Proposition 2.3.2 Let A be an oriented component of rR(C) that contains vertices

arising from k different cycles of rG(π). Then there is an elimination sequence for A

that contains k 2-moves with all the other reversals being 1-moves.

Proof The elimination sequence found by the method described above always applies

a reversal that is represented by a red vertex in the reversal graph. So each reversal is

a 1-move or a 2-move. By Proposition 2.3.1 k of the reversals are 2-moves. 2

Chapter 2. Sorting by Reversals 27

We now describe how to deal with unoriented components. To eliminate an unori-

ented component we first make it an oriented component as described in Lemma 2.3.5.

The resulting oriented component can then be solved as before. So the number of

reversals needed to eliminate an unoriented component of rR(C), using only reversals

represented in rR(C), is the number stated in the following proposition that can be

easily verified.

Proposition 2.3.3 Let A be an unoriented component of rR(C) that contains vertices

arising from k different cycles of rG(π). Then there is an elimination sequence for A

contains one 0-move, and k 2-moves, with all the other reversals being 1-moves.

We now combine the last two propositions to find an upper bound on the reversal

distance of the permutation.

Theorem 2.3.1 Let C be a cycle decomposition of rG(π). Then, using only reversals

represented in rR(C+), π can be sorted by rb(π)− |C|+ ru(C) reversals, where ru(C) is

the number of unoriented components in rR(C+), and |C| is the number of cycles in C.

Proof By repeatedly applying Propositions 2.3.2 and 2.3.3 we will find a sequence

of reversals that sorts π and contains ru(C) 0-moves, |C| 2-moves, and rb(π) − 2|C|

1-moves. So the total length of this sequence is rb(π) − |C| + ru(C). 2

Note that it may be possible to sort π with fewer reversals by using a different cycle

decomposition, or by using reversals that act on black edges of two different cycles.

In fact the bound of Theorem 2.3.1 is very similar to the bound obtained by Han-

nenhalli and Pevzner [HP95b] for the related problem of sorting signed permutations

by reversals. Applied to unsigned permutations, they proved that, for a permutation

π and a cycle decomposition C,

rd(π) ≤ rb(π) − |C| + rh(C) + rf(C),

where rh(C) is the number of hurdles contained in C, and rf(π) = 0, or 1. Hurdles are

a subset of the unoriented components of rR(C), and in fact rh(C) + rf(C) ≤ ru(C).

So their bound is tighter than the bound obtained in Theorem 2.3.1.

However, the elimination sequences of Proposition 2.3.2 and Proposition 2.3.3 are

crucial for a counting argument used in a later proof that establishes the 3/2 bound

of an approximation algorithm. So we prefer not to use the bounds established in

[HP95b]. This preference also has the added advantage that in the next section, we do

not need to use properties of signed permutations in order to establish results that are

purely about unsigned permutations.

Chapter 2. Sorting by Reversals 28

2.4 A 3/2-approximation algorithm for sorting by rever-

sals

In this section we describe a 3/2-approximation algorithm for sorting by reversals. The

rest of this section is split into five subsections. In the first of these subsections (Section

2.4.1) an upper bound is described that is a sufficient condition for an algorithm to

achieve a 3/2-approximation bound. A method of generating cycle decompositions is

presented in Section 2.4.2. These cycle decompositions have reversal graphs, as shown

in Section 2.4.3, that can be used to sort π with a sequence of reversals that achieves

the bound. All the ideas presented in the earlier sections are pulled together in Section

2.4.4, where the 3/2-approximation algorithm is presented. Some concluding remarks

appear in Section 2.4.5.

2.4.1 The 3/2-bound

In this section we describe a sufficient condition for an algorithm to achieve a 3/2-

approximation bound. In the later sections we set out to produce an algorithm that

satisfies this condition.

Theorem 2.4.1 If rc2(π) is the minimum number of 2-cycles in any maximum cycle

decomposition of rG(π) then

rd(π) ≥
2

3
rb(π) −

1

3
rc2(π).

Proof Bafna and Pevzner [BP96] proved the fundamental lower bound

rd(π) ≥ rb(π) − rc(π). (2.1)

Now let C be a maximum cycle decomposition of rG(π) with the minimum number

of 2-cycles. Suppose, in particular, that C contains rc3∗(π) cycles of length greater than

two. Then, by (2.1),

rd(π) ≥ rb(π) − rc2(π) − rc3∗(π).

However, because each long cycle accounts for at least three of the black edges that

are not in shorter cycles of the decomposition, it must be that

rc3∗(π) ≤
1

3
(rb(π) − 2rc2(π)).

Combining these two inequalities proves the theorem. 2

In view of the above theorem it is apparent that an algorithm that sorts π using at

most rb(π)− rc2(π)/2 reversals will achieve a 3/2-approximation bound for sorting by

reversals.

Chapter 2. Sorting by Reversals 29

2.4.2 The cycle decomposition

In Section 2.4.1 we obtained a bound for reversal distance based on the minimum

number of 2-cycles in a maximum cycle decomposition. Perhaps perversely, we now

seek a cycle decomposition that contains as many 2-cycles as possible.

We will use a new graph called the matching graph rF (π) to find our cycle de-

composition of rG(π). The matching graph contains a vertex for each black edge in

rG(π). Two vertices, u and v, of rF (π) are connected by an edge if rG(π) has a 2-cycle

that contains both of the black edges represented by u and v. So each edge in rF (π)

corresponds to a 2-cycle in rG(π).

A maximum cardinality matching M of rF (π) can certainly be found in polynomial-

time. (Algorithms for finding the maximum cardinality matching of a graph are de-

scribed, for example, in Chapter 9 of [LP86]).

Unfortunately the cycles represented by M may not be edge-disjoint. For example,

if π = [0 9 3 4 6 5 8 7 1 10 2 11] then M contains edges representing the cycles

(0, 1, 10, 9) and (9, 10, 2, 3), but both these cycles involve the same grey edge (9, 10).

However, it is possible to find a cycle decomposition that contains at least d|M |/2e

2-cycles.

To find an appropriate set of edge-disjoint 2-cycles we use a graph derived from M ,

called the ladder graph rL(M). Let rL(M) be a graph with a vertex for every 2-cycle

represented in the matching M . Connect vertices of rL(M) if the 2-cycles that they

represent have an edge in common.

Proposition 2.4.1 rL(M) consists of isolated vertices and simple paths.

Proof Vertices of rF (π) represent black edges of rG(π), and edges of M represent

2-cycles of rG(π). So, if any 2-cycles represented in M share black edges then M could

not be a matching. So the 2-cycles represented by M can share only grey edges. A

2-cycle has two grey edges that could each be shared with a different cycle, so vertices

of rL(M) have maximum degree two. If two 2-cycles share a grey edge, but not a black

edge then they must share two vertices of rG(π). So the two cycles must be as shown in

Figure 2.9. If we extend these figures with more 2-cycles, that share grey edges but not

black edges, then we end up with 2-cycles sandwiched between other 2-cycles. From

the way that the cycles are sandwiched together, it is clearly impossible for rL(M) to

contain a cycle. 2

We call the 2-cycles represented by edges in M that are represented by isolated

vertices in rL(M) independent 2-cycles. By contrast we call the other 2-cycles repre-

sented by edges in M ladder cycles, and the vertices of rL(M) representing these cycles

ladder vertices. This is because we call a collection of 2-cycles of rG(π) represented by

vertices that form a path in rL(M) a ladder. (We leave it to the reader to work out

why we call these structures ladders.) Two very short ladders are shown in Figure 2.9.

Note that either all the cycles in a ladder are oriented, or all the cycles are unori-

ented. (A cycle of rG(π) is oriented or unoriented if and only if the cycle is oriented or

Chapter 2. Sorting by Reversals 30

Figure 2.9: Some short ladders.

unoriented respectively in rG′(π).) So we define a ladder to be oriented or unoriented

depending on whether the cycles it contains are oriented or not.

Let us suppose that rL(M) contains z isolated vertices and y ladder vertices. Note

that |M | = y + z.

Theorem 2.4.2 Given a maximum cardinality matching M of rF (π) it is possible to

find a cycle decomposition C of rG(π) that contains at least dy/2e ladder 2-cycles and

z independent 2-cycles.

Proof Construct rL(M) for the matching M . This graph consists of simple paths

and isolated vertices. Let C contain all the independent 2-cycles from rL(M) and every

alternate cycle from each ladder. Clearly these 2-cycles are edge-disjoint. The rest of

C can be obtained by adding any cycle decomposition of the remaining edges of rG(π).

2

Example Suppose π = [0 4 2 6 8 7 3 5 1 9 14 15 12 13 10 11 16]. Then rG(π)

is the graph shown in Figure 2.10. The matching graph rF (π) of this permutation

is shown in Figure 2.11. A maximum cardinality matching of this graph is indicated

by the edges a, b, c, d, and e. The ladder graph induced by this matching is shown

in Figure 2.12. Vertices a, c, d, and e may be selected from this graph. The cycle

decomposition C found by selecting these 2-cycles is shown in Figure 2.13. 2

Let C be the cycle decomposition found in Theorem 2.4.2. A selected 2-cycle is a

2-cycle of rG(π) that is represented in M , and is part of C. The edges of rG(π) that

are in 2-cycles represented in M , but not selected cycles, are called spare edges.

Chapter 2. Sorting by Reversals 31

0 4 2 6 8 7 3 5 1 9 14 15 12 13 10 11 16

Figure 2.10: rG(π) for π = [0 4 2 6 8 7 3 5 1 9 14 15 12 13 10 11 16].

11 1615 129 147 32 63 54 25 10 4 13 10

a b c d e

Figure 2.11: rF (π) for π = [0 4 2 6 8 7 3 5 1 9 14 15 12 13 10 11 16].

a b c d e

Figure 2.12: rL(M) where M = {a, b, c, d, e} in Figure 2.11.

0 4 2 6 8 7 3 5 1 9 14 15 12 13 10 11 16

Figure 2.13: The cycle decomposition C.

Chapter 2. Sorting by Reversals 32

We now consider the reversal graph rR(C) of this cycle decomposition.

Lemma 2.4.1 Let C be an unoriented ladder 2-cycle of C. Then the vertices of rR(C+)

that represent C are part of a component that contains vertices representing a cycle that

is not a selected 2-cycle.

Proof Let C be an unoriented ladder 2-cycle in C.

Suppose that the ladder containing C consists of three or more 2-cycles. Then there

must be another selected ladder 2-cycle D such that two spare black edges x and y

connect the black edges of C and D in the fashion shown in Figure 2.14. (Note that

the roles of C and D can be interchanged but the following argument holds with only

minor modifications.)

Now consider the cycle E containing x. Note that E cannot be a 1-cycle because we

are dealing with rG(π) and not rG′(π). Now E interleaves with C or D if it contains

a black edge that occurs: (i) before the leftmost edge of C, (ii) between the two black

edges of D, or (iii) after the rightmost black edge of C. So E intersects with C of D

unless it is a 2-cycle containing x and y. However such 2-cycles cannot exist because

rG(π) would then contain a cycle with only grey edges, and that is obviously impossible

from the definition of rG(π). Therefore E intersects with C or D.

By a similar argument we can show that F , the cycle containing y, intersects with

C or D. (Note that E and F may be the same cycle.)

Now suppose both of E and F interleave with D but not with C. Then by Lemma

2.3.3 a cycle G interleaves with C. Now G must have a black edge, a, between the two

black edges of C, and a black edge b either before the leftmost black edge of C or after

the rightmost black edge of C. But since G is not C, E or F , it must be the case that

a is between the two black edges of D. So G interleaves with D.

Therefore, by Lemma 2.3.6, vertices representing C are part of the same component

in rR(C+) as vertices representing E and F which contain spare edges.

Suppose that the ladder containing C is a ladder of length two, as shown in Figure

2.15. (Note that the roles of C and the spare edge can be interchanged but the following

argument holds with only minor modifications.) Suppose that the cycle or cycles

containing the spare black edges of the ladder do not interleave with C. Then, in a

similar way as was explained above, a cycle that interleaves with C must interleave

with the cycle containing the spare grey edge of the ladder. So vertices representing C

are part of the same component in rR(C+) as vertices representing a cycle containing

a spare edge.

The proof is completed by noting that cycles in C containing spare edges cannot be

selected 2-cycles. 2

2.4.3 The sequence of reversals

We now explain how to find a sequence of reversals that sorts π in no more than

rb(π) − rc2(π)/2 reversals. We can assume by, Theorem 2.4.2, that we have a cycle

Chapter 2. Sorting by Reversals 33

D

x y

C

Figure 2.14: Part of a long ladder.

C

Figure 2.15: A short ladder.

decomposition C of rG(π) that contains at least dy/2e 2-cycles that are part of ladders

and z independent 2-cycles.

Theorem 2.4.3 It is possible to sort π using no more than rb(π)−rc2(π)/2 reversals.

Proof Suppose that k of the selected 2-cycles in C are part of oriented components

of rR(C+). Then, by Proposition 2.3.2, there is a sequence of reversals that eliminates

all the oriented components and includes at least k 2-moves and no 0-moves.

Suppose that there are u unoriented components in rR(C+) that contain vertices

representing cycles that are not selected 2-cycles, and that together these components

include vertices representing l of the selected 2-cycles in C. Then, by Proposition 2.3.3,

there is a sequence of reversals that eliminates these components and includes at least

l + u 2-moves and only u 0-moves.

Suppose that the remaining v unoriented components of rR(C+), which, by Lemma

2.4.1, consist only of vertices representing independent selected 2-cycles, contain ver-

tices representing m 2-cycles. Then, by Proposition 2.3.3, there is a sequence of re-

versals that eliminates these components and includes at least m 2-moves and only v

0-moves. Note that v ≤ bz/2c, since, by Lemma 2.3.3, every component of this kind

represents at least two cycles.

The sequence of reversals found by the steps described will sort π using at least

k + l + m + u 2-moves and only u + v 0-moves. So at most rb(π) − k − l − m + v

reversals are required to sort the permutation. But k + l + m − v ≥ dy/2e + z − v,

since k + l + m ≥ dy/2e + z. Further dy/2e + z − v ≥ dy/2e + dz/2e, since v ≤ bz/2c.

Now |M | ≥ rc2(π) and y + z = |M |, so dy/2e+ dz/2e ≥ rc2(π)/2. This establishes the

theorem. 2

Chapter 2. Sorting by Reversals 34

algorithm approximation(π: Permutation) is

begin

construct the matching graph rF (π);

find a matching M for this graph;

construct C using this matching;

construct the reversal graph rR(C+);

find an elimination sequence for rR(C+);

end approximation;

Figure 2.16: The 3/2-approximation algorithm

Hence an algorithm that finds the elimination sequence described above is a 3/2-

approximation algorithm for sorting by reversals.

2.4.4 The algorithm

The approximation algorithm that has been described in the previous sections is out-

lined in Figure 2.16. The matching graph can be constructed in O(n) time. A max-

imum cardinality matching for any graph can be found in O(|V ||E|
1
2), where |V | is

the number of vertices and |E| is the number of edges in the graph. The matching

graph contains at most n edges and n vertices so, even without exploiting the special

structure of the matching graph, the matching M can be found in O(n
3
2) time. The

cycle decomposition can then be found in O(n) time. Constructing the reversal graph

can be performed in O(n2) time since there are at most O(n2) edges. The elimination

sequence for components of R(C) can be found as shown in Figure 2.17. Clearly find-

ing the elimination sequence in this way can be achieved in O(n4) time. So the overall

time-complexity of the algorithm is O(n4).

Note that by using methods described by Kaplan, Shamir and Tarjan [KST97] for

the related problem of sorting signed permutations by reversals, it is possible to find

the elimination sequence more efficiently. In fact, using their method of finding the

elimination sequence requires only O(n2) time and so the overall time-complexity of

the algorithm can be reduced to O(n2).

2.4.5 Conclusion

The approximation algorithm we have described has an approximation ratio of 3/2.

In fact the algorithm does perform that badly for some permutations. For instance

if π = [3 4 1 2] then the algorithm requires 3 reversals, when 2 is the minimum

possible. We define a sequence of permutations, of increasing length: π1 = π, πi+1 =

πi ++ [6i−1 6i 6i+3 6i+4 6i+1 6i+2], where i ≥ 1, and ++ represents concatenation.

Chapter 2. Sorting by Reversals 35

algorithm find an elimination sequence for rR(C) is

begin

for each unoriented component loop

apply a reversal represented by a blue vertex;

end loop;

while π 6= ı loop

r:= first red vertex;

found:= false;

while not found loop

generate rR(C · ρ(r));

count unoriented components in rR(C · ρ(r));

if there are no unoriented components then

π:= π · ρ(r);

C:= C · ρ(r);

found:= true;

else

r:= next red vertex;

end if ;

end loop;

end loop;

end find an elimination sequence for rR(C);

Figure 2.17: Finding an elimination sequence for rR(C).

Chapter 2. Sorting by Reversals 36

All these permutations require 3/2 times the minimum number of reversals to be sorted

by our algorithm. Hence the algorithm achieves this worst bound asymptotically too.

On the other hand there are permutations for which the lower bound of Theorem

2.4.1 is exactly 2/3 of the actual reversal distance. For instance if π = [5 6 3 4 1 2] then

rd(π) = 3, whereas rb(π) = 4 and rc2(π) = 2, so that the lower bound has value 2 in this

case. In a similar way to the above, we can define a sequence of permutations which all

have this property. Of course the approximation algorithm must sort all permutations

like this optimally in order to achieve the approximation bound. Therefore unless we

improve the lower bound we will not be able to improve the approximation ratio.

A strange property of our 3/2-approximation algorithm is that when we are con-

structing the cycle decomposition C, any cycle decomposition of those edges that are not

part of the selected 2-cycles will suffice. In general, the larger the cycle decomposition

we take of these edges, the better the solution we will find.

Similarly, a 0-reversal is used in the elimination sequence of every unoriented com-

ponent of rR(C). However, in general, by using reversals that act on black edges of

two different cycles it is not necessary to use so many 0-reversals.

Frings [Fri98] has implemented the 3/2-approximation algorithm. He has tested the

algorithm with permutations of length 10, 20 and 40, that were generated by applying

k reversals to the identity permutation. In comparison with Kececioglu and Sankoff’s

2-approximation algorithm he discovered that 3/2-approximation algorithm found ‘sig-

nificantly’ shorter sequences of reversals on average. For example, on permutations

with n = 20 and k = 7 the 3/2-approximation algorithm found an optimal length

sequence of reversals nearly 80% of the time, whereas the 2-approximation algorithm

found an optimal length sequence less than 60% of the time. However, there were some

permutations for which 2-approximation found shorter sequences of reversals than the

3/2-approximation algorithm. For example the 2-approximation algorithm uses only

two reversals to sort π = [3 4 1 2], but the 3/2-approximation algorithm uses three

reversals.

2.5 An easy case of sorting by reversals

Since the identity permutation has no breakpoints, and a reversal can reduce the num-

ber of breakpoints by at most two, an immediate lower bound for the reversal distance

is

rd(π) ≥
rb(π)

2
. (2.2)

Let us call a permutation π reversal-tight if (2.2) is satisfied with equality. Kece-

cioglu and Sankoff [KS95] made the following conjecture.

Conjecture 2.5.1 The problem of determining whether a given permutation is rever-

sal-tight is NP-complete.

Chapter 2. Sorting by Reversals 37

In this section we describe a polynomial-time algorithm to determine whether a

permutation is reversal-tight, and thereby disprove the Kececioglu/Sankoff conjecture.

In fact, the same result has been obtained independently by Tran [Tra97].

2.5.1 2-reversals, exposed and hidden

A permutation π has an exposed 2-reversal ρ = ρ(i, j) (1 ≤ i, j ≤ n + 1, i < j − 1) if

and only if there are breakpoints at positions i and j, |π(i − 1) − π(j − 1)| = 1, and

|π(i)−π(j)| = 1. It is clear that application the reversal ρ on π will reduce the number

of breakpoints by 2 if and only if ρ is an exposed 2-reversal. (Exposed 2-reversals

correspond to oriented 2-cycles in rG(π).)

A permutation π has a hidden 2-reversal ρ = ρ(i, j) (1 ≤ i, j ≤ n + 1, i < j − 1)

if and only if there are breakpoints at positions i and j, |π(i − 1) − π(j)| = 1 and

|π(i) − π(j − 1)| = 1. Application of a hidden 2-reversal does not reduce the number

of breakpoints by 2. However, a hidden 2-reversal may be transformed to an exposed

2-reversal by the application of one or more other reversals, depending (in a precise

way to be elaborated upon below) on the overlapping pattern of the reversals. Hidden

2-reversals correspond to unoriented 2-cycles in rG(π). In what follows, we use the

term 2-reversal to mean either an exposed or a hidden 2-reversal.

Let R(π) be the set of exposed and hidden 2-reversals in π. At any stage during

the process of sorting π by reversals, application of an exposed 2-reversal cannot create

any new exposed or hidden 2-reversals — it will destroy any 2-reversal that shares an

end-point with it, and it may flip some exposed 2-reversals so that they become hidden,

and vice versa. So the lower bound in (2.2) can be achieved only if R(π) contains an

appropriate subset R′(π) of exactly rb(π)/2 2-reversals. Here, ‘appropriate’ means:

(a) R′(π) contains exactly one exposed or hidden 2-reversal with an end-

point at breakpoint position i, for each breakpoint position i in π; and

(b) the 2-reversals in R′(π) can be ordered, say ρ1, ρ2, . . . , ρr (r = rb(π)/2)

so that, for each j (1 ≤ j ≤ r), ρj is exposed after ρ1, . . . , ρj−1 have been

applied (in that order).

(Note that, when a reversal is applied, the ‘parameters’, or end positions, of any over-

lapping reversal will be changed, but we continue to think of it as essentially the same

reversal.)

Each of conditions (a) and (b) above can be expressed in terms of a (different)

graph model. For condition (a), we use the matching graph rF (π) of Section 2.4.2,

that has a vertex for each breakpoint i in π, with vertices i and j (i < j) adjacent

if and only if ρ(i, j) is a 2-reversal in R(π). (Note that in Section 2.4.2, rF (π) was

defined in terms of cycles of length 2 in rG(π) instead of 2-reversals. However, both

definitions give rise to the same graph.) Then condition (a) is clearly satisfied if and

only if the graph rF (π) has a perfect matching. So this is a necessary condition for π

Chapter 2. Sorting by Reversals 38

to be reversal-tight (and can easily be checked in polynomial time). That it is not a

sufficient condition may be seen from the second of the following illustrative examples.

Example

π1 = [0 9 6 4 2 8 1 7 3 5 10].

π1 has 10 breakpoints, and has two exposed 2-reversals — ρ1 = ρ(3, 8) and ρ2 = ρ(5, 7),

and four hidden 2-reversals — ρ3 = ρ(1, 6), ρ4 = ρ(2, 10), ρ5 = ρ(3, 9), and ρ6 = ρ(4, 9).

ρ1, ρ2, ρ3, ρ4, and ρ6 form a perfect matching in the graph rF (π1). The reversals may

be applied in the order ρ2, ρ3, ρ4, ρ1, ρ6, so the reversal distance of π1 is 5, and π1 is

reversal-tight. 2

Example

π2 = [0 5 3 4 1 2 6 8 7 9].

π2 has 6 breakpoints, and has one exposed reversal — ρ1 = ρ(7, 9), and two hidden 2-

reversals — ρ2 = ρ(1, 4) and ρ3 = ρ(2, 6), and these 2-reversals form a perfect matching

in the graph rF (π). However, application of ρ1 leaves no exposed 2-reversal, so π2 is

not reversal-tight. 2

From now on we assume that the graph rF (π) has a perfect matching, since if it

does not, we can be sure that the permutation π is not reversal-tight. To investigate

condition (b) we use reversal graphs.

Let M be a perfect matching for rF (π). This perfect matching defines a cycle

decomposition CM of rG(π), in which all the cycles are 2-cycles. Our disproof of the

Kececioglu/Sankoff conjecture is based on the following theorem.

Theorem 2.5.1 A permutation π is reversal-tight if and only if there is some perfect

matching M in rF (π) such that every component of rR(C+
M) is oriented.

Proof If M is a perfect matching in rF (π) such that every component of rR(C+
M)

is oriented, then the elimination sequence found by using Proposition 2.3.2 on each

component sorts π such that every reversal is a 2-move. Further, each reversal must

remove 2-breakpoints because CM contains only 2-cycles. So π is reversal tight.

If π is reversal tight, then there must be a sequence of 2-reversals that sorts π. Each

2-reversal corresponds to a 2-cycle in rG(π). So rF (π) has a perfect matching. Further

each component of rR(C+
M) is oriented, because the sequence of 2-reversals that sorts

π corresponds to an elimination sequence of rR(C+
M), and none of the reversals are

0-moves. So each reversal corresponds to applying the reversal represented by a red

vertex of the reversal graph. If there was an unoriented component in rR(C+
M) then we

would not be able to sort π. 2

2.5.2 Kernels

Theorem 2.5.1 on its own does not give a polynomial-time algorithm to check whether

a permutation is reversal-tight. Certainly, for a given permutation π we can check

Chapter 2. Sorting by Reversals 39

in polynomial time whether the graph rF (π) has a perfect matching M , and for any

such perfect matching M we can check whether each component of rR(CM) is oriented.

But there may be many such matchings M — exponentially many in the worst case

— and we can only conclude that π is not reversal tight if rR(CM) has an unoriented

component for every such matching M . We now investigate how multiple matchings

can arise, and how such situations can be handled.

Let π be a permutation and consider the graph rF (π). Recall that we are assuming

that the graph rF (π) has a perfect matching. In forming a perfect matching in this

graph, any vertex of degree 1 must be matched with the unique vertex to which it

is adjacent. We may therefore iteratively pair off vertices until we reach a subgraph

of rF (π) in which every vertex has degree ≥ 2. Furthermore, if this subgraph has a

bridge, i.e., an edge whose removal disconnects the graph, then just by considering the

parity of the two resulting components we can decide whether that edge is forced into

or out of every perfect matching. Dealing with every bridge in this way leads us to

a subgraph of rF (π) — say rF ∗(π) — in which every vertex has degree 2 or 3, and

which contains no bridges. Let us call each connected component of rF ∗(π) a kernel

in rF (π). It turns out that kernels have a very special structure, as will be revealed in

the following sequence of lemmas. (Of course, since we are assuming that rF (π) has a

perfect matching, each kernel necessarily has an even number of vertices.)

Vertices of rF (π) are associated with black edges of rG(π) which are in-turn asso-

ciated with breakpoints of π. We shall blur the distinction between vertices of rF (π)

and breakpoints of π. So we say i is a breakpoint of a kernel K, if K contains a vertex

that is associated with breakpoint i of π. We use notation vi to denote the vertex of

K that is associated with the breakpoint of π at position i.

We need some additional terminology. Suppose that permutation π has a break-

point i, and this breakpoint is represented by a vertex, v say, in the graph rF (π). We

call π(i − 1) and π(i) the components of vertex v. If {v, w} is an edge in a kernel K

then this edge is an {α, α + 1}-connection if α is a component of v and α + 1 is a

component of w, or vice-versa.

Call an element α of π one-sided with respect to kernel K if there is a breakpoint

of K immediately to one side of α but not to the other. An element of π is two-sided

with respect to K if it has breakpoints of K on both sides.

Suppose {v, w} is an edge of a kernel K, and that v and w represent, respectively,

breakpoints in positions i and j of the permutation, with i < j. Then v is called a

left breakpoint and w a right breakpoint with respect to K. (Note that later we show

that a breakpoint cannot be both a left and a right breakpoint with respect to K.)

For convenience, in what follows, we use α′ and α∗ to represent α + 1 and α − 1, not

necessarily respectively, for any element α of permutation π. If α′ represents α+1 then

α′′ represents α + 2, and so on.

Lemma 2.5.1 For all permutations π, if a kernel K of the graph rF (π) contains an

{α, α + 1}-connection, then K contains at least two {α, α + 1}-connections.

Chapter 2. Sorting by Reversals 40

Proof Suppose that the end-vertices of the given {α, α + 1}-connection are v and w.

Without loss of generality, we may assume that α and α+1 are the smaller components

of v and w respectively. If there is no {α, α − 1}-connection in K, then since v has

degree ≥ 2, there must be a further {α, α + 1}-connection incident on v. Likewise, if

there is no {α + 1, α + 2}-connection, there must be a further {α, α + 1}-connection

incident on w. Otherwise, let x be any vertex of K whose smaller component is < α,

and let y be any vertex of K whose smaller component is > α. Then, since {v, w}

cannot be a bridge, there must be a path in K from x to y that does not use the edge

{v, w}. But if the smaller components of the vertices in this path are listed in order,

they must form a sequence with initial value < α, final value > α, and each pair of

successive values differing by 1. It follows that the sequence must contain α followed

by α + 1, and the corresponding edge of K is a second {α, α + 1}-connection. 2

Lemma 2.5.2 Let K be a kernel of rF (π). If the leftmost occurrence of a right break-

point (with respect to K) is in position i of π, then position i− 1 is not a breakpoint of

K.

Proof We can assume that π(i − 1) = α and π(i) = β are the components of the

leftmost right breakpoint, v say, of K. Since v is a right breakpoint, there must be

a breakpoint with components α′ and β′, say, lying to the left of v in π. Since there

is no right breakpoint in position i − 1, a second {α, α′}-connection can only arise if

α′ is sandwiched between β′ and β∗, so that all the {α, α′}-connections involve the

breakpoint v. If there is a breakpoint of K, u say, in position i − 1, it must be a left

breakpoint, so α∗ must lie to the right of α, and any {α, α∗}-connections must involve

the breakpoint u, since they cannot involve v. But then there cannot be a path in K

from a breakpoint having α′ as a component to one having α∗ as a component, so u

and v cannot both be part of K. Hence, position i − 1 is not a breakpoint of K. 2

Lemma 2.5.3 If α1 and α2 are the smaller (respectively larger) components of two

vertices in a kernel K, then each value between α1 and α2 is also the smaller (respec-

tively larger) component of a vertex in K.

Proof Let α1 and α2 be the smaller components of vertices v and w respectively. Since

the kernel K is connected, there is a path from v to w, and the successive vertices on

this path have smaller components differing by exactly one. Hence the path contains

vertices with smaller components covering all values between α1 and α2. The argument

for larger components is similar. 2

Lemma 2.5.4 For a permutation π of length n, the breakpoints of a kernel are in

positions i, i+1, . . . , i+m−1 and j, j +1, . . . , j +m−1 for some i, j and m with 1 ≤ i,

i + m < j, j ≤ n − m + 2. Further, any edge of K connects breakpoints in positions p

and q for some p, q with i ≤ p ≤ i + m − 1 and j ≤ q ≤ j + m − 1.

Chapter 2. Sorting by Reversals 41

Proof Suppose α is one-sided with respect to K. If there is an {α, α + 1}-connection

in K, then there must be at least two such connections, by Lemma 2.5.1. Hence there

can be no {α, α− 1}-connection because there would have to be two such connections,

and this would imply a vertex of degree 4 in K which is impossible. Similarly, if there

is an {α, α−1}-connection there can be no {α, α+1}-connection. So, by Lemma 2.5.3,

the only candidates for one-sided elements are

(a) the minimum of the smaller components of breakpoints in K;

(b) the maximum of the smaller components of breakpoints in K;

(c) the minimum of the larger components of breakpoints in K;

(d) the maximum of the larger components of breakpoints in K.

Since there can be at most four one-sided elements it follows that the breakpoints of

K lie in at most two intervals of the permutation. It is a consequence of Lemma 2.5.2

that the breakpoints must lie in two disjoint intervals [i, i + l − 1] and [j, j + m − 1]

with i + l < j, and that all breakpoints in the first interval are left breakpoints and

all those in the second interval are right breakpoints. Finally, since we are assuming

that rF (π) has a perfect matching, it follows that K does also, and since all edges of

K connect breakpoints in the two separate intervals, it follows that l = m. 2

If all the vertices in a kernel have degree 2, then the kernel is just a cycle (and

there are only two possible matchings of the vertices in this kernel). We now seek to

characterise kernels containing at least one vertex of degree 3.

Lemma 2.5.5 If a breakpoint (vertex) v has degree 3 in a kernel K of a permutation

π, then it is adjacent to three successive breakpoints x, y and z of π, and the middle

one of these, y, must be adjacent to the breakpoints u and w on either side of v.

Proof Let the components of v be α and β, with α to the left of β, and suppose,

without loss of generality, that v is a left breakpoint. The fact that v is adjacent to

three successive breakpoints is immediate. There are then two cases to consider:

(a) x, y and z occur in the sequence α′β′α∗β∗;

(b) x, y and z occur in the sequence β ′α′β∗α∗.

We prove the result only for case (a), the proof for case (b) being entirely analogous.

So the permutation takes the form

. αβ α′β′α∗β∗

To get a second {α, α′}-connection, there must be a breakpoint of K immediately to

the left of α, and to enable that breakpoint to have degree 2 in K, the value to the left

of α must be β′′ or β∗∗. Similarly, the value to the right of β must be α′′ or α∗∗. So

this leads to four subcases, as follows:

Chapter 2. Sorting by Reversals 42

case (i) β′′αβα∗∗ α′β′α∗β∗

case (ii) β∗∗αβα′′ α′β′α∗β∗

case (iii) β∗∗αβα∗∗ α′β′α∗β∗

case (iv) β′′αβα′′ α′β′α∗β∗

We will show that cases (ii), (iii) and (iv) are impossible. The conclusion of the lemma

follows immediately in case (i).

case (ii) To enable breakpoint (β, α′′) to have degree 2, β∗ must be followed by α′′′. To

enable breakpoint (β∗, α′′′) to have degree 2, β∗∗ must be preceded by α′′′′. To enable

breakpoint (β′, α∗) to have degree 2, α∗∗ must be a component of some breakpoint in

K. But then it is easy to verify that two {α∗, α∗∗}-connections cannot exist, showing

that this case cannot arise.

case (iii) To enable breakpoint (β∗∗, α) to have degree 2, β∗∗∗ must precede α′. To

enable breakpoint (α′, β′) to have degree 2, (α′′, β′′) (or (β′′, α′′)) must be a breakpoint

in K.

Now, since K contains no bridge there must be a path in K from breakpoint (α′, β′)

to (α′′, β′′) that does not use the edge joining them, and the first step in this path must

lead to (α, β), the only other available edge from (α′, β′). This path must pass through,

at some point, the other breakpoint with component β ′ — i.e., (β′, α∗) — so this may

as well be the next step on the path. It must also pass through the other breakpoint

with component α — i.e., (β∗∗, α) — but to reach that vertex from (β ′, α∗), the path

must pass through the other breakpoint with component β, namely (β, α∗∗). But then

both breakpoints having β as a component would have already appeared in the path,

and so it would impossible to get from (β∗∗, α) to (α′′, β′′). Hence this case cannot

arise.

case (iv) To enable breakpoint (β, α′′) to have degree 2, β∗ must be followed by α′′′.

To enable breakpoint (α∗, β∗) to have degree 2, there must be a breakpoint with com-

ponents α∗∗ and β∗∗. This case can now be ruled out by an argument analogous to

that used for case (iii), considering the possibility of an alternative path from (α∗, β∗)

to (α∗∗, β∗∗). 2

Lemma 2.5.6 If any vertex in a kernel has degree 3, then for some i < j, the edges

in the kernel are either

(i) {vi, vj}, {vi, vj+1}; {vi+m−1, vj+m−2}, {vi+m−1, vj+m−1}; and

{vk, vk+j−i−1}, {vk, vk+j−i}, {vk, vk+j−i+1} for i + 1 ≤ k ≤ i + m − 2; or

(ii) {vi, vj+m−1}, {vi, vj+m−2}; {vi+m−1, vj+1}, {vi+m−1, vj}; and

{vk, vi+j+m−k−2}, {vk, vi+j+m−k−1}, {vk, vi+j+m−k} for i+1 ≤ k ≤ i+m−

2.

Proof Suppose vk has degree 3 for some k (i ≤ k ≤ i + m − 1). Then vk is adjacent

in K to vl−1, vl, and vl+1 for some l (j < l < j + m − 1). By Lemma 2.5.5, it follows

Chapter 2. Sorting by Reversals 43

3 100 7 7 2 2 9 9 6 6 1 1 8 8 3 10 5 4 11

Figure 2.18: rF ∗(π3)

that i < k < i + m − 1 and that positions k − 1, k, k + 1, k + 2 and l − 1, l, l + 1, l + 2

are occupied in one of the two possible ways shown:

case (a) β′′αβα∗∗ α′β′α∗β∗

case (b) β∗∗αβα′′ β′α′β∗α∗

If m = 3 then we see that these two possibilities correspond to cases (i) and (ii) in

the statement of the lemma. Otherwise, one of vk+1 or vk−1 has degree 3. Applying

Lemma 2.5.5 leads to configurations (i) and (ii) with m = 4. The argument may be

continued inductively to complete the proof. 2

Let us call kernels of the form described in Lemma 2.5.6 parts (i) and (ii) overlapped

and nested kernels, respectively. A kernel in which every vertex has degree 2 will be

called a cyclic kernel.

At this point it may be helpful to include some illustrative examples.

Example

π3 = [0 7 2 9 6 1 8 3 10 5 4 11].

The permutation π3 contains an overlapped kernel with 6 breakpoints (see Figure 2.18).

It is a split kernel — see the definition below, split by the breakpoint (9, 6), since it is

forced to be matched in an oriented cycle with the breakpoint (10, 5). 2

Example

π4 = [0 11 2 9 4 7 6 5 8 3 10 1 12].

The permutation π4 contains a nested kernel that includes all 10 breakpoints (see

Figure 2.19). It is a whole kernel — see the definition below. 2

Example

π5 = [0 8 4 10 2 6 11 3 7 1 9 5 12].

The permutation π5 contains a cyclic kernel with 10 breakpoints (see Figure 2.20). It

is a split kernel, split by the single breakpoint (6, 11). 2

Now that we have characterised the structure of kernels, we have to consider how

to deal with them when they arise. Recall that a permutation is reversal-tight if and

Chapter 2. Sorting by Reversals 44

2 90 11 11 2 9 4 4 7 10 1 1 125 8 3 108 3

Figure 2.19: rF ∗(π4)

0 8 8 4 4 10 10 2 2 6 6 11 11 3 3 7 7 1 1 9 9 5 5 12

Figure 2.20: rF ∗(π5)

Chapter 2. Sorting by Reversals 45

only if there is a perfect matching M in the graph rF (π) such that every component of

rR(CM) is oriented. For a given kernel K, and a perfect matching M in rF (π), denote

by KM the subgraph of rR(CM) comprising of those components that contain vertices

arising from 2-cycles (of rG(π)) represented by edges in K and M .

According to Lemma 2.5.4, a kernel K has its left and right breakpoints in two

disjoint intervals of the permutation. Suppose that there is a 2-reversal with exactly

one of its endpoints lying between these two intervals, and that this 2-reversal is either

part of another kernel or is forced, during the construction of rF ∗(π) from rF (π), to

be part of any perfect matching. In this case, K will be called a split kernel. If there

is no such 2-reversal the kernel will be called whole. If rF (π) has a perfect matching

M such that every component of KM is oriented, then K will be called a reversal-tight

kernel.

Lemma 2.5.7 Let π be a permutation with a kernel K, and suppose that the graph

rF (π) has a perfect matching.

(i) If K is a whole kernel which is overlapped or nested then it is reversal-

tight.

(ii) If K is a whole kernel which is cyclic, then there is a polynomial-time

algorithm to check whether it is reversal-tight.

(iii) If K is a split kernel then it is reversal-tight.

Proof We prove the three cases separately:

(i) Let K be an overlapped kernel, with breakpoints vi, . . . , vi+m−1 and vj , . . . ,

vj+m−1 as in the statement of Lemma 2.5.6. If we take a perfect matching in K that

includes the edges {vi, vj+1} and {vi+1, vj}, and it is clear that such a matching exists,

then both of these edges represent exposed 2-reversals, and as vertices in KM , both are

represented by vertices that are adjacent to all of the vertices arising from K. Hence

the single component of KM is oriented.

On the other hand, if K is a nested kernel, we may take the perfect matching that

pairs vi with vj+m−1, vi+m−1 with vj , and, for k = 1, . . . , m − 2, vi+k with vj+m−1−k.

Every 2-reversal in this perfect matching is exposed, so that every component of KM

is oriented.

(ii) In this case, since the kernel is whole, the components of KM contain reversals only

on breakpoints of K. There are only two possible perfect matchings in K, and it is a

simple matter to check, in polynomial time, whether for either one, all the components

of KM are oriented.

(iii) For any perfect matching M of rF (π), KM will be a connected component, since

the edge that splits the kernel (or any of the chosen edges of a splitting kernel) will be

represented in KM by a vertex that is adjacent to all vertices arising from K. So in

this case, it suffices to determine whether K contains a perfect matching that includes

at least one exposed 2-reversal.

Chapter 2. Sorting by Reversals 46

If K is cyclic (necessarily with an even number of vertices) then there are just

two perfect matchings in K. The leftmost breakpoint in K is an end-point of two

2-reversals, one of which is exposed and one of which is hidden. So we may choose the

matching that includes this particular exposed 2-reversal.

If K is overlapped or nested then the perfect matchings described in the proof of

(i) each include at least one exposed 2-reversal, and this is all that is required. 2

Note that, by the definition of a kernel, the choices we make for the matching

restricted to each kernel are independent. So we can construct a global matching from

the matchings for each kernel. Therefore, it follows from Lemma 2.5.7 that, if π is a

permutation for which the graph rF (π) contains a perfect matching, then in order to

determine whether π is reversal-tight, the following steps suffice:

1. identify the kernels;

2. for any whole cyclic kernel K, establish whether at least one of the two possible

matchings gives components of rR(C+
M) that are all oriented;

3. establish whether all components of rR(C+
M) that do not involve kernels are all

oriented.

We have therefore proved the following theorem:

Theorem 2.5.2 For a given permutation π, it can be established in polynomial time

whether or not π is reversal-tight.

This result has been obtained independently by Tran [Tra97]. He proves the first

half (Theorem 2.5.1) of this result in roughly the same way as we do. However, he

proves the second half in quite a different way from us. In effect, Tran shows that if π

is reversal tight then all components of rR(C+
M) are oriented, where M is a maximum

weight perfect matching of rF (π) with edges given weight +1 if they represent an

exposed 2-reversal and weight −1 otherwise. So his proof of this part is simpler than

our proof because it does not need to describe the complicated structure of kernels.

2.6 Conclusion and open problems

The 3/2-approximation algorithm of Section 2.4 has the best known approximation

guarantee for sorting by reversals. It is an open problem to find a polynomial-time

algorithm with a better approximation guarantee.

The question of whether sorting by reversals is MAXSNP-complete [Pap94], and

the related question of whether there is a polynomial time approximation scheme for

the problem, are both open.

Chapter 3

Sorting by Transpositions

3.1 Introduction

In this chapter we study the problem of sorting by transpositions. The computational

complexity of this problem remains open, but we make a number of contributions to

the better understanding of this problem. The significant new results of this chapter

are as follows:

• we analyse the structure of cycles in the so-called transposition cycle graph,

leading to a better understanding of how these cycles affect the problem (Section

3.3). This includes defining cycles called knots, and describing a method for

dealing with such cycles in an efficient manner.

• we present a new 3/2-approximation algorithm for sorting by transpositions that

is somewhat simpler than that presented by Bafna and Pevzner (Section 3.4).

• we present an improved lower bound for sorting by transpositions (Section 3.5).

• we present empirical evidence that in practice we can solve most instances of

sorting by transpositions (Section 3.6).

Some other interesting new results in this chapter include:

• a proof that it is never necessary to break apart any strips in a minimal length

sequence of transpositions that sorts a permutation (Section 3.2.2).

• a description of a family of permutations whose transposition distance can be

arbitrarily far from Bafna and Pevzner’s lower bound for transposition distance

(Section 3.5.2).

• a proof that the transposition distance of the reverse permutation Rn is bn/2c+1

(Section 3.5.3).

We begin the chapter with a section containing fundamental definitions, lemmas

and theorems used to study the problem of sorting by transpositions.

47

Chapter 3. Sorting by Transpositions 48

3.2 Fundamental definitions and results

3.2.1 Definitions

Let π be a permutation of length n. The transposition τ = τ(i, j, k) (where 1 ≤

i < j < k ≤ n + 1) transforms π into π · τ = [π(0) . . . π(i − 1) π(j) . . . π(k −

1) π(i) . . . π(j − 1) π(k) . . . π(n + 1)]. The transposition distance, td(π), between π

and ı is the length of a shortest sequence of transpositions that transforms π into ı. A

sequence of transpositions that transforms π into ı is called a sorting sequence. Sorting

by transpositions is the problem of finding a sorting sequence for π of length td(π).

A transposition breakpoint is a position i in the permutation such that 1 ≤ i ≤ n+1

and π(i) − π(i − 1) 6= 1. The number of transposition breakpoints in a permutation π

is represented by tb(π). By contrast, a transposition adjacency is a position i in the

permutation such that 1 ≤ i ≤ n+1 and π(i)−π(i−1) = 1. A strip is a substring π[i..j]

of π (i < j) such that i and j +1 are breakpoints and there are no breakpoints between

these positions. Note that, for conciseness, in the rest of this chapter we may talk of

breakpoints and adjacencies where, of course, we mean transposition breakpoints and

transposition adjacencies.

Let f(π) be some function on π, e.g., tb(π). We are often interested in the change

in value of f(π) as a result of applying a transposition τ . We shall use ∆f(π, τ) to

denote the change. Formally, ∆f(π, τ) = f(π · τ) − f(π).

It is easy to show that the value of ∆tb(π, τ) is characterised by the following

lemma.

Lemma 3.2.1 For all permutations π and transpositions τ , ∆tb(π, τ) ≥ −3.

This lemma leads to the following lower bound for transpositions distance, since

the identity permutation contains no breakpoints.

Theorem 3.2.1 For all permutations π, td(π) ≥ dtb(π)/3e.

3.2.2 Transposition equivalent permutations

A little thought suggests that it is unlikely that a shortest sorting sequence would ever

have to break apart a strip, since that strip would later have to be put back together.

In fact this intuition is correct, as we prove below.

Let r be the number of strips in π, excluding any initial strip beginning with 1

and any final strip ending with n. We define the minimal permutation gl(π) to be the

permutation of {1, . . . , r} formed from π by ‘gluing’ all the adjacencies together, i.e.,

replacing each strip by a single element. Note that if π begins with 1 then the strip at

the start of π is removed completely in gl(π) and, similarly, if π ends with n then the

strip at the end of π is removed completely in gl(π).

Example If π = [4 5 6 3 1 2 7] then gl(π) = [3 2 1]. 2

Chapter 3. Sorting by Transpositions 49

0 3 4 1 2 5

Figure 3.1: tG(π), for π = [3 4 1 2].

Theorem 3.2.2 For every permutation π, td(π) = td(gl(π)).

Proof Clearly td(π) ≤ td(gl(π)), since any transposition on gl(π) may be mimicked

by a transposition on π.

We now show that td(gl(π)) ≤ td(π). Let π be a permutation of length n. We

may assume that gl(π) is length m, such that m ≤ n. Form a string Sπ of length

n by inserting n − m asterisks (∗) into gl(π), such that Sπ(i) is an asterisk if i is an

adjacency in π, or π(j) = j for all j ≥ i. For example, if π = [1 3 4 5 7 8 2 6 9], then

gl(π) = [2 4 1 3], and Sπ = [∗ 2 ∗ ∗ 4 ∗ 1 3 ∗]. Then any transposition on π can be applied

to Sπ, and ignoring asterisks this transposition can be applied to gl(π). Note that if any

transposition on Sπ moves a block that consists only of asterisks then the corresponding

transposition on gl(π) does nothing, so can be ignored. A sequence of transpositions

that sorts π will sort Sπ (ignoring asterisks), and so a sequence of transpositions of at

most the same length exists that sorts gl(π). Hence td(gl(π)) ≤ td(π), and the theorem

has been proved. 2

We say that permutations π and φ are transposition equivalent if gl(π) = gl(φ).

As a consequence of Theorem 3.2.2 we can essentially restrict our attention to

permutations with no adjacencies. A strip free permutation π is a permutation of

length n such that π contains no adjacencies, π(1) 6= 1, and π(n) 6= n.

3.2.3 The transposition cycle graph

The transposition cycle graph of π, tG(π), is a directed edge-coloured graph with vertex

set {0, . . . , n+1}, grey edge set {(i, i+1) : 0 ≤ i ≤ n}, and black edge set {(π(i), π(i−

1)) : 1 ≤ i ≤ n + 1}. Note that the edge (u, v) is directed from u to v. This graph was

introduced by Bafna and Pevzner [BP95b].

Example Let π be the permutation [3 4 1 2]. Then tG(π) is shown in Figure 3.1.

Note that by convention tG(π) is drawn without any circles representing the vertices.

We also, by a convention to be explained later, draw tG(π) so that the black edge

(π(i), π(i − 1)) points directly to the grey edge (π(i − 1), π(i − 1) + 1), and the grey

edge (i, i + 1) points directly to the black edge (i + 1, π(π−1(i + 1) − 1)). 2

Chapter 3. Sorting by Transpositions 50

The black edge (π(i), π(i− 1)) is denoted by bi. This edge, bi, is also known as the

black edge at position i. As shown in Figure 3.1, we draw tG(π) so that the black edges

occur in the order b1, . . . , bn+1 from left to right. It is because of this convention that

we define an edge bi to be to the left of bj if i < j. Similarly, we define bi to be to the

right of bj if i > j. The leftmost edge of a set of black edges is the edge bi from the

set such that i is minimised. Similarly, the rightmost edge of a set of black edges is

the edge bi from the set such that i is maximised. A grey edge (i, i + 1) is said to be

directed to the right if π−1(i) < π−1(i + 1). Similarly, a grey edge is said to be directed

to the left if π−1(i) > π−1(i + 1). In Figure 3.1, the grey edge (2, 3) is directed to the

left, and all the other grey edges are directed to the right.

A path in tG(π) is an alternating path if its edges alternate in colour. Similarly, a

cycle is an alternating cycle if its edges alternate in colour.

At each vertex of tG(π), each incoming edge can be paired with an outgoing edge

of the alternative colour. This pairing of edges decomposes the graph into alternating

cycles, and furthermore the decomposition is unique, since each vertex has at most

one incoming edge of each colour, and one outgoing edge of each colour. Such cycle

decompositions are obvious in our figures because of the conventions we use when

drawing cycle graphs. The number of alternating cycles in the cycle decomposition of

tG(π) is denoted by tc(π). The maximum value of tc(π) is n + 1, and is achieved only

when π is the identity permutation. In the rest of this chapter it is assumed that all

the cycles we consider are alternating cycles.

Let C be a cycle in tG(π). The length of C, l(C), is the number of black edges in

C. A k-cycle is a cycle of length k. A proper cycle is a cycle that has length greater

than one. A long cycle is a cycle that has length greater than two. If l(C) is odd then

the cycle is odd, and otherwise the cycle is even. The number of odd cycles in tG(π) is

denoted by tcodd(π). Similarly, tceven(π) denotes the number of even cycles in tG(π).

Example If π is the permutation [3 4 1 2] then tc(π) = tcodd(π) = 3 and tceven(π) =

0, as illustrated in Figure 3.1. 2

Bafna and Pevzner [BP95b] proved the following lemmas about the number of cycles

and odd cycles in the cycle graph.

Lemma 3.2.2 For all permutations π and transpositions τ , ∆tc(π, τ) ∈ {−2, 0, 2}.

Lemma 3.2.3 For all permutations π and transpositions τ , ∆tcodd(π, τ) ∈ {−2, 0, 2}.

A transposition τ is a t-transposition if ∆tcodd(π, τ) = t. Lemma 3.2.3, combined

with the fact that the identity permutation contains n + 1 odd length cycles, allowed

Bafna and Pevzner to prove the following lower bound for transposition distance.

Theorem 3.2.3 For all permutations π, td(π) ≥ (n + 1 − tcodd(π))/2.

Chapter 3. Sorting by Transpositions 51

0 6 1 5 7 12 4 11 2 9 3 8 10 13

Figure 3.2: tG(π), for π = [6 1 5 7 12 4 11 2 9 3 8 10].

The positions of the leftmost black edge and the rightmost black edge of a cycle C

are denoted by Cmin and Cmax respectively. More formally, these values can be defined

as Cmin = min{i : bi is an edge in C}, and Cmax = max{i : bi is an edge in C}.

By convention, a cycle is described by listing the positions of the black edges of

the cycle in the order they occur in the cycle, starting from position Cmax. A cycle

C that visits black edges in the order bi1 , . . . , bil(C)
is denoted by (i1, . . . , il(C)). (Note

i1 = Cmax.)

Example Let π be the permutation [6 1 5 7 12 4 11 2 9 3 8 10]. The cycle graph

of this permutation contains three cycles: (4, 1, 2), (12, 9, 10), and (13, 7, 3, 8, 5, 11, 6),

as shown in Figure 3.2. 2

The transposition τ = τ(i, j, k) is said to act on black edges bi, bj and bk of tG(π),

since the transformation from tG(π) to tG(π · τ) involves removing these three edges

and introducing three new edges, whereas all the other grey and black edges of tG(π)

remain intact in tG(π · τ).

Three black edges of tG(π) form an oriented triple if τ , the transposition that acts

on them, is such that ∆tc(π, τ) = 2. Three black edges of a cycle form an unoriented

triple if they do not form an oriented triple.

Example In Figure 3.2, (b1, b2, b4) is an oriented triple and (b3, b5, b8) is an unori-

ented triple. 2

An oriented cycle contains an oriented triple of black edges. A cycle that is not

oriented is unoriented. Bafna and Pevzner noted the following theorem characterising

unoriented cycles.

Theorem 3.2.4 Cycle C is unoriented if and only if (i1, . . . , il(C)) is a decreasing

sequence.

When a transposition is applied to a permutation the cycle graph of the resulting

permutation is the same as the original cycle graph except that three black edges

have been removed, and three black edges have been introduced. It is likely that the

positional labelling (bi) of a black edge that was not removed or introduced will have

changed as the result of the transposition. We often want a label for an edge that does

Chapter 3. Sorting by Transpositions 52

not change if the edge is not removed. We use the letters s, t, u, v, w, x, y and z

as positionally independent labels of black edges. The position of such a black edge u

in π is denoted by p(π, u). For brevity we sometimes write a positionally independent

label, where we should really write the position of the label. For example we may write

u < v in place of p(π, u) < p(π, v).

3.2.4 Even length cycles

Bafna and Pevzner do not give much emphasis to the following results about even

length cycles, but we will show them to be very useful in later sections. The first result

is a lemma that can be derived easily from Lemma 3.2.2 and Lemma 3.2.3.

Lemma 3.2.4 For all permutations π and transpositions τ , ∆tceven(π, τ) ∈ {2, 0,−2}.

This lemma leads naturally to the following corollary.

Corollary 3.2.1 tceven(π) is an even number, for all permutations π.

Proof This follows from the preceding lemma and the fact that the cycle graph of the

identity permutation contains no even length cycles. 2

This corollary allows us to prove the following useful lemma, that helps us determine

if it is possible to apply a 2-transposition to a permutation.

Lemma 3.2.5 For all permutations π, if tG(π) contains an even cycle we may apply

a 2-transposition on π.

Proof By Corollary 3.2.1, if tG(π) contains an even cycle then it must contain at least

two even cycles. Let C and D be even cycles of tG(π). Let x and y be black edges

of C such that the alternating path connecting x to y (but excluding both edges) in

tG(π) contains an even number of black edges. Let z be any black edge of D. Then

the transposition acting on black edges x, y and z is a transposition that increases the

number of odd length cycles in the cycle graph by 2 (although it does not increase the

total number of cycles in the cycle decomposition). 2

3.3 Fully oriented cycles

In this section we describe how to determine if a 2-transposition exists on a permuta-

tion. In particular, we achieve this by characterising those cycles (the fully oriented

cycles) that admit 2-transpositions that act on their edges. We also describe a method

for efficiently dealing with cycles that are oriented, but do not admit 2-transpositions

on their edges. We then compare our fully oriented cycles with Bafna and Pevzner’s

strongly oriented cycles. Finally we define cycles, super oriented cycles, that permit

a sequence of 2-transpositions on their edges, and show a preliminary result towards

characterising these cycles.

Chapter 3. Sorting by Transpositions 53

3.3.1 Fully oriented triples

Three black edges x, y and z of tG(π) form a fully oriented triple (x, y, z) if τ , the

transposition on those edges, is a 2-transposition, and x, y, and z are all part of the

same cycle in tG(π). A cycle that contains a fully oriented triple is said to be fully

oriented.

Fully oriented triples are useful because of the following simple proposition.

Proposition 3.3.1 Let τ be a 2-transposition that acts on black edges x, y, and z of

tG(π). Then either x, y and z are all part of the same cycle in tG(π), or they are from

two even length cycles in tG(π)

Proof Edges x, y, and z are edges of one, two or three cycles in tG(π). All possible

cases are shown in Figure 3.3. Note that vertices are not shown in this figure because

the figure represents only part of tG(π) and so there may be many vertices between

the black edges. In this figure dotted grey edges represent alternating paths in tG(π)

that start and finish with a grey edge.

A transposition can only be a 2-transposition if it is like that shown in Figure 3.3

(b), (c), (d) or (e). So x, y, and z must be part of one or two cycles. 2

As a consequence of this proposition, a 2-transposition either acts on two even

length cycles, or it acts on a fully oriented triple of edges. Now, if a 2-transposition

acts on two even cycles, then we can show that the edges the transposition acts on must

be arranged as described in the proof of Lemma 3.2.5. We characterise 2-transpositions

on one cycle by characterising fully oriented triples and fully oriented cycles.

Given a cycle we can easily tell, using Theorem 3.2.4, whether the cycle is oriented,

or unoriented. However an oriented cycle is not necessarily a fully oriented cycle. For

example, if π = [4 3 2 1] then the cycle (5, 3, 1, 4, 2) in tG(π) (Figure 3.4) is oriented,

but not fully oriented. What conditions make an oriented cycle fully oriented? We

answer this question in Section 3.3.3, but to help us find the answer we need a new

notation for cycles, that we call the canonical labelling of a cycle.

3.3.2 Canonical labellings

With the cycle notation introduced in Section 3.2.3 we can tell if a cycle is oriented, but

the notation is not very useful for anything else, in particular it is difficult to compare

the structure of two cycles using this notation.

We now introduce a new cycle notation called the canonical labelling in which the

structures of different cycles can be compared more easily. The first step towards

obtaining this new notation for a cycle C is to (re)label its black edges 1, 2, . . . , l(C)

so as to preserve the relative positional order of the edges. So edge bCmin is labelled 1,

the edge bi of C such that i is minimised but greater than Cmin is labelled 2, and so

on up to bCmax , which is labelled l(C).

Chapter 3. Sorting by Transpositions 54

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: How a transposition changes the cycle graph.

0 4 3 2 1 5

Figure 3.4: tG(π), for π = [4 3 2 1].

Chapter 3. Sorting by Transpositions 55

The canonical labelling, L(C), of the cycle C is the permutation of the set {1, . . . ,

l(C)} obtained from this labelling by starting with the edge labelled 1 then reading

the labels in the order they occur around the cycle. Note that all canonical labellings

begin with 1.

It will prove useful to split the canonical labelling into two subsequences. The

outer sequence O(C) is defined by taking the 1st, 3rd, etc. labels from the canonical

labelling. The inner sequence I(C) is defined by taking the 2nd, 4th, etc. labels from

the canonical labelling. The kth elements of these sequences are denoted by i(C, k)

and o(C, k) respectively.

Example Let π be the permutation [6 1 5 7 12 4 11 2 9 3 8 10]. The cycle graph

of this permutation contains three cycles: (4, 1, 2), (12, 9, 10), and (13, 7, 3, 8, 5, 11, 6),

as shown in Figure 3.2. These cycles have canonical labellings [1 2 3], [1 2 3], and

[1 5 2 6 3 7 4]. The third cycle has outer labelling [1 2 3 4] and inner labelling [5 6 7].

From this new notation it is perhaps more obvious that two of the cycles are very

similar. 2

In the old cycle notation, a cycle is unoriented if it is represented by a decreasing

sequence. So we may restate Theorem 3.2.4 in terms of canonical labellings as follows

Theorem 3.3.1 A cycle C is unoriented if and only if

L(C) = [1 l(C) l(C) − 1 . . . 2].

3.3.3 Fully oriented cycles

We now show how to determine if a cycle is fully oriented based on its canonical

labelling. We show that all even oriented cycles are fully oriented, whereas some

odd oriented cycles are not fully oriented. First we need a proposition characterising

oriented triples.

Proposition 3.3.2 Let [x y z] be a subsequence of the canonical labelling of a cycle.

Then (x, y, z) is an oriented triple if and only if x < y < z, or y < z < x, or z < x < y.

Proof If x, y and z satisfy one of these three conditions, then the cycle must be

oriented. The transposition on edges x, y, and z splits the cycle into three cycles, as

shown in Figure 3.3 (b). If x, y and z do not satisfy any of the three conditions, then

they must be arranged as shown in Figure 3.3 (a), and the transposition, as shown,

does not increase the number of cycles. Therefore the edges form an unoriented triple.

2

Now we show that every oriented even length cycle is a fully oriented cycle.

Lemma 3.3.1 Let [x y z] be a subsequence of the canonical labelling of an even length

cycle C, such that x < y < z, or y < z < x, or z < x < y. Then (x, y, z) is a fully

oriented triple if and only if [x y z] is neither a subsequence of I(C) nor a subsequence

of O(C).

Chapter 3. Sorting by Transpositions 56

Proof A transposition on these three edges will split C into 3 cycles (Proposition

3.3.2). If [x y z] is a subsequence of I(C) or O(C) then the paths between x, y and z

all contain an odd number of black edges. So the resulting cycles are all even in length.

However if [x y z] is not a subsequence of I(C) or O(C) then two of the resulting cycles

will be odd in length. 2

Theorem 3.3.2 If C is an even length cycle that is oriented, then C is also fully

oriented.

Proof Since C is oriented it must have the canonical labelling [1 . . . i . . . j . . .] such

that i < j. Obviously, 1 is in O(C). If at least one of i and j is in I(C) then (1, i, j) is

a fully oriented triple, by Lemma 3.3.1. If both of i and j are in O(C) then there must

be a k in I(C) such that C has canonical labelling [1 . . . i . . . k . . . j . . .]. If k < j

then (1, k, j) is a fully oriented triple. If k > j then (1, i, k) is a fully oriented triple. 2

We now show that no analogous result can be proved for odd length cycles. However,

we are able to characterise those odd length cycles that are oriented but not fully

oriented.

Lemma 3.3.2 Let [x y z] be a subsequence of the canonical labelling of an odd length

cycle C. Then (x, y, z) is a fully oriented triple if and only if one of the following six

conditions on x, y and z is true:

(i) x < y < z, x and z are in O(C) and y is in I(C)

(ii) x < y < z, x and z are in I(C) and y is in O(C)

(iii) y < z < x, x and z are in O(C) and y is in I(C)

(iv) y < z < x, x and z are in I(C) and y is in O(C)

(v) z < x < y, x and z are in O(C) and y is in I(C)

(vi) z < x < y, x and z are in I(C) and y is in O(C)

Proof Suppose that x, y and z satisfy one of these conditions. Then the three edges

must form an oriented triple (Proposition 3.3.2). Furthermore the paths in C between

x, y and z all contain an even number of black edges, and so the transposition on these

edges increases the number of odd length cycles in the cycle graph by two. So the edges

form a fully oriented triple.

Suppose that x, y and z do not satisfy any of the above conditions. If (x, y, z) is

not an oriented triple then it cannot be a fully oriented triple. If (x, y, z) is an oriented

triple then two of the paths in C between x, y and z contain an odd number of black

edges, and so the transposition on these edges increases the number of even length

cycles in the cycle graph. So in neither case is (x, y, z) a fully oriented triple 2

Theorem 3.3.3 For an odd length cycle of length 2r+1 (r > 1), the canonical labelling

[1 r + 2 2 r + 3 3 . . . 2r + 1 r + 1] is the only canonical labelling possible for a cycle

that is oriented, but not fully oriented.

Chapter 3. Sorting by Transpositions 57

Proof Clearly this is a canonical labelling of an oriented cycle. However the cycle

is not fully oriented, because O(C) is the sequence [1, 2, . . . , r + 1] and I(C) is the

sequence [r + 2, r + 3, . . . , 2r + 1]. Hence, it is impossible to find edges x, y and z that

satisfy any of the six conditions of Lemma 3.3.2.

We now show that this is the only possible canonical labelling for an oriented cycle

that is not fully oriented. Let C be an odd length cycle of length 2r+1 that is oriented,

but is not fully oriented.

In particular let us first suppose that o(C, k) ≤ r + 1 for all values of k. This

restriction means that o(C, k) < i(C, l) for all values of k and l. If i(C, k) > i(C, l) but

k < l then by Lemma 3.3.2 the black edges at positions o(C, l), i(C, l), and i(C, k) form

a fully oriented triple. Therefore I(C) must be the sequence [r + 2 r + 3 . . . 2r + 1].

Similarly O(C) must be the sequence [1 2 . . . r + 1].

This means that the canonical labelling [1 r + 2 2 r + 3 3 . . . 2r + 1 r + 1] is the

only canonical labelling that represents a cycle that is not fully oriented and for which

o(C, k) ≤ r + 1 for all values of k. So in any alternative canonical labelling of a cycle

that is not fully oriented there must be an o(C, k) such that o(C, k) > r + 1. Let C be

a cycle with just such an alternative canonical labelling.

Let o(C, k) be the largest value in O(C), and let i(C, l) be the smallest value in

I(C). Note that o(C, k) > r + 1 and so i(C, l) ≤ r + 1. In particular l ≥ k because

otherwise (1, i(C, l), o(C, k)) would be a fully oriented triple, by Lemma 3.3.2. So C

has canonical labelling [1 . . . o(C, k) . . . i(C, l) . . .].

Now since C is not fully oriented it must be the case that i(C, m) > o(C, k) for all

1 ≤ m < k, since otherwise (i(C, m), o(C, k), i(C, l)) would be a fully oriented triple.

Similarly o(C, m) < i(C, l) for all l < m ≤ r + 1, because otherwise (1, i(C, l), o(C, m))

would be a fully oriented triple. Furthermore o(C, s) > i(C, l) for all 2 ≤ s ≤ l since

otherwise (i(C, 1), o(C, s), i(C, l)) would form a fully oriented triple.

If 2r + 1 were in O(C) then (1, i(C, 1), 2r + 1) would be a fully oriented triple,

so 2r + 1 is in I(C). Suppose i(C, 1) 6= 2r + 1 then i(C, p) = 2r + 1 for some p,

1 < p ≤ r. Then (o(C, 2), i(C, p), o(C, r + 1)) would be a fully oriented triple because

then o(C, r + 1) < i(C, l) < o(C, 2) < i(C, p). So i(C, 1) = 2r + 1. If 2r were in I(C)

then (2r+1, o(C, 2), 2r) would be a fully oriented triple, so 2r is in O(C). In particular

o(C, k) = 2r, and so k = 2 since i(C, m) > o(C, k) for all 1 ≤ m < k.

Now suppose that C 6= [1 2r + 1 2r . . . 3 2]. Then there must be an i(C, q) <

o(C, r) such that q < r or an o(C, q) < i(C, r) such that q ≤ r and q > 1. If the

first case were true then (2r, i(C, q), o(C, r)) would be a fully oriented triple. If the

second case were true then (2r + 1, o(C, q), i(C, r)) would be a fully oriented triple. So

C = [1 2r + 1 2r . . . 3 2], which is not oriented. 2

We can use these results about the canonical labellings of fully oriented cycles, to

prove that small cycles are less likely to be fully oriented.

Lemma 3.3.3 A cycle of length l is less likely to be fully oriented than a cycle of length

l + 1, assuming all canonical labellings are equally likely.

Chapter 3. Sorting by Transpositions 58

Proof If an odd length cycle (of length 2r + 1) is not fully oriented then it must have

canonical labelling [1 2r + 1 . . . 2], or [1 r + 2 2 r + 3 3 . . . 2r + 1 r + 1]. Now there

are (2r)! possible canonical labellings of an odd length cycle. So the chance that an

odd length cycle is not fully oriented is only 2/(2r)!.

If an even length cycle (of length 2r) is not fully oriented then it must have canonical

labelling [1 2r . . . 2]. So the chance that an even length cycle is not fully oriented is

only 1/(2r − 1)!.

The proof is completed by noting that 1/(2r − 1)! > 2/(2r)! > 1/(2r + 1)!. 2

We shall use this lemma as the basis of a successful heuristic for solving instances

of sorting by transpositions in a later section.

3.3.4 Knots

In this section we prove some results about cycles that are oriented, but not fully

oriented. We call such cycles knots. We define ωr to be the permutation of length 2r

whose cycle graph consists of a knot of length 2r + 1, if such a permutation exists.

Lemma 3.3.4 If r ≡ 1 (mod 3) then ωr is not defined, but ωr exists (and is unique)

for all other values of r.

Proof By Theorem 3.3.3, a knot of length 2r +1 has canonical labelling [1 r +2 2 r +

3 3 . . . 2r + 1 r + 1]. So if ωr exists then tG(π) contains r grey edges directed to the

right, namely {(π(i), π(i + r + 2)) : 0 ≤ i ≤ r− 1}, and r + 1 grey edges directed to the

left, namely {(π(i), π(i − (r − 1))) : r ≤ i ≤ 2r}. Therefore all grey edges are directed

from π(i) to π((i + r + 2) mod (2r + 1)) (except the edge (π(r − 1),π(2r + 1))).

Let S be the sequence that is defined by the recurrence relation:

S(0) = 0

S(i + 1) = (S(i) + r + 2) mod (2r + 1), (for i ≥ 0).

Then S = [0 r + 2 3 . . .]. Suppose that ωr exists. Let us follow grey edges in tG(ωr),

starting from 0, i.e., visit vertices of tG(π) in the order 0, 1, 2, etc.. Now the positions

of these elements in π is given by the sequence S. Therefore ωr exists if and only if the

period of S is 2r + 1.

Now the period of S is 2r + 1 if and only if r + 2 and 2r + 1 are co-prime, i.e.,

gcd(r + 2, 2r + 1) = 1 where gcd(x, y) is the greatest common divisor of x and y. Now

gcd(r + 2, 2r + 1) = 1 ⇔ gcd(r + 2, r − 1) = 1 ⇔ gcd(3, r − 1) = 1. Therefore ωr exists

if and only if r 6≡ 1 (mod 3). 2

By considering S, the sequence defined in the proof of Lemma 3.3.4, it is easy

to verify that ωr(i) = (i.4(r + 1)/3) mod (2r + 1) if r ≡ 2 (mod 3), and ωr(i) =

(i.(2r/3 + 1)) mod (2r + 1) if r ≡ 0 (mod 3)

Chapter 3. Sorting by Transpositions 59

Figure 3.5: How to sort a knot of length 5.

Lemma 3.3.5 If tG(π) contains a knot, then we may apply a (0, 2, 2)-sequence of

transpositions on the knot.

Proof We can sort ω2 using a (0, 2, 2)-sequence as shown in Figure 3.5. Edges 1, 2,

r + 1, r + 2, and 2r + 1 of a larger knot are connected in exactly the same way as the

five edges of ω2 are connected, except that there is an alternating path (that contains

an even number of black edges) between edges 2 and 2r + 1 instead of a single grey

edge. The sequence of transpositions on ω2 may be applied to these five edges of the

larger knot. The resulting transpositions form a (0, 2, 2)-sequence. 2

Lemma 3.3.5 is sufficiently powerful to obtain the 3/2-approximation algorithm

in Section 3.4. However, below we show that in fact a much stronger result can be

proved, though we warn the reader that the proof of this theorem involves a lengthy

and detailed case by case analysis.

Theorem 3.3.4 If r 6≡ 1 (mod 3) then td(ωr) = r + 1.

Proof Since, ωr contains only one cycle, and it is not fully oriented, an initial 2-

transposition cannot be applied to ωr. So td(ωr) ≥ r + 1.

Chapter 3. Sorting by Transpositions 60

8 5 2 10 7 4 1 9 6 3

1 8 5 2 10 7 4 9 6 3

1 2 10 7 4 9 8 5 6 3

1 2 10 7 8 5 6 3 4 9

1 2 7 8 5 6 3 4 9 10

1 2 5 6 7 8 3 4 9 10

1 2 3 4 5 6 7 8 9 10

Figure 3.6: A sequence of transpositions that sorts ω5.

Let us define a sequence of transpositions τ1, τ2, . . . , τr+1, as follows.

τi =



























































τ(1, r + 2, r + 3) i = 1

τ(2 + i−2
3 , 2 + i, r + 4 + 2 i−2

3) 2 ≤ i ≤ r − 1, i ≡ 2 (mod 3)

τ(r − 2 i−3
3 , r + 2, 2r + 1 − i−3

3) 2 ≤ i ≤ r − 1, i ≡ 0 (mod 3)

τ(3 + i−4
3 , r − 1 − 2 i−4

3 , 2r + 1 − i−4
3) 2 ≤ i ≤ r − 1, i ≡ 1 (mod 3)

τ(1 + r+1
3 , 2 r+1

3 + 1, r + 2) i = r, r ≡ 2 (mod 3)

τ(1 + r+1
3 , r + 2, 4 r+1

3 + 1) i = r + 1, r ≡ 2 (mod 3)

τ(r
3 + 2, 2r

3 + 2, 4r
3 + 2) i = r, r ≡ 0 (mod 3)

τ(r
3 + 2, 2r

3 + 2, r + 2) i = r + 1, r ≡ 0 (mod 3)

In Figure 3.6 it is demonstrated that this sequence of transpositions sorts ω5. We

prove by induction that this sequence of transpositions sorts ωr for all r. Let πi be

the permutation obtained after applying the first i transpositions to ωr, i.e., πi =

ωr · τ1 · · · τi.

Let us define δ to be equal to ωr(1). By the proof of Lemma 3.3.4 this definition is

equivalent to

δ =

{

4
(

r+1
3

)

r ≡ 2 (mod 3)
2r
3 + 1 r ≡ 0 (mod 3)

Note that, for both cases 2δ ≡ 2r + 3 − δ (mod 2r + 1).

To help us describe πi at each step, we need the following definitions of subsequences

of ωr and ı. Let I(i, k) = [i i+1 . . . i+k−1]. Let I∗(i, k) = [i−k +1 . . . i−1 i]. Let

K(i, j, k) = [ωr(m) ωr(m+1) . . . ωr(m+k−1)], where ωr(m) = i, and ωr(m+k−1) = j.

Let B1(k) = I(1, k), B2(k) = I∗(2r+2−δ, k), B3(k) = I(δ+1, k), B4(k) = I∗(δ, k),

B5(k) = I(2r + 3 − δ, k), and B6(k) = I∗(2r, k).

For 1 ≤ i ≤ r − 2 we shall show that πi is defined as follows:

If i ≡ 1 (mod 3) then πi = [B1((i − 1)/3 + 1) B4((i + 2)/3) B5((i + 2)/3) K((2 +

(i − 1)/3, δ − 1 − (i − 1)/3, r − 1 − i) B2((i + 2)/3) B3((i + 2)/3) K(2r + 3 − δ + (i +

2)/3, 2r + 2 − δ − (i + 2)/3, r − 2 − i) B6((i − 1)/3)].

Chapter 3. Sorting by Transpositions 61

If i ≡ 2 (mod 3) then πi = [B1((i + 1)/3 + 1) K(δ + 1 + (i + 1)/3, δ − (i + 1)/3, r −

1− i) B2((i + 1)/3) B3((i + 1)/3) B4((i + 1)/3) B5((i + 1)/3 + 1) K(2 + (i + 1)/3, 2r +

2 − δ − (i + 1)/3, r − 2 − i) B6((i − 2)/3)].

If i ≡ 0 (mod 3) then πi = [B1(i/3+1) K(δ +1+ i/3, 2r +1− i/3, r− 1− i) B4(i/3+

1) B5(i/3 + 1) K((2 + i/3, δ − 1 − i/3, r − 2 − i) B2(i/3 + 1) B3(i/3) B6(i/3 − 1)].

We shall prove this by induction. The base case is π1. The first transposition is

τ1 = τ(1, r +2, r +3). This transposition moves 1 to the front of the permutation since

ωr(r + 2) = 1. Note also that π1(2) = ωr(1) = δ, π1(3) = ωr(2) = 2δ = 2r + 3 − δ,

π1(4) = ωr(3) = 2, π1(r + 1) = ωr(r) = 2r + 2 − 2δ = 2r + 1 − (2r + 3 − δ) = δ − 1,

π1(r+2) = ωr(r+1) = 2r+2−δ, π1(r+3) = ωr(r+3) = 1+δ, π1(r+4) = ωr(r+4) =

1 + 2δ = 2r + 4− δ, and π1(2r) = ωr(2r) = 2r + 1− δ. So π1 = [1 δ 2r + 3− δ K(2, δ −

1, r − 2) 2r + 2 − δ 1 + δ K(2r + 4 − δ, 2r + 1 − δ, r − 3)], which can be re-written as

[B1(1) B4(1) B5(1) K(2, δ−1, r−2) B2(1) B3(1) K(2r +4− δ, 2r +1− δ, r−3) B6(0)],

which is the required form.

Now the induction step. Suppose πi is as described above. We shall apply trans-

position τi+1 and show that πi+1 is as described above. There are three different cases

that need to be considered.

Suppose i ≡ 1 (mod 3). Then τi+1 = τ(2 + (i − 1)/3, 2 + i, r + 4 + 2(i − 1)/3), so

applying this transposition results in the permutation [B1((i − 1)/3 + 1) K((2 + (i −

1)/3, δ − 1 − (i − 1)/3, r − 1 − i) B2((i + 2)/3) B3((i + 2)/3) B4((i + 2)/3) B5((i +

2)/3) K(2r + 3 − δ + (i + 2)/3, 2r + 2 − δ − (i + 2)/3, r − 2 − i) B6((i − 1)/3)]. So we

can extend B1 and B5 by one. Note also that 2 + (i − 1)/3 + δ = δ + 1 + (i + 2)/3,

and 2r + 3− δ + (i + 2)/3 + δ = 2r + 3 + (i + 2)/3. So we can rewrite the permutation

as [B1((i + 2)/3 + 1) K((δ + 1 + (i + 2)/3, δ − 1 − (i − 1)/3, r − 1 − (i + 1)) B2((i +

2)/3) B3((i + 2)/3) B4((i + 2)/3) B5((i + 2)/3 + 1) K(2r + 3 + (i + 2)/3, 2r + 2 − δ −

(i + 2)/3, r − 2 − (i + 1)) B6((i − 1)/3)], which is the required form.

Suppose i ≡ 2 (mod 3). Then τi+1 = τ(r− 2(i− 2)/3, r + 2, 2r + 1− (i− 2)/3), so

applying this transposition results in the permutation [B1((i+1)/3+1) K(δ +1+(i+

1)/3, δ − (i + 1)/3, r − 1 − i) B4((i + 1)/3) B5((i + 1)/3 + 1) K(2 + (i + 1)/3, 2r + 2 −

δ− (i+1)/3, r− 2− i) B2((i+1)/3) B3((i+1)/3) B6((i− 2)/3)]. So we can extend B4

and B2 by one. Note also that δ > (i + 1)/3. So 2r + 1− (i + 1)/3 + δ = δ − (i + 1)/3,

and δ − 1 − (i + 1)/3 + δ = 2r + 2 − δ − (i + 1)/3. So we can rewrite the permutation

as [B1((i + 1)/3 + 1) K(δ + 1 + (i + 1)/3, 2r + 1 − (i + 1)/3, r − 1 − (i + 1)) B4((i +

1)/3 + 1) B5((i + 1)/3 + 1) K(2 + (i + 1)/3, δ − 1 − (i + 1)/3, r − 2 − (i + 1)) B2((i +

1)/3 + 1) B3((i + 1)/3) B6((i − 2)/3)], which is the required form.

Suppose i ≡ 0 (mod 3). Then τi+1 = τ(3+(i−3)/3, r−1−2(i−3)/3, 2r+1−(i−

3)/3), so applying this transposition results in the permutation [B1(i/3 + 1) B4(i/3 +

1) B5(i/3+1) K((2+i/3, δ−1−i/3, r−2−i) B2(i/3+1) B3(i/3) K(δ+1+i/3, 2r+1−

i/3, r− 1− i) B6(i/3− 1)]. Clearly B3 and B6 can be extended by one. Note also that

δ+1+i/3+δ = 2r+4−δ+i/3 and 2r+1−δ−i/3+δ = 2r+1−i/3. So we can re-write

this permutation as [B1(i/3+1) B4(i/3+1) B5(i/3+1) K((2+ i/3, δ−1− i/3, r−1−

Chapter 3. Sorting by Transpositions 62

(i+1)) B2(i/3+1) B3(i/3) K(2r+4−δ+i/3, 2r+1−δ−i/3, r−2−(i+1)) B6(i/3−1)],

which is the required form.

We now need to show that performing the last three transpositions results in the

identity permutation.

If r ≡ 2 (mod 3) then πr−1 = [B1((r + 1)/3) [δ + (r + 1)/3] B4((r + 1)/3) B5((r +

1)/3) B2((r + 1)/3) B3((r− 2)/3) B6((r− 2)/3− 1)]. The next transposition is τr−1 =

τ(1 + (r + 1)/3, 2 + (r + 1)/3, 5(r + 1)/3 + 1). So πr−1 = [B1((r + 1)/3) B4((r +

1)/3) B5((r+1)/3) B2((r+1)/3) B3((r+1)/3) B6((r−2)/3−1)]. The next transposition

is τr = ((r + 1)/3 + 1, 2(r + 1)/3 + 1, r + 2), therefore πr = [B1((r + 1)/3) B5((r +

1)/3) B4((r+1)/3) B2((r+1)/3) B3((r+1)/3) B6((r−2)/3−1)]. The next transposition

is τr+1 = τ((r + 1)/3 + 1, r + 2, 4(r + 1)/3 + 1). So πr+1 = [B1((r + 1)/3) B2((r +

1)/3) B5((r+1)/3) B4((r+1)/3) B3((r+1)/3) B6((r−2)/3−1)], which is the identity

permutation.

If r ≡ 0 (mod 3) then πr−2 = [B1(r/3) B4(r/3) B5(r/3) [r/3 + 1] B2(r/3)

B3(r/3) B6(r/3 − 1)]. The next transposition is τr−1 = τ(r/3 + 1, r + 1, 5r/3 +

2). So πr−1 = [B1(r/3) [r/3 + 1] B2(r/3) B3(r/3) B4(r/3) B5(r/3) B6(r/3 − 1)].

The next transposition is τr = τ(r/3 + 2, 2r/3 + 2, 4r/3 + 2). So πr = [B1(r/3 +

1) B3(r/3) B4(r/3) B2(r/3) B5(r/3) B6(r/3 − 1)]. The last transposition is τr+1 =

τ(r/3 + 2, 2r/3 + 2, r + 2). So πr+1 = [B1(r/3 + 1) B4(r/3) B3(r/3) B2(r/3) B5(r/3)

B6(r/3 − 1)] which is the identity permutation. 2

3.3.5 Strongly oriented cycles

Bafna and Pevzner define strongly oriented cycles to be oriented cycles that ‘have the

simplest “self-interleaving” structure among all oriented cycles’. They define a cycle

to be strongly oriented if it is oriented, and an interleaving transposition (that does

not act on any edges of the cycle) can transform the cycle into an unoriented cycle. A

cycle that is strongly oriented must be fully oriented. This is because it contains only

two grey edges directed to the right, and knots of length five (the only knots with only

two grey edges directed to the right) are not strongly oriented cycles. However, many

fully oriented cycles are not strongly oriented.

Bafna and Pevzner use strongly oriented cycles because they show that these cycles

admit 2-transpositions on their edges. However, we now have a better definition of such

cycles, the fully oriented cycles, that encompasses all cycles that admit 2-transpositions

on their edges, so we shall use fully oriented cycles instead of strongly oriented cycles.

Later in this chapter we prove several results on fully oriented cycles that are similar

to results Bafna and Pevzner proved about strongly oriented cycles.

3.3.6 Super oriented cycles

A cycle C is said to be super oriented if it is possible to apply a 2-transposition C

followed by a 2-transposition on one of cycles that C was split into.

Chapter 3. Sorting by Transpositions 63

If we could characterise super oriented cycles in the same way that we can char-

acterise fully oriented cycles, then we may be able to improve the lower bounds for

transposition distance. Unfortunately, such a characterisation of super oriented cycles

has so far proved elusive. However, it is possible to detect some cycles that are not

super oriented, and for some permutations this helps us to improve the lower bound

for transposition distance. To describe this result we need an extra definition.

Define a grey edge (i, i + 1) to be crossing relative to the transposition τ(x, y, z) if

either:
(i) x ≤ π−1(i) ≤ y − 1 and y ≤ π−1(i + 1) ≤ z − 1, or

(ii) x ≤ π−1(i + 1) ≤ y − 1 and y ≤ π−1(i) ≤ z − 1.

This definition is motivated by the following lemma.

Lemma 3.3.6 Let τ be a transposition that transforms π into π′. Then a grey edge g

has different directions in tG(π) and tG(π′) if and only if g is crossing relative to τ .

Proof We can use the transposition τ = τ(x, y, z) to partition the set {0, . . . , n + 1}

into three sets I1, I2, and I3 as follows. Let I1 = {π(i) : 0 ≤ i < x} ∪ {π(i) : z ≤ i ≤

n + 1}, I2 = {π(i) : x ≤ i < y}, and I3 = {π(i) : y ≤ i < z}. Now if i and i + 1 are in

the same set under this partitioning, then it is obvious that the direction of the grey

edge (i, i + 1) does not change as the result of applying τ . Similarly if i or i + 1 is in

I1 then it is easy to see that the direction of (i, i + 1) does not change as the result

of applying τ . In the remaining two cases (i, i + 1) is crossing relative to τ , and the

action of τ does change the direction of the grey edge. 2

Lemma 3.3.7 Let C be a cycle that contains only two grey edges that are directed

from left to right. Then C is not super oriented.

Proof Consider any oriented triple (x, y, z) of C, such that x < y < z. Then only one

grey edge of C is crossing relative to τ(x, y, z), and it must occur on the path between

z and x. By Lemma 3.3.6, this crossing edge is the only grey edge in C that changes

direction, and it becomes an edge directed to the right. The transposition τ(x, y, z)

splits cycle C into three cycles that each contain only one grey edge directed to the

right, so each cycle must be unoriented. Therefore C is not super oriented. 2

It is an open problem to determine if any cycle exists that is not super oriented,

but is fully oriented and has more than two grey edges directed to the right. Perhaps

such a cycle, if one exists, must produce a knot as the result of a 2-transposition on its

edges?

3.4 A new 3/2-approximation algorithm

The observations about even cycles, fully oriented cycles, and knots made in earlier

sections of this chapter, allow us to present a new 3/2-approximation algorithm that

Chapter 3. Sorting by Transpositions 64

is somewhat simpler than that presented by Bafna and Pevzner. We achieve the 3/2-

approximation bound by describing a sequence of transpositions that sorts a permu-

tation and contains no (-2)-transposition, and at least two 2-transpositions for every

0-transposition.

Such a sequence of transpositions requires no more than 3/2 times the minimum

number of transpositions required to sort the permutation as predicted by Theorem

3.2.3. A useful definition for describing the 3/2-approximation algorithm is that of a

(0,2,2)-sequence. A (0, 2, 2)-sequence of transpositions is a sequence of three transpo-

sitions such that the first transposition is a 0-transposition, and the next two transpo-

sitions are 2-transpositions.

If for all permutations, apart from the identity permutation, we can find a 2-

transposition or a (0,2,2)-sequence, then we can achieve the approximation bound by

repeatedly using this result, until the permutation has been sorted. Now we already

know from the previous sections that we can apply a 2-transposition to a permutation if

its cycle graph contains a fully oriented cycle or an even length cycle. If tG(π) contains

a knot then we know that we can find a (0,2,2)-sequence, at least, on π.

So now we consider the case when tG(π) contains only odd length cycles that are

all unoriented. To study this case we need some extra definitions and some auxiliary

results.

Two pairs of black edges (bi, bj) and (bk, bl) are said to intersect if i < k < j < l,

or k < i < l < j. Similarly, a cycle intersects with two black edges x and y if the

cycle contains two black edges that intersect with x and y. Similarly, cycles C and D

intersect if C contains two black edges that intersect with two black edges of D.

Triples of black edges (bi, bj , bk) and (bl, bm, bn) interleave if i < l < j < m < k < n

or l < i < m < j < n < k. Similarly, cycles C and D interleave if C contains a triple

of black edges that interleave with a triple of black edges of D. Two transpositions

interleave if the triples of black edges that the transpositions act on interleave. A

transposition interleaves with a cycle C if the three edges that the transposition acts

on interleave with three black edges of C.

Bafna and Pevzner stated the following lemma for oriented cycles.

Lemma 3.4.1 Let (x, y, z) be a triple in a cycle C, and let u, v, w 6∈ C be black edges

of tG(π). Then τ(u, v, w) changes the orientation of triple (x, y, z) (i.e., it transforms

an oriented triple into an unoriented triple, and vice versa) if and only if (u, v, w)

interleaves with (x, y, z).

We prove several similar lemmas for fully oriented triples.

Lemma 3.4.2 Let (x, y, z) be a fully oriented triple in a cycle C, and let u, v, w 6∈ C

be black edges of tG(π). If (u, v, w) interleaves with (x, y, z) then τ(u, v, w) transforms

(x, y, z) into an unoriented triple in tG(π · τ). Otherwise, (x, y, z) is a fully oriented

triple in tG(π · τ).

Chapter 3. Sorting by Transpositions 65

1 a−1 a b−1 b... c−1 c l(C)...

(i)

1 a−1 a b−1 b l(C)...

(ii)

Figure 3.7: The oriented cycle obtained by an applying an transposition that interleaves

with an unoriented cycle.

Proof If the triples are interleaved then (x, y, z) is an unoriented triple in tG(π · τ)

by Lemma 3.4.1. Otherwise, after the transposition has been applied, x < y < z, or

y < z < x or z < x < y so (x, y, z) is an oriented triple by Proposition 3.3.2. Further,

(x, y, z) is a fully oriented triple, because the lengths of the paths connecting the edges

are no different than before. 2

Note that it is not true that an unoriented triple can be converted into a fully

oriented triple just by applying a transposition on edges that interleave with the un-

oriented triple. However, we can prove the following lemma about unoriented cycles.

Lemma 3.4.3 A transposition that interleaves with an unoriented cycle converts the

unoriented cycle into a fully oriented cycle.

Proof Let C be an unoriented cycle, and let τ be a transposition that interleaves with

C. Suppose that Cmin is to the left of the leftmost black edge that τ acts upon, and

Cmax is to the right of the rightmost black edge that τ acts upon. Then after applying

τ , C is a cycle with canonical labelling [1 l(C) . . . c b− 1 . . . a c− 1 . . . b a− 1 . . .]

for some 1 < a < b < c < l(C) as shown in Figure 3.7 (i) (in which the black edges are

given their canonical labelling). Otherwise C becomes a cycle with canonical labelling

[1 b − 1 . . . a l(C) . . . b a − 1 . . .] for some 1 < a < b < l(C) as is shown in Figure

3.7 (ii). In both cases the cycle is oriented, and in neither case is the cycle a knot, so

the cycle is fully oriented. 2

We now have enough auxiliary results to find a (0, 2, 2)-sequence when tG(π) con-

tains only odd length unoriented cycles, and contains two interleaving cycles.

Lemma 3.4.4 Let π be a permutation, such that tG(π) contains only unoriented odd

cycles. Suppose that tG(π) contains two cycles, C and D, that interleave. Then there

exists a (0, 2, 2)-sequence of transpositions on π.

Chapter 3. Sorting by Transpositions 66

C

D

u x v y w z

Figure 3.8: How C and D are interleaved initially.

Proof Let C be the cycle with the leftmost black edge. The two cycles are interleaved,

so let u, v and w be labels of edges of C and x, y and z be labels of edges of D such

that these triples interleave, and such that u is the edge bCmin . Further we may pick

x to be the leftmost edge of D to the right of u (so x is the edge bDmin), y to be the

leftmost edge of D to the right of v, and z to be the leftmost edge of D to the right of

w. So tG(π) is as shown in Figure 3.8.

The transposition τ = τ(u, v, w) converts C into an unoriented cycle C ′ of tG(π · τ

and D into a fully oriented by Lemma 3.4.3.

We show that D′ contains a fully oriented triple of edges that interleave with a

triple of edges of C ′. If (y, x, z) is a fully oriented triple of D′ then this is obvious. If

(y, x, z) is not a fully oriented triple of D′ then, as a consequence of Lemma 3.3.2, two

of the paths connecting x, y and z must contain an odd number of black edges.

Suppose that it is the paths connecting x to z and y to x that both contain an odd

number of black edges. (Then since D′ is odd the path connecting z to y contains an

even number of black edges.) Let s be the label of the first black edge on the path

connecting y to x. Then p(π, s) < p(π, v) since D is unoriented in tG(π), and y is the

leftmost edge of D to the right of v. So (y, s, z) is a fully oriented triple in tG(π · τ)

(Figure 3.9(a)).

Suppose that it is the paths connecting y to x and z to y that both contain an odd

number of black edges. Let s be the label of the first edge on the path connecting z to

y. Then p(π, s) < p(π, w) since D is unoriented in tG(π), and z is the leftmost edge of

D to the right of w. So (s, x, z) is a fully oriented triple in tG(π · τ) (Figure 3.9(b)).

Suppose that it is the paths connecting z to y and x to z that both contain an odd

number of black edges. Let s be the label of the first edge on the path connecting x to

z. Then p(π, s) > p(π, z), since D is unoriented in tG(π), and x is the leftmost edge of

D. So (y, x, s) is a fully oriented triple in tG(π · τ) as required (Figure 3.9(c)).

So D′ contains a fully oriented triple of edges that interleaves with C ′. If we apply

the transposition on the fully oriented triple then C ′ will be a fully oriented cycle in

the cycle graph of the resulting permutation, by Lemma 3.4.3. So a 2-transposition can

Chapter 3. Sorting by Transpositions 67

C

xy zs

D

(a)

C

xy zs

D

(b)

C

xy z s

D

(c)

Figure 3.9: How the cycles are interleaved after the 0-transposition.

Chapter 3. Sorting by Transpositions 68

then be performed on C ′. Hence we can perform a (0, 2, 2)-sequence of transpositions

on π. 2

So now we only need to be able to find a (0,2,2)-sequence when all the cycles in

tG(π) are odd and unoriented, and no pair are interleaving. In fact we can find such a

(0,2,2)-sequence, but to prove this we require several auxiliary results. We begin with a

lemma proved by Bafna and Pevzner that shows that unoriented cycles must intersect

with other cycles.

Lemma 3.4.5 Let C be an unoriented cycle of tG(π). Let x and y be labels of two

black edges of C. Then there is a cycle D in tG(π) that intersects with x and y.

Lemma 3.4.6 Let C and D be unoriented cycles of tG(π), such that C and D in-

tersect, and C has the leftmost black edge of the two cycles. Then the transposition

τ(Cmin, Dmin, Dmax) converts C and D into a 1-cycle and an oriented cycle. Further,

the oriented cycle is fully oriented unless C and D are 3-cycles that interleave.

Proof Let x be the leftmost edge of C to the right of Dmin, and let y be the rightmost

edge of C to the left of Dmin. Then depending on whether Cmax < Dmax or Dmax <

Cmax the transposition τ(Cmin, Dmin, Dmax) acts as shown in Figure 3.10 (i) or Figure

3.10 (ii). (Of course, the edge x could be the edge bCmax , and the edge y could be the

edge bCmin , and therefore the graphs would be not exactly as shown in the figure, but

in either case the resulting cycle decomposition is very similar to that shown.) The

transposition converts C and D into a 1-cycle and a long cycle C ′. In both cases C ′ is

an oriented cycle, so C ′ is fully oriented unless it is a knot. If Dmax < Cmax then C ′

cannot be a knot because its canonical labelling begins [1 l . . .], where l is the length

of the cycle. Otherwise, C ′ contains only two grey edges directed to the right (the edge

that comes after bC′

min
, and the edge between x and y). So C ′ could not be a knot of

length greater than five, because such knots contain at least three grey edges directed

to the right.

Suppose that C ′ is a knot of length five. Then this cycle has canonical labelling

[1 4 2 5 3]. The edge with canonical label 1 is the edge bC′

min
, and the edge with

canonical label 2 is the edge x because these edges precede the two grey edges that

are directed to the right. Let w be the edge with canonical label 4, y ′ be the edge

with canonical label 5 (this is the edge y if y differs from bCmin , and z be the edge

with canonical label 3. Now x < z < w in π · τ , and since the transposition doesn’t

change the relative positions of these edges it must be that x < z < w in π. So z must

be an edge of D because otherwise C would be an oriented cycle. So C and D are

interleaving 3-cycles. 2

Lemma 3.4.7 Let C and D be two unoriented cycles of tG(π), such that C and D

intersect, and C has the rightmost black edge of the two cycles. Then the transposition

τ(Dmin, Dmax, Cmax) converts C and D into a 1-cycle and an oriented cycle. Further,

the oriented cycle is fully oriented unless C and D are 3-cycles that interleave.

Chapter 3. Sorting by Transpositions 69

C

D

y x

yx

C’

(i) Dmax > Cmax

C

D

y x

yx

C’

(ii) Dmax < Cmax

Figure 3.10: How the cycle graph changes.

Chapter 3. Sorting by Transpositions 70

C D

c

C’

Figure 3.11: How tG(π) changes as the result of the transposition.

Proof The proof of Lemma 3.4.6 may be easily transformed to prove this lemma. 2

We now, as an aside, prove an interesting result about even length cycles.

Lemma 3.4.8 If tG(π) contains two unoriented even cycles C and D such that C and

D intersect, then it is possible to apply a sequence of two 2-transpositions on π.

Proof We can assume without loss of generality that C is the cycle that has the

leftmost black edge. The transposition τ(Cmin, Dmin, Dmax) is a 2-transposition since

by Lemma 3.4.6 it transforms the two even cycles into two odd length cycles. By

Lemma 3.4.6 there is a fully oriented cycle in the resulting cycle decomposition, so we

can perform a further 2-transposition on this cycle. 2

Now back to auxiliary lemmas that will help us obtain the (0,2,2)-sequence that we

are seeking.

Lemma 3.4.9 Let C and D be two unoriented cycles of tG(π), such that C and D do

not intersect, and C has the leftmost black edge of the two cycles. Let c be the position

of a black edge of C. Then the transposition τ(c, Dmin, Dmax) converts C and D into

a 1-cycle and an unoriented cycle.

Proof If Cmax < Dmin then the transposition τ(c, Dmin, Dmax) acts as shown in Figure

3.11. (Note that, of course, c could be bCmin or bCmax , but these cases are similar to the

case illustrated.) So the transposition converts C and D into a 1-cycle and a proper

cycle C ′. It is easy to verify that C ′ is an unoriented cycle, since it has only one grey

edge that is directed to the right. The case when Cmax > Dmax is similar. 2

Lemma 3.4.10 Let C and D be two unoriented cycles of tG(π), such that C and D

do not intersect, and D has the rightmost black edge of the two cycles. Let d be the

Chapter 3. Sorting by Transpositions 71

position of a black edge of D. Then the transposition τ(Cmin, Cmax, d) converts C and

D into a 1-cycle and an unoriented cycle.

Proof The proof of Lemma 3.4.9 may be easily transformed to prove this corollary.

2

Lemma 3.4.11 Let C and D be odd unoriented cycles of tG(π) that do not interleave,

and let C be the cycle with the leftmost black edge. Let τ(i, j, k) be a transposition that

acts on three of four black edges bCmin, bCmax , bDmin , bDmax , such that either:

(i) i = Cmin and j = Cmax, or

(ii) j = Dmin and k = Dmax.

Then τ(i, j, k) is a 0-transposition that converts C and D into a 1-cycle and a proper

cycle that is unoriented if C and D do not intersect, and is fully oriented otherwise.

Proof This lemma is a simple consequence of Lemmas 3.4.6, 3.4.7, 3.4.9 and 3.4.10.

2

We now have enough auxiliary results to obtain the (0,2,2)-sequence.

Lemma 3.4.12 Let π be a permutation such that tG(π) contains only unoriented odd

length cycles. Further suppose that no cycles in tG(π) interleave. Then there exists a

(0, 2, 2)-sequence of transpositions on π.

Proof Let C be the proper cycle in tG(π) with the leftmost black edge. By Lemma

3.4.5 another cycle must intersect with bCmin and bCmax . Let D be the cycle that

intersects with bCmin and bCmax, and that, among all the cycles that intersect with

these edges, contains the rightmost black edge to the left of bCmax . Let s be the second

leftmost black edge of C, and let t be the edge bCmax . (Note s 6= t, because l(C) ≥ 3).

If p(π, s) < Dmin then there must be a cycle in tG(π) that intersects with edges

bCmin and s of C (Lemma 3.4.5). Let E be a cycle that does intersect with these edges.

Now Emin > Cmin because C is the leftmost cycle of tG(π). Therefore, Cmin < Emin < s

and Emax > s because E intersects with bCmin and s. So either (a) s < Emax < Dmin,

or (b) Dmin < Emax < t, or (c) t < Emax < Dmax, or (d) Dmax < Emax. These four

different ways that cycles D and E can be related, are shown in the top halves of

Figures 3.12 (a), (b), (c) and (d).

If p(π, s) > Dmin then there must be a cycle that intersects with edges s and bCmax

of C (by Lemma 3.4.5). Let E be a cycle that does intersect with these edges. Now

Emin > Cmin because C is the leftmost cycle of tG(π). Note that D cannot contain

black edges between s and t because otherwise it would interleave with C. Therefore

Emax < t because otherwise E would contradict the choice of D (since E would intersect

with C and contain a black edge to the left of bCmax that was further to the right than

any such edge of D). Therefore, Cmin < Emin < s and Emax > s because E intersects

Chapter 3. Sorting by Transpositions 72

C

D
E

s t

t s

D’

C

C

DE

C

s t

st
D’

(a) (b)

C

D

E

C

s t

t s
D’

C

D

E

C

s t

t s

D’

(c) (d)

C

D

E

C

s t

t s

D’

C

E
C

D

s t

t s

D’

(e) (f)

Figure 3.12: The first transposition of a (0, 2, 2)-sequence.

with s and bCmax . So either (e) Dmin < Emin < s, or (f) Cmin < Emin < Dmin. These

two ways D and E can be related, are shown in at the top halves of Figures 3.12 (e)

and (f).

In Figure 3.12 a 0-transposition τ (by Lemma 3.4.11) is shown for each case. In

each case cycles D and E are converted into a 1-cycle and a long cycle D′. The

transposition shown interleaves with cycle C, so by Lemma 3.4.3 C is a fully oriented

cycle in the resulting cycle decomposition. In fact (bCmin , t, s) is a fully oriented triple

in the resulting cycle decomposition because all three paths connecting these edges are

even in length. We now explain why in each case it is possible to find a sequence of

two 2-transpositions on the resulting permutation.

(a) Cycles D and E do not intersect, so D′ is unoriented by Lemma 3.4.11. Then

(bCmin , t, s) is a fully oriented triple of C that interleaves with D′ so by Lemma 3.4.3 a

Chapter 3. Sorting by Transpositions 73

C

t sx y

D’

Figure 3.13: Special case of (d).

sequence of two 2-transpositions can be performed on the permutation.

(b) Cycles D and E intersect, so D′ is fully oriented by Lemma 3.4.11. Then

(bCmin , t, s) is a fully oriented triple of C that does not interleave with any fully oriented

triples of D′, since Cmin < D′
min, and s > D′

max. So by Lemma 3.4.2 a sequence of two

2-transposition can be performed.

(c) Cycles D and E intersect, so D′ is fully oriented by Lemma 3.4.11. Then

(bCmin , t, s) is a fully oriented triple of C that does not interleave with any fully oriented

triples of D′, since Cmin < D′
min, and s > D′

max. So by Lemma 3.4.2 a sequence of two

2-transposition can be performed.

(d) If D and E do not intersect then D′ is unoriented, and this case is similar to

(a). If D and E intersect then D′ is fully oriented. Since D and E intersect, there must

be an edge x of E such that Dmin < x < Dmax. Further Cmax < x because otherwise

C and E would be interleaved. In particular, let x be the leftmost edge of E to the

right of bCmax . Let y be the edge that comes after x in D′. So tG(π · τ) is as shown in

Figure 3.13. Then either (bD′

min
, x, y) or (x, y, bD′

max
) is a fully oriented triple that does

not interleave with (bCmin , t, s) which is a fully oriented triple of C. So by Lemma 3.4.2

a sequence of two 2-transposition can be performed.

(e) If D and E do not intersect then D′ is unoriented, and this case is similar to

(a). If D and E intersect then D′ is fully oriented. Since D and E intersect, there

must be an edge x of D such that Emin < x < Emax. Further x < s because otherwise

C and D would be interleaved. Let x be the rightmost edge of D to the left of s. Let

y be the edge that precedes x in D′. So tG(π · τ) is as shown in Figure 3.14. Then

either (bD′

min
, y, x) or (y, x, bD′

max
) is a fully oriented triple that does not interleave with

(bCmin , t, s) which is a fully oriented triple of C. So by Lemma 3.4.2 a sequence of two

2-transposition can be performed.

(f) Cycles D and E intersect, so D′ is fully oriented by Lemma 3.4.11. Then

(bCmin , t, s) is a fully oriented triple of C that does not interleave with any fully oriented

triples of D′, since Cmin < D′
min, and t < D′

min. So by Lemma 3.4.2 a sequence of two

2-transposition can be performed. 2

Chapter 3. Sorting by Transpositions 74

C

t sxy

D’

Figure 3.14: Special case of (e).

We now state formally the argument that proves that all the lemmas in this section

allow us to describe a 3/2-approximation algorithm.

Lemma 3.4.13 For every permutation, except the identity permutation, we can find

either a 2-transposition or a (0, 2, 2)-sequence of transpositions on the permutation.

Proof By the definition of fully oriented cycles, a 2-transposition exists if tG(π)

contains a fully oriented cycle. By Lemma 3.2.5 a 2-transposition also exists if tG(π)

contains an even cycle. If tG(π) contains a knot then we can perform a (0, 2, 2)-sequence

of transpositions, by Lemma 3.3.5.

If tG(π) does not contain any fully oriented cycles, or even length cycles, or knots,

then tG(π) must contain only unoriented odd cycles. If tG(π) contains two interleaving

cycles then there is a (0, 2, 2)-sequence by Lemma 3.4.4. Otherwise tG(π) contains only

unoriented cycles, and no pair of these cycles are interleaving, so there is a (0, 2, 2)-

sequence by Lemma 3.4.12. 2

Theorem 3.4.1 There is a 3/2-approximation algorithm for sorting by transpositions.

Proof An entire sequence of transpositions that sorts a permutation can be generated

by re-applying Lemma 3.4.13 again and again until the permutation has been sorted.

This algorithm is illustrated in Figure 3.15. The sequence that is generated in this

way contains at least two 2-transpositions for every 0-transposition, and no (−2)-

transpositions. So the length of this sequence is at most 3/2 times the lower bound of

Theorem 3.2.3. Hence we have described a 3/2-approximation algorithm for sorting by

transpositions. 2

We now compare Bafna and Pevzner’s 3/2-approximation algorithm with the al-

gorithm that has just been presented. In order to perform this comparison we briefly

introduce Bafna and Pevzner’s algorithm, which is summarised in Figure 3.16.

Chapter 3. Sorting by Transpositions 75

algorithm 3/2 Approximation(π: Permutation) is

τ , τ1, τ2, τ3: Transposition;

begin

while π 6= ı loop

if tG(π) contains a fully oriented cycle C then

τ is a 2-transposition that acts on C;

π:= π · τ ;

elsif tG(π) contains an even cycle then

τ is a 2-transposition that acts on two even cycles (Lemma 3.2.5);

π:= π · τ ;

elsif tG(π) contains a knot C then

there is a (0, 2, 2)-sequence τ1, τ2, τ3 that acts on C (Lemma 3.3.5);

π:= π · τ1 · τ2 · τ3;

elsif tG(π) contains two interleaving cycles then

there is a (0, 2, 2)-sequence τ1, τ2, τ3 that acts on C (Lemma 3.4.4);

π:= π · τ1 · τ2 · τ3;

else

there is a (0, 2, 2)-sequence τ1, τ2, τ3 that acts on C (Lemma 3.4.12);

π:= π · τ1 · τ2 · τ3;

end if ;

end loop;

end 3/2 Approximation;

Figure 3.15: The new 3/2-approximation algorithm

Chapter 3. Sorting by Transpositions 76

algorithm BP Approximation(π: Permutation) is

begin

while π 6= ı loop

if tG(π) contains an oriented cycle C then

apply a 2-transposition or a (0,2,2)-sequence on π;

elsif tG(π) contains a long cycle then

if tG(π) contains two interleaving cycles then

apply a (0,2,2)-sequence on π (like Lemma 3.4.4);

else

apply a (0,2,2)-sequence on π (like Lemma 3.4.12);

end if ;

else

apply a sequence of two 2-transpositions;

end if ;

end loop;

end BP Approximation;

Figure 3.16: Bafna and Pevzner’s 3/2-approximation algorithm

There are two ways in which their algorithm may apply a (0,2,2)-sequence where

ours would apply a 2-transposition instead, so perhaps our algorithm will find shorter

sequences of transpositions. Their algorithm will apply either a 2-transposition or a

(0,2,2)-sequence on an oriented cycle, whereas our algorithm will always apply a 2-

transposition if one exists, and will apply a (0,2,2)-sequence only if the cycle is a knot.

Also, on occasion, their algorithm will apply (0,2,2)-sequences when the cycle graph

contains 2-cycles, whereas our algorithm would apply a 2-transposition on the even

cycles.

So we would expect our algorithm to sort permutations more efficiently. However

as will be shown in Section 3.6 there are some heuristics for sorting by transpositions

that we would expect to be even more efficient at solving instances of sorting by trans-

positions, even though the heuristics have no approximation guarantee. So, perhaps

more efficient algorithms exist anyway.

Unfortunately, although we can detect fully oriented cycles easily, we know of no

quicker means of finding a fully oriented triple in a fully oriented cycle than trying

every triple of edges in the cycle. So finding a strongly oriented triple has O(n3)

worst case time-complexity. The other steps inside the main loop of our algorithm

have the following worst case time-complexities: building tG(π) is O(n), determining if

tG(π) contains a fully oriented cycle is O(n), determining if tG(π) contains interleaving

cycles is O(n2), and performing a transposition is O(n). Hence, the overall worst case

time-complexity of the algorithm is O(n4), because we need to perform at most O(n)

Chapter 3. Sorting by Transpositions 77

transpositions. However we believe that it may be possible to improve the worst-

case complexity of this algorithm, by finding a more clever algorithm for finding fully

oriented triples in fully oriented cycles, or by improving the algorithmic analysis above.

Bafna and Pevzner claim that their algorithm is O(n2), but it seems to be O(n3)

since before each transposition it must determine if any two cycles are interleaving,

which is O(n2), and it must perform O(n) transpositions. They are able to find trans-

positions on oriented cycles in O(n) because they accept a (0, 2, 2)-sequence even when

a 2-transposition exists.

We prove some results that are similar to results proved by Bafna and Pevzner.

Our proof of Lemma 3.4.12 is simpler than their proof of a similar result, because it

involves fewer cases, and does not involve arguments based on symmetries. To be fair

though, their proof of a result like Lemma 3.4.4 based on strongly oriented cycles is

shorter and perhaps simpler than our proof, though ours is more precise.

It is worth noting that Guyer, Heath and Vergara [GHV95] were “unable to” imple-

ment Bafna and Pevzner’s 3/2-approximation algorithm because they could not resolve

some “implementation details.” Therefore a new 3/2-approximation algorithm that is

simpler and is proved in a more precise manner is a useful contribution.

3.5 A tighter lower bound

3.5.1 Hurdles

In this section improved lower bounds for transposition distance are presented. These

improved lower bounds are achieved by identifying subgraphs of the cycle graph that

are difficult to sort. These difficult subgraphs are called hurdles, by analogy with the

terminology of Hannenhalli and Pevzner for sorting by reversals. Below we define

hurdles and then we describe some improved lower bounds for transposition distance

based on counting hurdles.

Let us construct an overlap graph tH(π) that contains a vertex for each cycle in

tG(π). Connect two vertices by an edge if their respective cycles intersect. Collections

of cycles of tG(π) that form components in tH(π) will be of interest. We shall call a

collection of cycles of tG(π) a component of π if the collection consists of all the cycles

in one component of tH(π).

Example Let π be the permutation [8 10 9 11 1 6 5 4 3 2 7]. Then tG(π) contains

four cycles: C1 = (12, 1, 5), C2 = (11, 9, 7), C3 = (10, 8, 6), and C4 = (4, 2, 3), as shown

in Figure 3.17. The components of π are {C1}, {C2, C3}, and {C4}. 2

Let C be a component of tG(π). Now suppose that we obtain a graph from tG(π)

by deleting all edges and vertices that are not part of C, and then merging vertices that

are next to each other in the resulting graph, as we draw it, but are not adjacent by a

black edge. For example, if C is the component {C1} in Figure 3.17, we would merge

vertices 8 and 11, and 7 and 1. This resulting graph can have its vertices relabelled

Chapter 3. Sorting by Transpositions 78

0 128 10 9 11 1 6 5 4 3 2 7

Figure 3.17: A cycle graph with three components.

so that the leftmost vertex is labelled 0, and each grey edge is directed from vertex i

to vertex i + 1. Reading vertices from left to right we obtain a permutation called the

component permutation πC .

If C contains no even cycles and πC cannot be sorted using only 2-transpositions

then we say that C is a hurdle. If πC can be sorted using only 2-transpositions then C

is a sortable component (whether C contains an even cycle or not). Let th(π) denote

the number of hurdles in tG(π). A transposition τ clears a hurdle C if no part of any

cycle in C is part of a hurdle in tG(π · τ).

Example For the example permutation above, π{C1} = [2 1], π{C2,C3} = [5 4 3 2 1]

and π{C4} = [2 1]. Components {C1} and {C4} are sortable components, but the

component {C2, C3} is a hurdle. 2

It is possible to improve the lower bound of Theorem 3.2.3 by counting hurdles in

tG(π). Bafna and Pevzner’s lower bound is based on assuming that each transposition

in a minimal length sorting sequence is a 2-transposition. Note that a 2-transposition

on a cycle in one component does not affect cycles in other components. Also, if a

2-transposition acts on two cycles then both cycles must be even in length. So if tG(π)

contains a hurdle then at least one transposition that is not a 2-transposition will be

required to sort π. In fact we can improve the lower bound as shown below.

Theorem 3.5.1 For every permutation π, td(π) ≥ ((n+1− tcodd(π))/2+ dth(π)/2e.

Proof All hurdles of tG(π) must be cleared by at least one 0-transposition, or (−2)-

transposition. A transposition can act on at most three hurdles, so a single trans-

position can clear at most three hurdles. If a transposition clears three hurdles then

it must merge three cycles, from different components, together into one cycle. Such

a transposition is a (−2)-transposition. So for every transposition that clears three

hurdles, an extra 2-transposition is required. In fact hurdles can be cleared more

efficiently by clearing two at a time. A 0-transposition on two cycles in different com-

ponents may clear two hurdles. For example, the first transposition in Figure 3.18 is a

0-transposition that clears two hurdles. Clearing hurdles in pairs with 0-transpositions

in this way requires dth(π)/2e 0-transpositions to clear all the hurdles. 2

A problem with this bound based on hurdles is that detecting hurdles may not

be any easier than determining the transposition distance of a given permutation.

Chapter 3. Sorting by Transpositions 79

However, there are some hurdles that can be detected easily. These hurdles consist

only of odd length cycles that are not fully oriented. Let thd(π) represent the number

of detectable hurdles like this in π. The lower bound that we obtain using this count

of hurdles is as follows:

Theorem 3.5.2 For every permutation π, td(π) ≥ (n + 1 − tcodd(π))/2 + dthd(π)/2e.

Proof Clearly thd(π) ≤ th(π). The theorem then follows from Theorem 3.5.1. 2

Let tl(π) = (n + 1 − tcodd(π))/2 + dthd(π)/2e. In Section 1.1, we observed that

td(π) = td(π−1). Let π = [7 5 3 1 8 6 4 2], so that π−1 = [4 8 3 7 2 6 1 5]. Now

tl(π) = 3, but tl(π−1) = 4, and given the above identity it must be that td(π) ≥ 4.

This example inspires the following lower bound:

Theorem 3.5.3 For all permutations π, td(π) ≥ max{tl(π), tl(π−1)}.

Proof This theorem can be derived easily from Theorem 3.5.2 and the identity td(π) =

td(π−1). 2

We have found that this lower bound is useful to speed up an implemented branch

and bound algorithm for sorting by transpositions. The bound can also be used to

obtain permutations that have transposition distances arbitrarily far away from the

lower bound of Theorem 3.2.3, as we show in the next section.

3.5.2 How tight are the lower bounds?

We now show that Bafna and Pevzner’s lower bound for transposition distance (Theo-

rem 3.2.3) can be arbitrarily far away from the exact transposition distance. We need

some extra definitions to describe permutations with this property.

If π is a permutation of the set {1, . . . , n} and k is an integer then we define π + k

to be the permutation of the set {k +1, . . . , k +n} obtained by adding k to each of the

elements of π. In particular this means that (π + k)(i) = π(i) + k, for 1 ≤ i ≤ n.

If π is a permutation of the set {1, . . . , n} and φ is a permutation of the set

{n + 1, . . . , m} then we can define π ++ φ to be the permutation of the set {1, . . . , m}

obtained by appending φ to π. For example if π = [2 4 3 1] and φ = [6 5] then

π ++φ = [2 4 3 1 6 5].

We now build a permutation κk that has transposition distance arbitrarily dis-

tant from the lower bound of Theorem 3.2.3. Let κ = [4 3 2 1]. Define κ1 = κ,

and κk = κk−1 ++ [5(k − 1)] ++ (κ + 5(k − 1)), for k ≥ 2. So, for example, κ3 =

[4 3 2 1 5 9 8 7 6 10 14 13 12 11]. We prove that κk has the property that we want.

Theorem 3.5.4 The transposition distance of κk is given by the formula

td(κk) = 2k +

⌈

k

2

⌉

=
n + 1 − tcodd(κk)

2
+

⌈

k

2

⌉

.

Chapter 3. Sorting by Transpositions 80

0 4 3 2 1 5 9 8 7 6 10

9 8 7 6 101 5 4 3 20

8 7 6 101 2 9 5 4 30

7 6 101 20 3 8 9 5 4

6 101 20 3 4 7 8 9 5

101 20 3 4 5 6 7 8 9

Figure 3.18: An optimal length sorting of κ2.

Proof The cycle graph of κk consists of k knots of size five that do not intersect with

each other. Therefore, by Theorem 3.5.1, the transposition distance of κk is at least

(n + 1 − tcodd(κk))/2 + dk/2e.

It is possible to sort κk by sorting pairs of knots together as shown in Figure 3.18. If

k is odd, then one knot must also be sorted on its own. The sequence of transpositions

that we have just described has the length given by the above formula. 2

In fact we can generalise the above theorem as follows. Let π be a permutation

that contains only odd length cycles and for which td(π) ≥ (n + 1 − tcodd(π))/2 + 1.

Let π1 = π, and πk = πk−1 ++ [(k − 1)(n + 1)] ++ (π + (k − 1)(n + 1)). Then td(πk) ≥

(n + 1 − tc(πk))/2 + dk/2e.

So we have shown that κk is an example of a family of permutations whose transpo-

Chapter 3. Sorting by Transpositions 81

sition distance can be arbitrarily far from the lower bound of Theorem 3.2.3. However

it appears that such permutations are rare, and the bound of Theorem 3.2.3 is a good

bound in practice (Section 3.6).

Note also that td(κ1) = 3, but the lower bound for κ1 is only 2. So any approxi-

mation algorithm that has its approximation ratio based only on the lower bound of

Theorem 3.2.3 cannot have an approximation ratio better than 3/2.

Of course, the lower bound of Theorem 3.5.1 based on hurdles is exact for κk. So,

it is natural to ask if are there any permutations that can be arbitrarily distant from

this lower bound? In fact this question remains open, however we conjecture that the

answer is yes for reasons explained below.

Consider the permutation π1 = [3 2 1 6 5 4 9 8 7 12 11 10]. The lower bound based

on hurdles (Theorem 3.5.1) is 5 transpositions, but td(π1) = 6. (The exact distance

of this permutation was calculated using a branch and bound algorithm described in

section 3.6.) Note that the overlap graph for this permutation tH(π) contains only

one component, but that component is not a hurdle or a sortable component. This

permutation demonstrates a way in which the hurdles lower bound can underestimate

the transposition distance, because of the way it deals with components containing

even cycles.

Consider also the permutation π2 = [5 4 3 8 7 6 11 10 9 14 13 12 17 16 15 2 1]. The

cycle graph, tG(π2) contains six 3-cycles that are all unoriented, such that no pair of the

cycles are interleaving. The overlap graph, tH(π2) contains only one component, that

is a hurdle. In can be shown that td(π2) = 9 (using the branch and bound algorithm)

but the lower bound of Theorem 3.5.1 is 7. So π2 is a permutation distance 2 greater

than the lower bound based on hurdles.

Note also, that the permutation π2 demonstrates a manner in which hurdles of the

transposition cycle graph are unlike hurdles of the reversal cycle graph, because the

hurdle in the transposition graph requires more than one transposition in order to be

cleared, whereas hurdles of the reversal cycle graph require only one reversal to be

cleared (with some special permutations, fortresses, requiring an extra reversal).

We conjecture that it may be possible to build permutations that have transposition

distances arbitrarily far from the lower bound of Theorem 3.5.1 by concatenating per-

mutations like π1 and π2 together, or building larger permutations that have structures

similar to those of π1 and π2.

3.5.3 The transposition diameter

The transposition diameter tD(n) is the maximum value of td(π) taken over all per-

mutations π of length n. Bafna and Pevzner proved that tD(n) ≤ 3n/4, since their

3/2-approximation algorithm sorts any permutation using at most 3/4.(n+1−codd(π))

transpositions. They also discovered that, for 3 ≤ n ≤ 10, tD(n) = bn/2c+1, and that

this value is achieved by the reverse permutation, Rn. They also stated that, for all n,

td(Rn) ≤ bn/2c + 1. We prove that td(Rn) = bn/2c + 1, and make a conjecture about

Chapter 3. Sorting by Transpositions 82

transposition diameter.

For odd n ≥ 3 we define the broken reverse permutation, BRn, to be the permutation

that results from applying the transposition τ(1, (n+1)/2, (n+1)/2+2) to Rn. If n = 3

then BRn = [2 1 3], and for larger values of n then BRn = [dn/2e bn/2c n . . . dn/2e+

1 bn/2c − 1 . . . 1].

Lemma 3.5.1 For odd n, td(BRn) ≤ bn/2c.

Proof We prove this lemma by induction. The base case is when n = 3. Clearly one

transposition is enough to sort [2 1 3].

Now suppose that the lemma is true for all n ≤ 2k + 1. Let n = 2k + 3. Now apply

the transposition τ(2, (n+1)/2+1, (n+1)/2+3). If n = 5, we obtain the permutation

π = [3 4 1 2 5], and otherwise we obtain the permutation π = [dn/2e dn/2e+1 bn/2c−

1 bn/2c n . . . dn/2e+2 bn/2c−2 . . . 1]. Now gl(π) = gl(BR2k+1), so by the inductive

hypothesis, and Theorem 3.2.2, td(π) ≤ k. Therefore td(BR2k+3) ≤ k+1, and we have

proved the lemma by induction. 2

We now prove the following theorem, which is stated without proof by Bafna and

Pevzner.

Theorem 3.5.5 td(Rn) ≤ bn/2c + 1, for all n ≥ 2.

Proof If n is even, we make the transposition τ(1, 2, n + 1) to move the element n to

its correct position. We then treat what remains as Rn−1. The fact that, for n even,

bn/2c + 1 = 1 + (b(n − 1)/2c + 1) means that the truth of the result for n even will

follow if we establish its validity for n odd.

For n odd, perform the transposition τ(1, (n + 1)/2, (n + 1)/2 + 2). The result-

ing permutation is BRn. By Lemma 3.5.1 we may sort this permutation with bn/2c

transposition. So Rn can be sorted using bn/2c + 1 transpositions. 2

In fact, for n odd we can prescribe a sequence of transpositions, τ1, . . . , τr (where

r = (n + 1)/2), that sorts Rn as follows:

τi =

{

τ(i, i + (n − 1)/2, i + (n + 3)/2), i = 1, . . . , r − 1

τ(1, (n + 1)/2, n), i = r.

In Figure 3.19 this sequence of transpositions is applied to R11.

Theorem 3.5.6 td(Rn) = bn/2c + 1, for all n ≥ 2.

Proof By Theorem 3.5.5 td(Rn) ≤ bn/2c + 1.

If n ≡ 3(mod 4) then tG(Rn) consists of only 2 even length cycles. So by Theorem

3.2.3 it is impossible to sort Rn using fewer than bn/2c + 1 transpositions.

If n ≡ 1(mod 4) then tG(Rn) consists of only 2 odd length cycles. Both cycles are

unoriented, so again it is impossible to sort Rn using fewer than bn/2c+1 transpositions.

Chapter 3. Sorting by Transpositions 83

11 10 9 8 7 6 5 4 3 2 1

6 5 11 10 9 8 7 4 3 2 1

6 7 4 5 11 10 9 8 3 2 1

6 7 8 3 4 5 11 10 9 2 1

6 7 8 9 2 3 4 5 11 10 1

6 7 8 9 10 1 2 3 4 5 11

1 2 3 4 5 6 7 8 9 10 11

Figure 3.19: A sequence of transpositions that sorts R11.

However, when n is even, tG(Rn) consists of one oriented odd length cycle. So in

this case the lower bound of Theorem 3.2.3 is only bn/2c transpositions. However, the

cycle in tG(Rn) has canonical labelling [1 n n−2 . . . 2 n+1 n−1 . . . 3]. Therefore, by

Lemma 3.3.7, the cycle is not super oriented since it contains only two grey edges that

are directed to the right. So it is impossible to find a sequence of two 2-transpositions on

Rn, and therefore it is impossible to sort Rn using fewer than bn/2c+1 transpositions.

2

As a result of Theorem 3.5.6, bn/2c + 1 ≤ tD(n) ≤ 3n/4. In fact, we conjecture

that the reverse permutation achieves the transposition diameter for all n.

Conjecture 3.5.1 For all n, tD(n) = bn/2c + 1.

We make this conjecture because, on the one hand, the more cycles there are in

tG(π) the fewer 2-transpositions are needed to sort π by the lower bound of Theorem

3.2.3, and on the other hand, the fewer cycles there are in tG(π), then the longer these

cycles must be and so the more likely it is that the cycles are fully oriented, or are

knots, and hence the more likely it is that a sequence of many 2-transpositions can

be applied to π. We believe these two factors together make it impossible to have

td(π) > bn/2c + 1. Some evidence supporting this conjecture is presented in Section

3.6.

3.6 Solving instances of sorting by transpositions in prac-

tice

In order to investigate how well instances of sorting by transpositions can be solved in

practice, several approximation algorithms and an exact algorithm were implemented

and tested. The various algorithms use heuristics based on results of the previous

sections. We describe the algorithms in Section 3.6.1. The algorithms were tested with

Chapter 3. Sorting by Transpositions 84

various kinds of permutation that are described in Section 3.6.2. Tables of raw data

describing each algorithm’s performance are presented in Section 3.6.3. In Section 3.6.4

we analyse these tables, and try to explain the observed behaviour. We conclude that

most instances of sorting by transpositions can be solved optimally, at least for the

range of sizes covered by our experiments.

3.6.1 The algorithms

The different algorithms that were implemented are described below. Each description

begins with the name of the algorithm, followed by an explanation of the heuristics the

algorithm uses and a statement about the complexity of the algorithm.

lower bound

This algorithm is not an approximation algorithm or exact algorithm for sorting by

transpositions. Instead, it simply calculates the lower bound for transposition distance

based on detectable hurdles and the inverse permutation (Theorem 3.5.3). To calculate

this bound the algorithm must build the cycle graph tG(π) and the overlap graph

tH(π). Counting the number of cycles in tG(π) can be performed in O(n) steps, but

building tH(π), and identifying its components takes O(n2) steps. So this algorithm

is O(n2).

approx

This algorithm uses several heuristics, based on the results of the previous sections, to

find a sequence of transpositions that sorts a given permutation. The algorithm has

no approximation guarantee, but in practice we expect it to perform better than the

3/2-approximation algorithm described in Section 3.4, for reasons explained below.

The algorithm is described in Figure 3.20. The first step of the algorithm checks if

the permutation is transposition equivalent to the reverse permutation and sorts the

permutation optimally if it is. Otherwise a sequence of steps is followed that is similar

to the sequence of steps used in the 3/2-approximation algorithm.

If tG(π) contains a strongly oriented cycle then a 2-transposition τ is applied on a

shortest strongly oriented cycle C, splitting C into three cycles C1, C2 and C3. Note

that, in particular, τ is chosen so that the size of C1 is maximised, and then so that

the size of C2 is maximised. This strategy was implemented because, by Lemma 3.3.3,

larger cycles are more likely to be strongly oriented than smaller cycles. Therefore

when we have a choice between applying a 2-transposition on a small cycle or a 2-

transposition on a large cycle, we apply the transposition on the small cycle, because

it is less likely that the small cycle should have been fully oriented, and it is more

likely that the large cycle will remain fully oriented in the cycle graph of the resulting

permutation. We choose the transposition that maximises C1 and then C2 because we

are attempting to maximise the probability that these cycles are fully oriented.

Chapter 3. Sorting by Transpositions 85

algorithm approx(π: Permutation) is

τ : Transposition;

ts: array of Transposition;

i: Integer;

begin

i:= 0;

while π 6= ı loop

i:= i+1;

if gl(π) = R|gl(π)| then

sort π optimally from here (Theorem 3.5.6);

exit loop;

else

if tG(π) contains a fully oriented cycle then

τ := a 2-transposition that acts on a smallest fully oriented cycle;

elsif tG(π) contains interleaving even cycles then

τ := a 2-transposition that acts on two interleaving even cycles (Lemma 3.4.8);

elsif tG(π) contains even cycles then

τ := a 2-transposition that acts on two even cycles (Lemma 3.2.5);

elsif tG(π) contains a knot then

τ := the 0-transposition from the (0, 2, 2)-sequence of Lemma 3.3.5;

elsif tG(π) contains two interleaving cycles then

τ := the 0-transposition from the (0, 2, 2)-sequence of Lemma 3.4.4;

else

τ := the 0-transposition from the (0, 2, 2)-sequence of Lemma 3.4.12;

end if ;

π:= π · τ ;

ts(i):= τ ;

end if ;

end loop;

return i, ts;

end approx;

Figure 3.20: The algorithm: approx

Chapter 3. Sorting by Transpositions 86

The algorithm does not achieve the 3/2-approximation bound because we have no

guarantee that it applies two 2-transpositions after every 0-transposition. But the

strategy for selecting 2-transpositions is designed with the hope that it will find a long

sequence of 2-transpositions, if one exists, and so we hope that the algorithm will find

at least two 2-transpositions after every 0-transposition. The algorithm performs so

well in practice that implementing the 3/2-approximation algorithm did not seem to

be worthwhile.

The algorithm has O(n4) worst-case time complexity by the same reasons that the

3/2-approximation algorithm has this complexity. In practice, though, the runtime of

the algorithm does not appear to increase as rapidly as this.

alt approx

This algorithm uses the same strategy as approx except that when a fully oriented

cycle exists, the algorithm favours 2-transpositions on odd length cycles before 2-

transpositions on even length cycles.

The reason for this variation is that we know, by Lemma 3.2.5, that if tG(π) contains

even cycles then we can perform a 2-transposition on π, whether the even cycles are

fully oriented or not. So the probability of being able to apply a 2-transposition on an

odd cycle could be thought of as being much smaller than the probability of applying

a 2-transposition on even cycles.

Another way of thinking about this algorithm is that it keeps 2-transpositions on

even cycles in reserve until it gets stuck trying to apply 2-transpositions on odd cycles.

The time complexity of this algorithm is O(n4) just like approx.

tlis

This algorithm is based on an algorithm described by Guyer, Heath and Vergara

[GHV95]. The algorithm repeatedly applies a transposition τ to π such that π · τ

has the longest possible increasing subsequence. This algorithm is described in Figure

3.21. A modification we have made to this algorithm (that is not indicated in the

figure) is that the transposition is chosen so that it maximises the length of the smaller

block moved, over all transpositions that increase the longest increasing sequence max-

imally. Without this modification, if the length of the longest increasing subsequence

can be increased by only one element then the algorithm could repeatedly move only

a single element in the permutation until the permutation is sorted, which is likely to

be a very inefficient method of sorting the permutation.

There are O(n3) transpositions that need to be considered on each iteration of the

loop, and for each transposition the length of the longest increasing subsequence is

calculated in O(n log n) time. The loop is iterated O(n) times, so the overall time-

complexity of the algorithm is O(n5 log n).

Chapter 3. Sorting by Transpositions 87

algorithm tlis(π: Permutation) is

algorithm lis(π: Permutation) is

begin

return the length of a longest increasing subsequence of π;

end lis;

τ : Transposition;

ts: array of Transposition;

i: Integer;

begin

i:= 0;

while π 6= ı loop

τ := a transposition such that lis(π · τ) is maximised;

π:= π · τ ;

i:= i+1;

ts(i):= τ ;

end loop;

return i, ts;

end tlis;

Figure 3.21: The algorithm: tlis

Chapter 3. Sorting by Transpositions 88

algorithm random(π: Permutation) is

τ : Transposition;

ts: array of Transposition;

i: Integer;

begin

i:= 0;

while π 6= ı loop

i:= i+1;

if π admits a 2-transposition then

τ := a 2-transposition chosen uniformly at random;

elsif tG(π) contains a knot then

τ := the 0-transposition from the (0, 2, 2)-sequence of Lemma 3.3.5;

elsif tG(π) contains two interleaving cycles then

τ := the 0-transposition from the (0, 2, 2)-sequence of Lemma 3.4.4;

else

τ := the 0-transposition from the (0, 2, 2)-sequence of Lemma 3.4.12;

end if ;

π:= π · τ ;

ts(i):= τ ;

end loop;

return i, ts;

end random;

Figure 3.22: The algorithm: random

random

This algorithm repeatedly selects a 2-transposition uniformly at random from among

all the 2-transpositions that are possible on the permutation until the permutation

is sorted. If no 2-transposition is possible then a 0-transposition is applied using the

same strategy that approx uses. The algorithm is summarised in Figure 3.22. This

algorithm has O(n4) complexity because in the worst case counting the total number

of 2-transpositions on π is an O(n3) operation, and we may need to perform O(n)

transpositions. Note that we have optimised the way we count 2-transpositions so

that, in practice, this algorithm appears to have a better runtime complexity.

rpt random

This algorithm repeatedly applies the algorithm random until an exact solution is found,

or a specified amount of processing time has elapsed, in which case the algorithm returns

the shortest sequence of transpositions that was obtained within the time-limit. The

algorithm uses alt approx to produce the initial sorting sequence. Of course, an

Chapter 3. Sorting by Transpositions 89

application of random is abandoned as soon as it cannot improve upon the best sorting

sequence found so far.

branch

This algorithm uses branch-and-bound search to find the exact transposition distance

of a given permutation. This algorithm is summarised in Figure 3.23. The lower

bound used by the algorithm is the bound based on detectable hurdles and the inverse

permutation (Theorem 3.5.3). The search is bounded by a specified time limit. Of

course, there are permutations for which this algorithm will not be able to find the exact

solution in the specified time. If time runs out during the search then the algorithm

returns the shortest sequence of transpositions that was obtained during the time-limit.

best

This algorithm tries all the algorithms described above (except for lower bound) and

selects the shortest sorting sequence found. Note that this algorithm also tries a few

variants of the algorithm branch that can sometimes establish the exact transposition

distance of a permutation faster than branch. However in the experiments these vari-

ant algorithms could only determine the exact transposition distance of a handful of

permutations that the other algorithms could not establish. Furthermore, these variant

algorithms could not establish the transposition distance of many permutations that

the other algorithms could. Therefore we do not include tables for these algorithms, or

describe these algorithms fully, though we do describe the variants a little in Section

3.6.4.

3.6.2 Permutations

The algorithms were tested with three different kinds of permutations. Of course, we

test the algorithms with random permutations (random permutations). We also test

the algorithms with two kinds of permutations that have cycle graphs containing only

3-cycles. We are interested in these permutations because they are important when

we consider the concept of transposition tightness which is defined by analogy with

reversal tightness (Section 2.5). We say that a permutation π is transposition tight if

it is possible to sort π by applying a sequence of transpositions to π such that each

transposition removes three breakpoints. If a permutation is transposition tight then it

must have a cycle graph containing only 3-cycles. We generate permutations containing

only 3-cycles in their cycle graph that may or may not be transposition tight (3-cycle

permutations), as well as permutations that are transposition tight (transposition tight

permutations).

We describe the three kinds permutations in more detail below.

Chapter 3. Sorting by Transpositions 90

algorithm branch(π: Permutation) is

bound: Integer

current, best: array of Transposition;

algorithm search(π, depth) is

begin

if π = ı then

if depth < bound then

bound:= depth;

best:= current;

end if ;

else

for each transposition τ in order of decreasing ∆tcodd(π, τ) loop

if lower bound(π · τ) + depth + 1 < bound then

current(depth + 1):= τ ;

search(π · τ, depth + 1);

end if ;

end loop;

end if ;

end search;

begin

bound, best:= alt approx(π);

search(π, 0);

return bound, best;

end branch;

Figure 3.23: The algorithm: branch

Chapter 3. Sorting by Transpositions 91

random permutations

These are generated uniformly at random from among all strip free permutations of a

given length.

3-cycle permutations

These are generated uniformly at random from among all permutations of a given

length that have cycle graphs containing only 3-cycles such that no 3-cycle contains

both bi and bi+1 for any i. Note that these permutations can only be generated if n ≡ 2

(mod 3).

We generate these permutations by randomly partitioning {b1, . . . , bn+1} into sets

of size three, such that no set contains bi and bi+1 for any i. Each of these sets represents

a potential 3-cycle in the cycle graph. We then randomly decide if each potential 3-

cycle is oriented or unoriented. Having made these decisions we can add grey edges

to the black edges, so as to obtain a candidate cycle graph. We then attempt to label

all the vertices in this graph by starting from vertex 0 and following grey edges in the

graph (since each grey edges is directed from vertex i to vertex i + 1). (Of course, we

can identify vertex 0 to begin with because it is adjacent to b1.) If we are able to label

all the vertices in the graph, then a permutation π exists with this candidate cycle

graph and it is easy to read π from the graph. If we cannot label all the vertices then

we redo the entire process until it works.

Note that if a 3-cycle contains black edges bi and bi+1, for some i, then that 3-cycle

must be fully oriented. Such a 3-cycle remains fully oriented until a 2-transposition is

applied on the cycle, or a 0-transposition or (-2)-transposition is applied that acts on at

least one of the edges of the cycle. Furthermore, if we apply a 2-transposition on such

a cycle, the overlapping pattern of the other cycles in the cycle graph is unaffected.

We conjecture that if tG(π) contains such a cycle, we may always obtain an optimal

length sequence of transpositions by initially applying a 2-transposition on this cycle.

In fact, this conjecture holds when the permutation is transposition tight. Therefore

we believe that these 3-cycles are not very interesting, and so we generate permutations

that do not contain these cycles.

transposition tight permutations

We generate these permutations by randomly partitioning {b1, . . . , bn+1} into sets of

size three, such that no set contains bi and bi+1 for any i. Each of these partitions

represents a transposition that acts on the three black edges in the set. We then

apply a sequence of these (n + 1)/3 transpositions, in random order, to the identity

permutation. The resulting permutation has a cycle graph that contains only 3-cycles

such that no 3-cycle contains bi and bi+1, for some i. Furthermore, we know that the

permutation is transposition tight. (This is in contrast to 3-cycle permutations which

may or may not be transposition tight.) Note, however, that we cannot claim that a

Chapter 3. Sorting by Transpositions 92

permutation generated in this way is chosen uniformly at random from the set of all

such permutations. Note also that these permutations can again only be generated if

n ≡ 2 (mod 3).

3.6.3 How the algorithms performed

Each algorithm was tested with each kind of permutation against 100 permutations of

sizes 8, 17, 26, 53, 107, 431 and 1727. (Remember that n+1 must be divisible by three

in order for it to be possible to decompose a cycle graph into 3-cycles only.) Some tests

were not performed because the space or time requirements of the algorithms were too

great.

The algorithm branch was allowed to search for 15 minutes of processing time. The

algorithm rpt random was allowed to search for 5 minutes of processing time. All the

algorithms were written in Ada 95, and compiled with the Gnat Ada 95 compiler. All

the tests were performed on a Sun SPARCstation-20.

The performance of the various algorithms is presented in tables later in this section.

Recall that, for a given permutation, each algorithm (except lower bound) returns a

sequence of transpositions that sorts the permutation (a sorting sequence). We now

describe the column headings of the tables. Of course, for lower bound the tables

present figures derived from values calculated as the lower bound, rather than from the

length of sorting sequence obtained.

Average

The average length of sorting sequence found by the algorithm over the 100 instances.

Min

The shortest length of sorting sequence found by the algorithm.

Max

The longest length of sorting sequence found by the algorithm.

Av gap

The average difference between the length of the sorting sequence found by the algo-

rithm and the lower bound of Theorem 3.5.3 over the 100 instances.

Max gap

The biggest difference between the length of the sorting sequence found by the algo-

rithm and the lower bound of Theorem 3.5.3.

Chapter 3. Sorting by Transpositions 93

Match lb

The number of times the length of the sorting sequence found by the algorithm was

equal to the lower bound of Theorem 3.5.3.

Exact

The number of times the length the sorting sequence found by the algorithm was equal

the exact transposition distance of the permutation (when the exact transposition

distance of the permutation is known).

Av Time

The average time in seconds required by the algorithm. Note that for branch and

rpt random this time excludes the time required to establish initial upper bound using

alt approx.

For the algorithm branch there are two more table headings, they are:

Finished

The number of times the algorithm completed its search inside the time allowed.

Longest

The longest time (in seconds) required by the algorithm to complete its search, when

the algorithm did complete its search.

Chapter 3. Sorting by Transpositions 94

n Average Min Max

8 3.96 3 4

17 8.43 7 9

26 12.75 12 13

53 26.18 25 27

107 53.07 52 54

431 214.67 213 216

1727 862.45 860 864

Table 3.1: random permutations, lower bound

n Average Min Max Av gap Max gap Match lb Exact Av time

8 4.20 3 5 0.24 1 76 98 0.0

17 8.75 7 10 0.32 2 69 88 0.0

26 13.02 12 14 0.27 1 73 73 0.0

53 26.51 25 28 0.33 2 68 68 0.0

107 53.34 52 55 0.27 1 73 73 0.0

431 214.96 213 217 0.29 1 71 71 0.2

1727 862.83 860 865 0.38 2 63 63 3.2

Table 3.2: random permutations, approx

n Average Min Max Av gap Max gap Match lb Exact Av time

8 4.20 3 5 0.24 1 76 98 0.0

17 8.75 7 10 0.32 2 69 88 0.0

26 13.00 12 14 0.25 1 75 75 0.0

53 26.54 25 28 0.36 1 64 64 0.0

107 53.36 52 55 0.29 1 71 71 0.0

431 214.98 213 217 0.31 2 70 70 0.2

1727 862.70 860 865 0.25 2 76 76 3.3

Table 3.3: random permutations, alt approx

n Average Min Max Av gap Max gap Match lb Exact Av time

8 4.36 3 5 0.40 1 60 82 0.0

17 10.01 8 12 1.58 5 17 20 2.3

26 16.12 14 19 3.37 7 0 0 30.2

Table 3.4: random permutations, tlis

Chapter 3. Sorting by Transpositions 95

n Average Min Max Av gap Max gap Match lb Exact Av time

8 4.26 3 5 0.30 1 70 92 0.0

17 9.04 7 11 0.61 2 44 62 0.0

26 13.34 12 15 0.59 2 47 47 0.0

53 27.14 25 30 0.96 3 31 31 0.0

107 54.28 52 58 1.21 4 23 23 0.2

431 215.93 213 219 1.26 4 16 16 8.2

1727 863.72 861 867 1.27 3 27 27 514.6

Table 3.5: random permutations, random

n Average Min Max Av gap Max gap Match lb Exact Av time

8 4.18 3 5 0.22 1 78 100 66.0

17 8.64 7 9 0.21 2 80 99 60.0

26 12.90 12 14 0.15 1 85 85 45.0

53 26.29 25 27 0.11 1 89 89 33.0

107 53.13 52 54 0.06 1 94 94 18.2

431 214.70 213 216 0.03 1 97 97 19.9

1727 862.61 860 865 0.16 1 84 84 259.8

Table 3.6: random permutations, rpt random

n Average Min Max Av gap Max gap Match lb Finished Exact Av time Longest

8 4.18 3 5 0.22 1 78 100 100 0.0 0.0

17 8.63 7 9 0.20 1 80 100 100 23.1 697.5

26 12.91 12 14 0.16 1 84 84 84 144.4 42.6

53 26.29 25 27 0.11 1 89 89 89 99.0 0.2

107 53.13 52 54 0.06 1 94 94 94 54.0 0.2

431 214.70 213 216 0.03 1 97 97 97 27.1 1.1

1727 862.45 860 864 0.00 0 100 100 100 2.4 66.0

Table 3.7: random permutations, branch

n Average Min Max Av gap Max gap Match lb Exact

8 4.18 3 5 0.22 1 78 100

17 8.63 7 9 0.20 1 80 100

26 12.90 12 14 0.15 1 85 85

53 26.29 25 27 0.11 1 89 89

107 53.13 52 54 0.06 1 94 94

431 214.70 213 216 0.03 1 97 97

1727 862.45 860 864 0.00 0 100 100

Table 3.8: random permutations, best

Chapter 3. Sorting by Transpositions 96

n Average Min Max

8 3.19 3 4

17 6.05 6 7

26 9.00 9 9

53 18.00 18 18

107 36.00 36 36

431 144.00 144 144

1727 576.00 576 576

Table 3.9: 3-cycle permutations, lower bound

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.32 3 4 0.13 1 87 100 0.0

17 6.57 6 8 0.52 2 53 92 0.0

26 9.78 9 11 0.78 2 37 86 0.0

53 19.21 18 22 1.21 4 20 22 0.0

107 37.18 36 39 1.18 3 24 24 0.0

431 145.12 144 148 1.12 4 21 21 0.2

1727 577.13 576 580 1.13 4 24 24 2.9

Table 3.10: 3-cycle permutations, approx

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.32 3 4 0.13 1 87 100 0.0

17 6.57 6 8 0.52 2 53 92 0.0

26 9.78 9 11 0.78 2 37 86 0.0

53 19.21 18 22 1.21 4 20 22 0.0

107 37.18 36 39 1.18 3 24 24 0.0

431 145.12 144 148 1.12 4 21 21 0.2

1727 577.13 576 580 1.13 4 24 24 2.9

Table 3.11: 3-cycle permutations, alt approx

n Average Min Max Av gap Max gap Match lb Exact Av time

8 4.35 3 6 1.16 2 25 25 0.0

17 9.92 6 13 3.87 6 1 1 2.2

26 15.87 11 18 6.87 9 0 0 27.8

Table 3.12: 3-cycle permutations, tlis

Chapter 3. Sorting by Transpositions 97

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.32 3 4 0.13 1 87 100 0.0

17 6.57 6 8 0.52 2 53 92 0.0

26 9.85 9 12 0.85 3 33 83 0.0

53 19.07 18 22 1.07 4 30 32 0.0

107 37.23 36 40 1.23 4 21 21 0.0

431 145.24 144 147 1.24 3 20 20 0.2

1727 577.42 576 579 1.42 3 11 11 3.5

Table 3.13: 3-cycle permutations, random

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.32 3 4 0.13 1 87 100 39.0

17 6.54 6 8 0.49 2 55 94 135.0

26 9.69 9 11 0.69 2 41 92 177.0

53 18.44 18 20 0.44 2 57 61 129.1

107 36.55 36 37 0.55 1 45 45 165.0

431 144.53 144 145 0.53 1 47 47 159.2

1727 576.54 576 577 0.54 1 46 46 166.3

Table 3.14: 3-cycle permutations, rpt random

n Average Min Max Av gap Max gap Match lb Finished Exact Av time Longest

8 3.32 3 4 0.13 1 87 100 100 0.0 0.0

17 6.48 6 8 0.43 1 57 100 100 0.0 1.0

26 9.61 9 11 0.61 2 41 100 100 8.1 630.5

53 18.47 18 20 0.47 2 54 54 59 419.0 262.4

107 36.69 36 39 0.69 3 39 39 39 550.5 83.7

431 144.59 144 145 0.59 1 41 41 41 538.4 278.5

Table 3.15: 3-cycle permutations, branch

n Average Min Max Av gap Max gap Match lb Exact

8 3.32 3 4 0.13 1 87 100

17 6.48 6 8 0.43 1 57 100

26 9.61 9 11 0.61 2 41 100

53 18.43 18 19 0.43 1 57 62

107 36.55 36 37 0.55 1 45 45

431 144.53 144 145 0.53 1 47 47

1727 576.54 576 577 0.54 1 46 46

Table 3.16: 3-cycle permutations, best

Chapter 3. Sorting by Transpositions 98

n Average Min Max

8 3.00 3 3

17 6.00 6 6

26 9.00 9 9

53 18.00 18 18

107 36.00 36 36

431 144.00 144 144

1727 576.00 576 576

Table 3.17: transposition tight permutations, lower bound

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.00 3 3 0.00 0 100 100 0.0

17 6.00 6 6 0.00 0 100 100 0.0

26 9.02 9 11 0.02 2 99 99 0.0

53 18.26 18 20 0.26 2 85 85 0.0

107 36.59 36 39 0.59 3 69 69 0.0

431 145.02 144 148 1.02 4 47 47 0.2

1727 577.16 576 580 1.16 4 40 40 2.8

Table 3.18: transposition tight permutations, approx

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.00 3 3 0.00 0 100 100 0.0

17 6.00 6 6 0.00 0 100 100 0.0

26 9.02 9 11 0.02 2 99 99 0.0

53 18.26 18 20 0.26 2 85 85 0.0

107 36.59 36 39 0.59 3 69 69 0.0

431 145.02 144 148 1.02 4 47 47 0.2

1727 577.16 576 580 1.16 4 40 40 2.8

Table 3.19: transposition tight permutations, alt approx

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.46 3 5 0.46 2 55 55 0.0

17 8.18 6 11 2.18 5 7 7 1.7

26 13.98 10 17 4.98 8 0 0 23.4

Table 3.20: transposition tight permutations, tlis

Chapter 3. Sorting by Transpositions 99

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.00 3 3 0.00 0 100 100 0.0

17 6.00 6 6 0.00 0 100 100 0.0

26 9.02 9 11 0.02 2 99 99 0.0

53 18.20 18 20 0.20 2 87 87 0.0

107 36.69 36 38 0.69 2 62 62 0.0

431 145.01 144 148 1.01 4 45 45 0.2

1727 577.13 576 580 1.13 4 42 42 3.4

Table 3.21: transposition tight permutations, random

n Average Min Max Av gap Max gap Match lb Exact Av time

8 3.00 3 3 0.00 0 100 100 0.0

17 6.00 6 6 0.00 0 100 100 0.0

26 9.00 9 9 0.00 0 100 100 0.0

53 18.00 18 18 0.00 0 100 100 0.0

107 36.00 36 36 0.00 0 100 100 0.0

431 144.00 144 144 0.00 0 100 100 0.2

1727 576.00 576 576 0.00 0 100 100 5.4

Table 3.22: transposition tight permutations, rpt random

n Average Min Max Av gap Max gap Match lb Finished Exact Av time Longest

8 3.00 3 3 0.00 0 100 100 100 0.0 0.0

17 6.00 6 6 0.00 0 100 100 100 0.0 0.0

26 9.00 9 9 0.00 0 100 100 100 0.0 0.0

53 18.01 18 19 0.01 1 99 99 99 11.7 264.3

107 36.11 36 37 0.11 1 89 89 89 102.3 118.5

431 144.20 144 146 0.20 2 81 81 81 195.7 713.1

Table 3.23: transposition tight permutations, branch

n Average Min Max Av gap Max gap Match lb Exact

8 3.00 3 3 0.00 0 100 100

17 6.00 6 6 0.00 0 100 100

26 9.00 9 9 0.00 0 100 100

53 18.00 18 18 0.00 0 100 100

107 36.00 36 36 0.00 0 100 100

431 144.00 144 144 0.00 0 100 100

1727 576.00 576 576 0.00 0 100 100

Table 3.24: transposition tight permutations, best

Chapter 3. Sorting by Transpositions 100

3.6.4 Analysis of the performance of the algorithms

The most important conclusions from these experiments are:

• for most permutations π, td(π) is equal to or very close to tl(π).

• for most randomly generated permutations π, we can evaluate td(π) and find an

optimal length sorting sequence.

We now review and summarise the performances of the various algorithms. First of all

we describe features of the algorithms that were noticeable in the experiment results.

Later we discuss general features of the experiment results.

approx and alt approx

The algorithms approx and alt approx have almost identical behaviour in all the

tests (Note that for 3-cycles permutations, and transposition tight permutations both

algorithms actually do behave in an identical manner, because there are no even cycles),

except that alt approx performs marginally better for larger values of n. It is because

of this slight advantage that alt approx was chosen as the upper bound used in branch.

We conclude that both algorithms contain good strategies for finding sorting se-

quences, since both algorithms find shorter sorting sequences, on average, than random.

It is perhaps a little surprising that the performance of approx is comparable to

alt approx when alt approx keeps 2-transpositions on even cycles up its sleeve in

case it gets stuck with the odd cycles. Might approx not waste its 2-transpositions

on even cycles, and get stuck looking for a 2-transposition more often? Perhaps these

algorithms have similar performance because approx hardly ever gets stuck for a 2-

transposition to apply, so it does not need to hold back 2-transpositions on even cycles

for emergencies.

Another reason for the similar performance is that the following lemma tells us that

after applying a 2-transposition that acts on an even cycle, we must be able to apply

a 2-transposition on the resulting permutation.

Lemma 3.6.1 If tG(π) contains an oriented even cycle C, then it is possible to apply

a sequence of two 2-transpositions on π.

Proof Since C is oriented, it must be fully oriented, so a 2-transposition exists that

splits C into two odd cycles and an even cycle. Now by Lemma 3.2.5 a 2-transposition

can be applied on the resulting permutation, because it contains an even cycle in its

cycle graph. 2

Therefore approx is unlikely to waste 2-transpositions on even cycles, since any

2-transposition on an even cycle must lead to at least one further 2-transposition.

Chapter 3. Sorting by Transpositions 101

Though neither algorithm achieves an approximation bound, each typically uses

only a handful of 0-transpositions to sort a given permutation, and far fewer 0-trans-

positions than the maximum allowed in order to achieve a 3/2-approximation bound

for transposition distance.

The algorithms are reasonably fast for all the permutations tested. The observed

run-time complexity was O(n2) for both algorithms.

tlis

The performance of tlis is clearly not as good as approx or alt approx. On average

it produces longer length sequences of transpositions to sort the given permutations,

and it requires much more time.

The results of these experiments would appear to refute Heath and Vergara’s claim

that this algorithm “often produces near-optimal results” [HV97]. As n increases the

number of permutations for which this algorithm finds an exact solution rapidly de-

creases. In fact, when n = 26 the algorithm fails to find an exact solution for any of

the cases generated of the transposition tight permutations which, as we will explain

later, we expect to be particularly easy to solve exactly.

Note that the other algorithms described by Guyer, Heath, and Vergara [GHV95],

which are based on repeatedly selecting a strip from the permutation and moving it

by a transposition so as to remove at least one breakpoint, require approximately n

transpositions to sort a random permutation, whereas approx and alt approx appear

to require approximately n/2 transpositions. In fact, as a result of Theorem 3.2.2,

we know that strips are an unimportant feature of a permutation, with respect to its

transposition distance.

The observed run-time complexity was O(n5 log n) as expected. In fact this means

that the algorithm requires too much time to solve the instances when n was larger

than 26.

random and rpt random

The algorithm random produces sequences of transpositions that are longer, on average,

than those produced by approx or alt approx. This is viewed as evidence that the

strategies employed by approx and alt approx are good strategies.

However, the algorithm rpt random finds sequences that are shorter on average

than those produced by approx or alt approx. In fact, for 3-cycle permutations and

transposition tight permutations this algorithm finds sorting sequences that are shorter,

on average, than all the other algorithms. For the random permutations rpt random

has similar performance to branch, except for larger values of n when, perhaps, count-

ing the 2-transpositions takes so long that only a few iterations of random can be

performed inside the time limit.

Chapter 3. Sorting by Transpositions 102

The observed run-time complexity of random was O(n3) for the random permuta-

tions, and O(n2) for the other two types of permutations. Note that when the cycle

graph contains only 3-cycles, the method used to count 2-transpositions on π requires

only O(n) steps so the algorithm has O(n2) overall time-complexity. Note that, if n is

much larger than 1727 there are too many 2-transpositions on the random permutations

to be able to count them in a reasonable amount of time.

branch

For random permutations branch finds the shortest sorting sequences, on average. It

is worth noting that for the random permutations tested, when n ≥ 53 the algorithm

finds an exact sorting sequence in about a second, if it can determine an exact sorting

sequence. Note, of course, that this timing excludes the first call of alt approx.

For n = 1727 the algorithm ran out of space when attempting to solve the 3-cycle

permutation and transposition tight permutation instances. Therefore the tables do

not contain any figures for these instances.

best

A strange property in the tables for the hypothetical algorithm best on the random

permutations is the way that the column Exact starts with 100, then decreases before

increasing to near 100 again. We believe that three factors have created this behaviour.

The first factor is that, in some sense, proving td(π) = tl(π) is easier than proving

td(π) > tl(π). This is because if td(π) = tl(π) then we only need to find one sequence

of length tl(π) that sorts π. However if td(π) > tl(π) then we must show that all

sequences of length tl(π) fail to sort π, and this may involve a great deal of work.

The second factor is that we believe that if td(π) = tl(π) then it is likely that there

will be many sequences of this length that sort π, which makes it easier to find such a

sorting sequence. The evidence that supports this conjecture is the good performance of

the randomised algorithm rpt random, and the approximation algorithms alt approx

and approx.

The third factor is that, for random permutations, it would appear that as n in-

creases, the lower bound for transposition distance becomes a more accurate measure of

exact transposition distance. That is, as n increases, it is more likely that td(π) = tl(π).

So for small values of n exhaustive search is enough to find the exact transposition

distance of all the permutations given. Then for slightly larger values of n, exhaustive

search is unable to determine the exact transposition distance of permutations that

have td(π) > tl(π) in a reasonable amount of time. For much larger values of n, it

is very likely that td(π) = tl(π) and that branch or rpt random will quickly find a

sequence that proves it.

We summarise this behaviour in Figure 3.24. The white ribbon in the graph rep-

resents the number of permutations for which the lower bound was demonstrated to

Chapter 3. Sorting by Transpositions 103

8
17

26
53

107
431

1727

nnnn
lb

search

best

0

10

20

30

40

50

60

70

80

90

100
%%%%

Figure 3.24: Performance of best.

be the exact distance. The grey ribbon is an estimate of the percentage of permu-

tations of length n, that have td(π) > tl(π), for which exhaustive search can prove

td(π) > tl(π) in a reasonable amount of time. The black ribbon is the maximum of

the other two edges, and represents the number of permutations for which the exact

distance is known.

For all the permutations tested, the length of the sorting sequence found by best

was at most three greater than the lower bound of Theorem 3.5.3. This suggests that,

in practice, this lower bound is a very accurate lower bound.

For all the permutations tested, the length of sorting sequence found by best was

never greater than bn/2c + 1. We view this as supporting evidence for Conjecture

3.5.1. If the transposition diameter were to be close to 3n/4, the tightest known upper

bound for tD(π), then we would expect to have found permutations with transposition

distance noticeably greater than bn/2c + 1.

For random permutations the minimum distance and maximum distance found by

best are remarkably close to the average distance, which itself is remarkably close to

dn/2e. Perhaps it may be possible to show that the expected transposition distance of

a random permutation is dn/2e.

Chapter 3. Sorting by Transpositions 104

3 18 12 17 21 25 8 23 2 13 10 19 9 20 5 7 4 11 24 16 14 6 1 15 22

3 18 12 17 21 25 8 23 2 13 10 19 9 20 5 6 7 4 11 24 16 14 1 15 22

1 3 18 12 17 21 25 8 23 2 13 10 19 9 20 5 6 7 4 11 24 16 14 15 22

1 2 13 10 19 9 20 5 6 7 4 11 3 18 12 17 21 25 8 23 24 16 14 15 22

1 2 3 18 13 10 19 9 20 5 6 7 4 11 12 17 21 25 8 23 24 16 14 15 22

1 2 3 4 11 12 17 21 25 18 13 10 19 9 20 5 6 7 8 23 24 16 14 15 22

1 2 3 4 11 12 17 18 13 10 19 9 20 21 25 5 6 7 8 23 24 16 14 15 22

1 2 3 4 5 6 7 8 23 24 16 14 15 22 11 12 17 18 13 10 19 9 20 21 25

1 2 3 4 5 6 7 8 9 23 24 16 14 15 22 11 12 17 18 13 10 19 20 21 25

1 2 3 4 5 6 7 8 9 23 24 16 17 18 13 14 15 22 11 12 10 19 20 21 25

1 2 3 4 5 6 7 8 9 13 14 15 22 11 12 10 23 24 16 17 18 19 20 21 25

1 2 3 4 5 6 7 8 9 13 14 15 16 17 18 19 20 21 22 11 12 10 23 24 25

1 2 3 4 5 6 7 8 9 11 12 10 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 3.25: A sequence of 13 transpositions that sorts π.

Discussion

The algorithm rpt random very quickly finds an exact sequence of transpositions to

sort each of the transposition tight permutations. These permutations are generated

by applying dn/3e non-interfering transpositions on π. Therefore, a transposition tight

permutation for which there are many optimal length sorting sequences is more likely to

be generated by this method than a transposition tight permutation for which there are

relatively few optimal length sorting sequences. So we cannot conclude that rpt random

is a good test for determining if a permutation is transposition tight, because there may

be some permutations that were not generated in our tests, for which it is much more

difficult to find an exact sequence of transpositions.

However, the algorithm rpt random does perform much better with these permuta-

tions than the other algorithms, for all of which the number of permutations for which

the exact solution is found decreases as n increases.

Unfortunately, there are some permutations with n as small as 25 for which our

algorithms are unable to determine the exact transposition distance. For example,

π = [3 18 12 17 21 25 8 23 2 13 10 19 9 20 5 7 4 11 24 16 14 6 1 15 22] has tl(π) = 12.

The algorithm approx finds a sorting sequence, shown in Figure 3.25, of length 13.

However a week’s computation by algorithms branch and rpt random has not been

able to establish if td(π) = 12, or td(π) = 13.

Chapter 3. Sorting by Transpositions 105

In general, it would appear that, when td(π) = tl(π), then there are many sequences

of length tl(π) that sort π. Therefore we conjecture that td(π) = 13, and that the exact

algorithms run out of time before proving this. However, it is possible that there are

relatively few sorting sequences of length 12, and that is why the algorithms have been

unable to find one of these sequences.

It is possible to discard some transpositions during the search because we know that

they would lead to a permutation that we have already searched from. For instance for

many transpositions τ1 and τ2, π ·τ1 ·τ2 = π ·τ2 ·τ1. A branch and bound algorithm was

implemented that discarded many possible search paths for this reason. Certainly this

alternative algorithm detects permutations that have td(π) > tl(π) much more quickly

than the standard algorithm. However, there appear to be very few permutations like

this, and in tests the alternative algorithm found hardly any new permutations like

this.

It is also possible to change the branch and bound algorithm by removing the use

of alt approx from inside the search procedure of branch. This alteration to the

algorithm speeds up the detection of permutations that have td(π) > tl(π), but slows

down the detection of permutations that have td(π) = tl(π). Since most permutations

have td(π) = tl(π), this algorithm finds the exact distance of fewer permutations than

the standard algorithm, when given the same time constraints.

We also tested all the algorithms with so called m-permutations. These permuta-

tions are generated by applying a sequence of m random transpositions to the identity

permutation. We generated m-permutations of various sizes with m = dn/2e, dn/3e,

and dn/4e. As with the other tests, the algorithms branch and rpt random found the

shortest sorting sequences on average. These algorithms could determine the exact

transposition distance of about 90 percent of these permutations. Interestingly td(π)

was noticeably smaller than m, on average.

3.7 Conclusion and open problems

We conclude this chapter with some conjectures and open problems. We begin with a

simple conjecture that would allow us to disregard (−2)-transpositions.

Conjecture 3.7.1 For any permutation π, there is a sequence of transpositions of

length td(π) that sorts π and contains no (−2)-transpositions.

We make this conjecture because applying a (−2)-transpositions would appear to

be a negative step towards sorting π, however we have no insight as to how to prove

this conjecture.

We may chip away at the problem of sorting by transposition, by cataloguing a

list of classes of permutations for which the exact transposition distance is known.

Chapter 3. Sorting by Transpositions 106

Here is a list of permutations for which the exact transposition distance is known

(of course, permutations transposition equivalent to the following permutations have

known transposition distance too):

• the reverse permutation Rn (Section 3.5.3).

• the permutation ωr (Section 3.3.4).

• permutations with only 2-cycles in their cycle graphs. We can sort such permu-

tations by repeated application of the 2-transpositions described in the proof of

Lemma 3.4.8.

• the permutation πn = [2 4 . . . n 1 3 . . . n − 1] (where n is even). Such a

permutation has only one cycle in its cycle graph, therefore by Theorem 3.2.3,

td(π) ≥ n/2. It is clear that this bound can be achieved by a sequence of n/2

transpositions that each move one odd element into the correct place in the

initial increasing sequence. Note that a permutation formed by concatenating

two increasing sequences is transposition equivalent to πn, for some n.

It is an open problem to extend this list. Of course a polynomial-time algorithm for

sorting by transpositions would make this list redundant, and proving whether sorting

by transpositions is in P remains an open problem. It may be possible to find a hard

special case of sorting by transpositions. The problem of deciding if a permutation is

transposition tight (TTDP) may be a useful problem for resolving whether sorting by

transpositions is NP-hard.

A permutation must have a cycle graph containing only 3-cycles if it is to be trans-

position tight, and at least one cycle in each component of the overlap graph must be

oriented. However, we know little more about the problem. The way that 3-cycles can

interact with each other is very rich and varied. Deciding if a permutation is transposi-

tion tight seems to be much more complicated than deciding if a permutation is reversal

tight. The experiments show that the algorithm rpt random could recognise the per-

mutations that were generated to be transposition tight. However, as was explained

before, the method used to generate these permutations is more likely to generate a

permutation that has many optimal length sorting sequences, than a permutation with

relatively few optimal length sorting sequences.

The approximation algorithms of Section 3.6 appear to perform least effectively

when given input permutations containing only 3-cycles in their cycle graphs. So an

algorithm to solve TTDP, or some good heuristics for the problem would be useful to

help improve our approximation algorithm.

Chapter 4

Sorting by Block-Interchanges

4.1 Introduction

In this chapter we introduce an operation, the block-interchange, in which two sub-

strings, or blocks, are swapped in a permutation. We demonstrate a polynomial-time

algorithm for calculating the block-interchange distance of a permutation (i.e. the min-

imum number of block-interchanges required to transform the permutation to the iden-

tity). We also determine the block-interchange diameter of the symmetric group.

A block-interchange can be viewed as a generalisation of a transposition. In a

block-interchange two non-intersecting substrings of any length are swapped in the

permutation. In a transposition the substrings must be adjacent.

A block-interchange β = β(i, j, k, l), where 1 ≤ i < j ≤ k < l ≤ n + 1, is applied

to π by exchanging the blocks [π(i) . . . π(j − 1)] and [π(k) . . . π(l − 1)]. So, if

j 6= k then the resulting permutation π · β = [π(0) . . . π(i − 1) π(k) . . . π(l −

1) π(j) . . . π(k − 1) π(i) . . . π(j − 1) π(l) . . . π(n + 1)], and if j = k then π · β =

[π(0) . . . π(i−1) π(k) . . . π(l−1) π(i) . . . π(j−1) π(l) . . . π(n+1)]. (As is standard,

we assume π(0) = 0 and π(n+1) = n+1.) Note that when j = k the block-interchange

is also a transposition.

The block-interchange distance of π, bd(π), is the length of a shortest sequence

of block-interchanges that transforms π into the identity permutation. For example

the permutation π = [5 2 4 1 3] has block-interchange distance 2, as demonstrated

in Figure 4.1. Sorting by block-interchanges is the problem of finding a sequence of

block-interchanges of length bd(π) that sorts π.

We find transposition breakpoints, as defined in Chapter 3, to be useful in studying

the problem of sorting by block-interchanges. To recall, a transposition breakpoint is

a value of i such that 1 ≤ i ≤ n + 1 and π(i)−π(i− 1) 6= 1. In the rest of this chapter,

for conciseness, we talk of breakpoints where we mean transposition breakpoints.

The number of breakpoints in the permutation π is denoted by tb(π). Note that

the identity permutation is the only permutation with no breakpoints, and a block-

interchange can change tb(π) by at most 4.

107

Chapter 4. Sorting by Block-Interchanges 108

1 35

1

2

2

4

4 51 3 2

3 4 5

Figure 4.1: An example of sorting by block-interchanges

In this chapter we describe a polynomial-time algorithm for evaluating bd(π). This

is achieved by first demonstrating that for all permutations, except the identity per-

mutation, a block-interchange exists that removes at least two breakpoints. Then

it is proved using a graph model for the permutations that an algorithm which re-

peatedly applies these block-interchanges sorts π using as few block-interchanges as

is possible. We then study the permutations of n elements which require the most

block-interchanges in order to sort them and show that the block-interchange diameter

of the symmetric group Sn is bn/2c.

4.2 Minimal block-interchanges

Lemma 4.2.1 It is always possible to find a block-interchange that removes at least

two breakpoints from a given permutation, π, unless π is the identity permutation.

Proof Since π is not the identity permutation, there must be at least two elements

in π that appear in the wrong order, i.e., there must be an x and a y such that x < y

but π = [. . . y . . . x . . .].

Now choose x to be the smallest such value and choose y to be the largest value in

π to the left of this x. Then x − 1 must be to the left of y in π since otherwise this

would contradict the choice of x. Similarly y + 1 must be to the right of x in π. Note

that in fact x is the smallest value such that π(x) 6= x. Hence π has the form

π = [1 . . . x − 1 . . . y . . . x . . . y + 1 . . .].

The block-interchange β = β(π−1(x− 1) + 1, π−1(y) + 1, π−1(x), π−1(y + 1)) trans-

forms π into π · β:

π · β = [1 . . . x − 1 x y y + 1 . . .].

Notice that before this transformation there were breakpoints at each place where

the block-interchange cut π. After the block-interchange there are at least two fewer

breakpoints in the permutation. Hence the lemma. 2

We call the block-interchange described in the above lemma the minimal block

interchange. Since we can remove at most four breakpoints with any block-interchange

Chapter 4. Sorting by Block-Interchanges 109

a b c d e f g h

heda f g cb

(a)

a b c d e f

fcbeda

(b)

Figure 4.2: The black edges that change when a block-interchange is applied: (a) when

the block-interchange is not a transposition, and (b) when the block-interchange is a

transposition.

and a minimal block-interchange removes at least two breakpoints, then an algorithm

that repeatedly applies the minimal block-interchanges is a 2-approximation algorithm

for block-interchange distance. However when we examine these block-interchanges on

a graph model we discover that, in fact, this algorithm is an exact algorithm.

4.3 The graph model

The graph model we use is that of the transposition cycle graph as presented in Chapter

3. The transposition cycle graph, tG(π), of π is a directed edge-coloured graph with

vertex set {0, . . . , n + 1}, grey edge set {(i, i + 1) : 0 ≤ i ≤ n}, and black edge set

{(π(i), π(i − 1)) : 1 ≤ i ≤ n + 1}. Note that the edge (u, v) is directed from u to v.

Since every incoming edge of a vertex can be uniquely paired with an outgoing edge

of the other colour, we can easily completely decompose the graph into alternating

cycles, and furthermore this decomposition is unique. The identity permutation is

the only permutation that has n + 1 alternating cycles in its graph. The number of

alternating cycles in tG(π) is denoted by tc(π).

A block-interchange changes only black edges in the graph. Three or four black

edges are removed from the graph and replaced by new black edges as shown in Figure

4.2.

Lemma 4.3.1 When a minimal block-interchange is applied tc(π) increases by two.

Chapter 4. Sorting by Block-Interchanges 110

Proof A minimal block interchange may change 3 or 4 black edges of tG(π). If it

changes 3 edges then those edges must be part of one cycle. If it changes 4 edges then

those edges must be part of either one or two cycles. The three possible cases are shown

in Figure 4.3 (a), (b) and (c). In each of these cases tc(π) increases by two. Note that

in the figure, paths which start and finish with a grey edge are represented by dotted

grey edges. 2

Lemma 4.3.2 It is impossible to increase tc(π) by more than two with a single block-

interchange.

Proof A block interchange changes at most four black edges in the graph, so the only

way that we could increase tc(π) by more than two with a single block-interchange

would be if one big cycle was broken into four cycles, but this is impossible. A block

interchange that changes black edges from four different cycles results in two cycles.

By symmetry, a block interchange that results in four cycles must have acted on black

edges from two cycles (an example of this is shown in Figure 4.3 (c)). So tc(π) can be

increased by at most two with a single block-interchange. 2

4.4 Block-interchange distance

We can now present the main result of this chapter.

Theorem 4.4.1 The block-interchange distance bd(π) of a permutation π is

bd(π) =
(n + 1) − tc(π)

2

where tc(π) is the number of alternating cycles in the cycle graph of π.

Proof By Lemma 4.3.1, bd(π) ≤ (tc(ın) − tc(π))/2, and by Lemma 4.3.2, bd(π) ≥

(tc(ın) − tc(π))/2, where ın is the identity permutation of length n. So bd(π) = ((n +

1) − tc(π))/2, since tc(ın) = n + 1. 2

An algorithm that calculates the block-interchange distance is shown in Figure 4.4.

The algorithm performs a depth-first search of tG(π), counting the number of cycles,

and hence runs in linear time.

An algorithm that performs an optimal sequence of block-interchanges is shown in

Figure 4.5. This algorithm has O(n2) complexity since all the steps inside the while

loop can be executed in linear time, and the loop itself is executed bn/2c times at most.

4.5 Block-interchange diameter

The block-interchange diameter, bD(n), of the symmetric group Sn, is the maximum

value of bd(π) taken over all n-element permutations. Rn is the reverse permutation

Chapter 4. Sorting by Block-Interchanges 111

x−1 x y y+1

x−1 a y x y+1

a

b

b

(a)

x−1 a y b c x d y+1

x−1 x d b c a y y+1

(b)

x−1 x y y+1

x−1 a y b c x d y+1

d b c a

(c)

Figure 4.3: How a minimal block-interchange changes tG(π).

Chapter 4. Sorting by Block-Interchanges 112

algorithm bd(π: Permutation) is

visited: array of Boolean;

j, cycles: Integer;

begin

initialise all components of visited as false;

cycles:= 0;

for i in 0 .. |π| loop

if not visited(i) then

cycles:= cycles+1;

j:= i;

while not visited(j) loop

visited(j):= true;

j:= j + 1; — follow grey edge

j:= π(π−1(j) − 1); — follow black edge

end loop;

end if ;

end loop;

return (n + 1 − cycles)/2;

end bd;

Figure 4.4: An algorithm to calculate bd(π).

algorithm bd sequence(π: Permutation) is

x, y: Integer;

begin

while π 6= ı loop

locate the smallest x s.t. π(x) 6= x;

find the largest value, y, between x − 1 and x in π;

π:= π · β(x, π−1(y) + 1, π−1(x), π−1(y + 1));

end loop;

end bd sequence;

Figure 4.5: An algorithm to perform an optimal sequence of block-interchanges.

Chapter 4. Sorting by Block-Interchanges 113

of length n, i.e., Rn = [n n − 1 . . . 1]. It is easy to show that tc(Rn) is given by the

formula

tc(Rn) =

{

2 if n is odd,

1 otherwise.

So tc(Rn) is as small as possible (since tc(π) ≡ n + 1 (mod 2) for any permutation π

of length n). Hence bD(n) is achieved by the reverse permutation and is bn/2c.

There are many other permutations which achieve this upper bound, e.g., the per-

mutation [2 4 6 8 1 3 5 7] contains only one cycle in its cycle graph, and the family of

permutations like it (that have even numbers in ascending order preceding odd numbers

in ascending order) have the same value for tc(π) as the reverse permutation. Table

4.1 shows how many permutations achieve the bD(n) for small values of n.

n 1 2 3 4 5 6 7 8 9 10

number 1 1 5 8 84 180 3044 8064 193248 604800

Table 4.1: The number of permutations of size n that achieve bD(n).

It is perhaps a little surprising that even though a block-interchange would appear

to be a much more powerful primitive operation for sorting than a transposition, the

block-interchange diameter (bn/2c) is only one less than the conjectured transposition

diameter (bn/2c + 1).

4.6 Conclusion

A block-interchange is a generalisation of a transposition. However, in contrast with

what is known for transpositions, we have derived a polynomial-time algorithm for

sorting by block-interchanges, and have also evaluated the block-interchange diameter

of Sn, The complexity of sorting by transpositions is unresolved, and the transposition

diameter of Sn is not known.

We can think of a block-interchange as an operation in which three adjacent sub-

strings of π are rearranged in any order. This is an alternative generalisation of a

transposition, since a transposition, of course, rearranges two adjacent substrings of π

in the only different order possible. As far as we know, the problem of sorting π using

operations that rearrange k adjacent substrings of π in any order, has not been studied

for k ≥ 4.

Now that we have a polynomial-time algorithm for sorting by block-interchanges, we

might ask, what can we say about the problem if we allow the sequences being compared

to contain repeated characters? In Chapter 5 we study this and other similar problems.

In particular, we show that this generalised version of sorting by block-interchanges is

NP-hard.

Chapter 5

Sorting Strings by Global

Transformations

5.1 Introduction

The previous chapters were devoted to the problems of sorting permutations by rever-

sals, transpositions and block-interchanges. Corresponding problems can be defined on

strings (that may contain repeated characters) instead of permutations. These prob-

lems, together with the problem on strings that corresponds to sorting permutations

by prefix-reversals, are investigated in this chapter.

It was shown in a previous chapter that, for permutations, transforming π into φ

is equivalent to transforming φ−1·π into ı. However, there is no analogue of this result

for strings. Therefore the string problems are expressed in terms of two strings.

Given strings S and T : the reversal distance rd(S, T) is the minimum number of

reversals required to transform S into T ; the prefix-reversal distance prd(S, T) is the

minimum number of prefix-reversals required to transform S into T ; the transposition

distance td(S, T) is the minimum number of transpositions required to transform S

into T ; and the block-interchange distance bd(S, T) is the minimum number of block-

interchanges required to transform S into T . It is impossible to insert or delete charac-

ters using reversals, prefix-reversals, transpositions, or block-interchanges, so T must

be a rearrangement of S, since otherwise it would be impossible to transform S into

T . We say that S and T are related if T is a rearrangement of S.

For each of the four transformations, the distance problem on permutations is a

special case of the distance problem on strings. Since, for example, rd(π) = rd(π, ın).

Therefore, for each of the transformations, the distance problem on strings is at least as

hard as the sorting problem on permutations. Thus, finding reversal distance on strings

is NP-hard since sorting permutations by reversals is NP-hard [Cap97b]. Similarly, find-

ing prefix-reversal distance is NP-hard since sorting permutations by prefix-reversals is

NP-hard [HS].

114

Chapter 5. Sorting Strings by Global Transformations 115

If the strings are drawn from a fixed size alphabet that is smaller than the length

of the strings, then the sorting problems on permutations are no longer special cases

of the distance problems on strings. In this chapter, distance problems on strings that

are drawn from a binary alphabet {0, 1} are studied. Of course, the distance problems

on a larger alphabet include the distance problems on a binary alphabet as a special

case. So the distance problems on a larger alphabet are at least as hard as the distance

problems on a binary alphabet.

The next section (Section 5.2) contains a few useful definitions. Sections follow for

each of the four distance problems. NP-completeness results are proved in Section 5.7

for two of the problems.

5.2 Definitions

A reversal, or prefix-reversal, on a string will be represented by enclosing in square

brackets the substring that has to be reversed. For example, 0[1010110]1 = 001101011.

A similar notation will be used to describe transpositions and block-interchanges,

though in both cases two substrings need to be bracketed.

Let 0k represent a string of zeros of length k, 1k represent a string of ones of length

k, and in general let Sk represent the string obtained by concatenating k copies of S,

for any string S. Larger strings can be built from smaller strings by concatenating

them together using ++. For example, 02 ++13 = 00111. Concatenation (++) can also

be used in a similar way to summation (
∑

). For example, ++3
i=10

i1 = 010010001. Note

that sometimes, as in the last example, the ++ symbol is omitted, and the strings to

be concatenated are simply placed side by side.

Let Bn be the set of binary strings of length n. For a particular transformation,

the diameter of Bn is the maximum distance between any two related binary strings

of length n. Define Bk = 0k ++ 1k, and Ck = (10)k. For example, B4 = 00001111 and

C4 = 10101010. These strings are particularly useful for establishing diameter results

in later sections.

Let S−1 represent the string derived from S by switching zeros and ones. Let S

represent the string S in reverse order. If S = 0100110001 then S−1 = 1011001110,

S = 1000110010, and S
−1

= 0111001101.

Strings X and Y are isomorphic to strings S and T if:

(i) X = S and Y = T , or X = T and Y = S, or

(ii) X = S−1 and Y = T−1, or X = T−1 and Y = S−1, or

(iii) X = S and Y = T , or X = T and Y = S, or

(iv) X = S
−1

and Y = T
−1

, or X = T
−1

and Y = S
−1

.

Obviously, if X and Y are isomorphic to S and T , then rd(X, Y) = rd(S, T), td(X, Y) =

td(S, T), and bd(X, Y) = bd(S, T).

Chapter 5. Sorting Strings by Global Transformations 116

Strings X and Y are prefix isomorphic to strings S and T if:

(i) X = S and Y = T , or X = T and Y = S, or

(ii) X = S−1 and Y = T−1, or X = T−1 and Y = S−1.

If X and Y are prefix isomorphic to S and T , then prd(X, Y) = prd(S, T).

Define lcp(S, T) and lcs(S, T) to be the lengths of the longest common prefix and

the longest common suffix, respectively, of S and T .

A block of zeros is a maximal length substring that consists only of the character

0 repeated. A block of ones is defined similarly. Let b(S) denote the total number

of blocks in S, and z(S) denote the number of blocks of zeros in S. So, for example,

b(001110101) = 6, and z(001110101) = 3.

In the sections that follow we will often know a prefix, a suffix and sometimes a

substring of a string, but not know (or care about) the rest of the string. In such cases

we represent the string by joining the known parts with dots (. . .). For example, if S

has prefix ‘01’, a substring ‘00’ and suffix ‘11’ then we write S = 01 . . . 00 . . . 11.

By contrast, sometimes we will need to represent strings that have a repeating

pattern. In such cases we will use a twiddle symbol (∼). For example, Ck = 1010 ∼ 10.

5.3 Reversal distance between binary strings

In this section, we present a lower bound and an upper bound for reversal distance

between binary strings. These bounds are then used to determine the reversal diameter

of Bn, and also to identify some strings that achieve the reversal diameter. A restricted

version of the problem, that is in some ways analogous to sorting permutations by

reversals, is shown to be solvable in polynomial-time. However, in Section 5.7 the

general problem of determining reversal distance between two strings is shown to be

NP-hard.

5.3.1 A lower bound

In this section the concept of breakpoint from permutation sorting problems is adapted

for use with string sorting problems. This new kind of breakpoint is then used to find

a lower bound for reversal distance. Remember that, for permutations, two elements

form a breakpoint if they are adjacent in π but not adjacent in the identity permutation.

Substrings of length 2 represent adjacencies in strings S and T , so our definition of

breakpoints on strings will be based on these substrings.

If S contains more ‘00’ substrings than T , then each extra ‘00’ must be broken, by

a reversal, at some time in the transformation from S into T . Similarly if T contains

more ‘00’ substrings than S, then each extra ‘00’ must be created by a reversal. Each

extra ‘00’ in S or T is a reversal breakpoint. An obvious difference between breakpoints

on strings and on permutations is that, on strings, the specific location of a breakpoint

may not necessarily be identified. For instance, if S contains three ‘00’ substrings and

Chapter 5. Sorting Strings by Global Transformations 117

T contains only two ‘00’ substrings, then one of the ‘00’ substrings in S is a breakpoint,

but no particular ‘00’ substring of S is selected as the breakpoint. Breakpoints occur

with ‘01’, ‘10’, and ‘11’ substrings as well. However, care must be taken, because

reversals can convert ‘01’ substrings into ‘10’ substrings. Therefore, ‘01’ substrings

and ‘10’ substrings are counted together when considering reversal breakpoints.

Breakpoints can also be contributed from the beginning and end of both strings.

For example, if S(1) 6= T (1), then position one contributes breakpoints. In order to

deal with these breakpoints, S and T are extended by adding special characters α at

the beginning, and ω at the end of both strings. These breakpoints can then be counted

by comparing the number of occurrences of the substrings ‘α0’, ‘α1’, ‘0ω’, and ‘1ω’ in

both strings. Adding α and ω to S and T , is similar to adding 0 and n + 1 to π when

dealing with permutations.

The number of times the substring ‘ab’ occurs in S is denoted by fab(S), where

a ∈ {α, 0, 1} and b ∈ {0, 1, ω}.

The number of reversal breakpoints (over a binary alphabet), rb(S, T), is therefore

rb(S, T) = |f00(S) − f00(T)| + |f11(S) − f11(T)|

+|f01(S) + f10(S) − f01(T) − f10(T)|

+|fα0(S) − fα0(T)| + |fα1(S) − fα1(T)|

+|f0ω(S) − f0ω(T)| + |f1ω(S) − f1ω(T)|.

Clearly, if S = T , then rb(S, T) = 0. However, it is possible to have rb(S, T) = 0,

even when S 6= T . For example, if S = 100101 and T = 101001, then rb(S, T) = 0.

We now derive a lower bound for reversal distance based on these breakpoints.

Lemma 5.3.1 Suppose that S ′ is obtained from S by a single reversal. Then

rb(S′, T) ≥ rb(S, T) − 4.

Proof A reversal on S cuts two substrings of length two in the extended version

of S. Suppose that the first of these substrings is ab and the other is cd. Recall

that the frequency counts of 01 substrings and 10 substrings are added together when

counting breakpoints. So the frequency counts of substrings in S ′ will be the same

as the frequency counts of substrings in S except that S ′ contains one less ab and cd

and one more ac and bd. Given the definition of rb(S ′, T), this means that rb(S ′, T) ≥

rb(S, T) − 4. 2

This lemma can be used to easily deduce the following lower bound for reversal

distance.

Theorem 5.3.1 Let S and T be related binary strings. Then

rd(S, T) ≥ drb(S, T)/4e.

Chapter 5. Sorting Strings by Global Transformations 118

Unfortunately this lower bound is not tight. For example, if S = 0011000111 and

T = 1110011000, then rb(S, T) = 4, but rd(S, T) = 2. Note also that sometimes it is

impossible to apply a reversal that will reduce the number of reversal breakpoints. For

example, rb(S, T) = 0, but S 6= T .

5.3.2 An upper bound

In this section a simple upper bound is derived for reversal distance.

Lemma 5.3.2 Let S and T be related strings of length n, such that S 6= T . Then it is

possible either:

a) to apply a reversal on S resulting in the string S ′, such that lcp(S ′, T)+ lcs(S′, T) ≥

lcp(S, T) + lcs(S, T) + 2, or

b) to apply a reversal on T resulting in the string T ′ such that lcp(S, T ′) + lcp(S, T ′) ≥

lcp(S, T) + lcs(S, T) + 2.

Proof Without loss of generality, it can be assumed that S(1) = 0, since otherwise

we could consider S−1 and T−1, and apply the resulting reversal to S and T . Further,

it can be assumed that S(1) 6= T (1), and S(n) 6= T (n), because otherwise we could

reduce n by removing any common prefix or suffix from both strings.

The reversal applied to S or T depends on S and T . We describe seven cases, and

show a reversal with the required property for each one. The seven cases cover all

possibilities for S and T , though the cases are not necessarily mutually exclusive.

Case (i). S(n) = 1: then S = 0 . . . 1 and T = 1 . . . 0, so take S ′ = [0 . . . 1].

Case (ii). T (2) = 0: then S = 0 . . . 0, and T = 10 . . . 1, so take S ′ = [0 ∼ 01] . . . 0,

where the ‘01’ substring at the end of the reversal is the first ‘01’ substring in S.

Case (iii). T (n − 1) = 0: then S = 0 . . . 0, and T = 11 . . . 01, so, by considering S,

and T , this case can be dealt with in a similar way to Case (ii).

Case (iv). f11(S) > 0: then S = 0 . . . 11 . . . 0 and T = 11 . . . 11, so take S ′ =

[0 . . . 11] . . . 00, where the ‘11’ substring at the end of the reversal is the first ‘11’

substring in S.

Case (v). S(2) = 1: then S = 01 . . . 0 and T = 11 . . . 11 so, by considering S−1, and

T−1, this case can be dealt with in a similar way to Case (ii).

Case (vi). S(n − 1) = 1: then S = 00 . . . 10 and T = 11 . . . 11 so, by considering

S
−1

, and T
−1

, this case can be dealt with in a similar way to Case (ii).

Case (vii). f00(T) > 0: then S = 00 . . . 00 and T = 11 . . . 00 . . . 11, so, by consider-

ing S−1, and T−1, this case can be dealt with in a similar way to Case (iv).

These cases are exhaustive because Cases (i) to (iv) can only fail to apply if S

contains more zeros than ones, whereas Cases (i), and (v) to (vii) can only fail to apply

if T contains more ones than zeros. 2

Theorem 5.3.2 Let S and T be related binary strings of length n. Then

rd(S, T) ≤ bn/2c.

Chapter 5. Sorting Strings by Global Transformations 119

Proof Lemma 5.3.2 describes a way to increase the combined length of the common

prefix and suffix of S and T by at least two using a single reversal. So a sequence of

bn/2c such reversals will be enough to transform S into T . 2

For example, if S = 010101010, and T = 110000011, then applying reversals as

described in the proof of Lemma 5.3.2 results in the following sequence of strings. (In

this example the substrings to be reversed are underlined).

010101010

011001010

011000101

011000011

110000011

Note that the first reversal found as described in the proof of Lemma 5.3.2 is the one

that reverses the first three characters of T , and so it is the last reversal shown in the

illustration.

5.3.3 Reversal diameter of Bn

The reversal diameter of Bn, rD2(n), is defined to be the maximum value of rd(S, T)

over all related binary strings S and T of length n. More formally

rD2(n) = max{rd(S, T) : S, T are related binary strings of length n}.

Lemma 5.3.3 For all k ≥ 1, rd(Bk, Ck) = k, and rd(0 ++ Bk, 0 ++ Ck) = k.

Proof This follows at once by application of Theorem 5.3.1, and Theorem 5.3.2 to

these strings. 2

Theorem 5.3.3 For all n ≥ 1, rD2(n) = bn/2c.

Proof This is an immediate consequence of Theorem 5.3.2 and Lemma 5.3.3. 2

Theorem 5.3.4 Let S and T be related binary strings of length 2n ≥ 6. Then

rd(S, T) = n, if and only if S and T are isomorphic to Cn and Bn.

Proof We prove this theorem by induction. The base case is when 2n = 6. Then,

by complete search, it may be verified that rd(S, T) = 3 if and only if S and T are

isomorphic to B3 and C3. Now suppose that the theorem holds for n ≤ k. Let S and

T be strings of length 2k + 2 such that rd(S, T) = k + 1. We show that S and T are

isomorphic to Ck+1 and Bk+1.

Chapter 5. Sorting Strings by Global Transformations 120

We can assume, without loss of generality, that S(1) = 0. By Lemma 5.3.2, we can

apply a reversal to S or T that increases the combined length of the common prefix and

suffix by at least two. By the proof of Lemma 5.3.2 we can assume that the reversal

is applied to S resulting in the string S ′. It must be that lcp(S ′, T) + lcs(S′, T) = 2,

and rd(S′, T) = k, since any alternative would contradict rd(S, T) = k + 1. Let S ′
e

and Te be the strings S ′ and T excluding common prefix and suffix. By the induction

hypothesis, S′
e and Te must be isomorphic to Bk and Ck. Therefore, since B−1

k = Bk,

and C−1
k = Ck, either:

a) S′
e = Bk and Te = Ck; or

b) S′
e = Ck and Te = Bk; or

c) S′
e = Bk and Te = Ck; or

d) S′
e = Ck and Te = Bk.

By the proof of Lemma 5.3.2 there are essentially three ways that the reversal can

be applied to S, as typified by cases (i), (ii) and (iv) in that proof. We take each

of these three cases in turn, and show that for the four possible values of S ′
e and Te,

rd(S, T) = k + 1 if and only if S and T are isomorphic to Bk+1 and Ck+1.

Case (i). S = 0 . . . 1, T = 1 . . . 0. In this case the whole of S is reversed. We

show that cases a) and b) for S ′
e and Te lead to contradictions, whereas cases c) and

d) establish the induction step.

a) S = 0 ++ Bk ++ 1 = 011 ∼ 100 ∼ 01, T = 1 ++ Ck ++0 = 11010 ∼ 100. Suppose

that instead of applying the reversal of Lemma 5.3.2 we apply the reversal [011] ∼

100 ∼ 01 to obtain S ′′. This reversal extends the common prefix by three characters,

so rd(S′′, T) < k. So rd(S, T) < k + 1, a contradiction.

b) S = 0 ++ Ck ++ 1 = 00101 ∼ 011, T = 1 ++Bk ++ 0 = 100 ∼ 011 ∼ 10. These

strings are isomorphic to the strings in a), so rd(S, T) < k + 1, a contradiction.

c) S = 0 ++Bk ++ 1 = Bk+1, T = 1 ++ Ck ++ 0 = Ck+1.

d) S = 0 ++ Ck ++ 1 = Ck+1, T = 1 ++ Bk ++0 = Bk+1.

Case (ii). S = 0 . . . 0, T = 10 . . . 1. In this case the reversal results in a string S ′

that has prefix ‘10’. So S ′
e and Te must be suffixes of S ′ and T . Now since T ends with

a 1, only cases b) and c) need to be considered. Both cases lead to a contradiction.

b) S′ = 10 ++ Ck = 1010 ∼ 10, and T = 10 ++ Bk = 1000 ∼ 011 ∼ 1. The reversal

on S ends with the first ‘01’ substring in S, so S = 011010 ∼ 10. Then the reversal

[01101]0 ∼ 10 produces string S ′′ that has rd(S ′′, T) < k by the induction hypothesis.

So rd(S, T) < k + 1, a contradiction.

c) S′ = 10 ++Bk = 1011 ∼ 100 ∼ 0, and T = 10 ++ Ck = 100101 ∼ 01. Given

the nature of the reversal on S, S = 0111 ∼ 100 ∼ 0. Then the reversal 0111 ∼

[100 ∼ 0] results in a string S ′′, that has rd(S ′′, T) < k by the induction hypothesis.

So rd(S, T) < k + 1, a contradiction.

Case (iv). S = 0 . . . 11 . . . 0, and T = 11 . . . 11. In this case the reversal is applied

to S to obtain a string S ′ that has prefix 11. So S ′
e and Te must be suffixes of S ′ and

Chapter 5. Sorting Strings by Global Transformations 121

T . Now, since T ends with ‘11’ only case b) need be considered. However, in fact, even

this case cannot occur.

b) S′ = 11 ++ Ck = 111010 ∼ 10, and T = 11 ++Bk = 1100 ∼ 011 ∼ 1. But then

the reversal on S could not have moved the first ‘11’ substring in S. So this case cannot

occur.

So rd(S, T) = k + 1, if and only if S and T are isomorphic to Bk+1 and Ck+1.

Therefore, by induction, we have proved the theorem. 2

Theorem 5.3.4 describes the strings of length n that achieve the reversal diameter,

when n is even. When n is odd, significantly more pairs of strings achieve the reversal

diameter.

5.3.4 Sorting by reversals

Let Sı denote the string that is related to S and consists only of a block of zeros,

followed by a block of ones. For example, if S = 01100110 then Sı = 00001111.

Then determining rd(S, Sı) is an analogue of determining the reversal distance of a

permutation. We show that rd(S, Sı) can be determined in polynomial-time.

Recall that z(S) denotes the number of blocks of zeros contained in S. Obviously,

z(Sı) = 1 (unless S does not contain any zeros). The following lemma can be verified

easily.

Lemma 5.3.4 Let S′ be a string obtained from S by a single reversal. Then

z(S′) ≥ z(S) − 1.

With this lemma we can determine rd(S, Sı).

Theorem 5.3.5 For any binary string S,

rd(S, Sı) =

{

z(S) − 1, if S(1) = 0,

z(S), otherwise.

Proof By Lemma 5.3.4, rd(S, Sı) ≥ z(S) − 1. If S(1) = 0, then z(S) − 1 reversals

of the form 0 ∼ 0[1 . . . 0]b . . ., where b ∈ {1, ω}, transform S into Sı. If S(1) = 1,

then an extra reversal is required, because it is impossible to change the character at

the beginning to a 0, and also reduce the value of z. This bound can be achieved by

performing the reversal [1 . . . 0]b . . ., before performing the z(S)− 1 reversals described

for when S(1) = 0. 2

The distance described in Theorem 5.3.5 can be calculated easily in polynomial-

time. In Section 5.7 it is shown that, in general, determining rd(S, T) is NP-hard.

Chapter 5. Sorting Strings by Global Transformations 122

5.4 Prefix-reversal distance between binary strings

In this section, we present an upper bound and a lower bound for prefix-reversal dis-

tance between binary strings. These bounds are used to determine the prefix-reversal

diameter of Bn, and to identify some strings that achieve the prefix-reversal diameter.

A restricted version of the problem, that is in some ways analogous to the problem of

sorting by prefix-reversals, is shown to be solvable in polynomial-time.

5.4.1 A lower bound

The lower bound for prefix-reversal distance is based on blocks instead of breakpoints.

It is possible to base the lower bound on breakpoints, but such a bound is not as

elegant because the first character needs to be dealt with in a special way. Note, it

is possible to obtain a lower bound for reversal distance (and transposition distance

and block-interchange distance) based on blocks instead of breakpoints. However, in

general, such a bound is not as tight as the bound based on breakpoints.

The following lemma can be verified easily.

Lemma 5.4.1 Suppose that S ′ is obtained from S by a single prefix-reversal. Then

b(S) − b(S′) ∈ {−1, 0, 1}.

This lemma can be used to deduce the following lower bound for prefix-reversal

distance.

Theorem 5.4.1 Let S and T be related binary strings of length n. Then

prd(S, T) ≥

{

|b(S) − b(T)| + 1, if S(n) 6= T (n),

|b(S) − b(T)|, otherwise.

Proof By Lemma 5.4.1 at least |b(S) − b(T)| prefix-reversals are required, just to

ensure that both strings contain the same number of blocks. If S(n) 6= T (n) then at

one point in the transformation from S into T , the whole string will have to be reversed.

Such a prefix-reversal cannot change the value of b, so at least one more prefix-reversal

is required in such instances. 2

This lower bound is not exact. For example, if S = 011001 and T = 101100, then

the bound states prd(S, T) ≥ 1, whereas prd(S, T) = 2.

5.4.2 An upper bound

In this section a simple upper bound is obtained for prefix-reversal distance.

Chapter 5. Sorting Strings by Global Transformations 123

Lemma 5.4.2 Let S and T be related binary strings, such that S 6= T . Then it is

possible either:

a) to apply a prefix-reversal to S or T , obtaining the string S ′ or T ′, such that

lcs(S′, T) ≥ lcs(S, T) + 1, or lcs(S, T ′) ≥ lcs(S, T) + 1, or

b) to apply a sequence of two prefix-reversals to S or T resulting in the string S ′′ or

T ′′, such that lcs(S ′′, T) ≥ lcs(S, T) + 2, or lcs(S, T ′′) ≥ lcs(S, T) + 2.

Proof It can be assumed without loss of generality that S(1) = 0, and S(n) 6= T (n).

The prefix-reversals that are applied to S or T depend on S and T . We describe

six cases, and show prefix-reversals with the required property in each case. The six

cases cover all possibilities for S and T , though the cases are not necessarily mutually

exclusive.

Case (i). T (n) = 0: then S = 0 . . . 1 and T = . . . 0, so take S ′ = [0 . . . 1].

Case (ii). T (1) = 0: then S = 0 . . . 0, and T = 0 . . . 1, so swapping the roles of S

and T , this case is similar to Case (i).

Case (iii). T (n − 1) = 0: then S = 0 . . . 0, and T = 1 . . . 01, so take S ′ = [0 ∼

01] . . . 0, then S ′′ = [10 . . . 0], where the ‘01’ substring at the end of the first prefix-

reversal is the first ‘01’ substring in S.

Case (iv). S(n − 1) = 1: then S = 0 . . . 10, and T = 1 . . . 11, so, by considering

S−1, and T−1, this case is similar to Case (iii).

Case (v). f11(S) > 0: then S = 0 . . . 11 . . . 00, and T = 1 . . . 11, so take S ′ =

[0 . . . 11] . . . 00, then S ′′ = [11 . . . 00], where the ‘11’ substring at the end of the first

prefix-reversal is the first ‘11’ substring in S.

Case (vi). f00(T) > 0: then S = 0 . . . 00, and T = 1 . . . 00 . . . 11, so by considering

S−1, and T−1, this case is similar to Case (v).

These cases are exhaustive because Cases (i) to (v) can only fail to apply if S

contains more zeros than ones, whereas Cases (i) to (iv), and (vi) can only fail to apply

if T contains more ones than zeros. 2

Theorem 5.4.2 Let S and T be related binary strings of length n. Then

prd(S, T) ≤ n − 1.

Proof The prefix-reversals described by Lemma 5.4.2 extend the common suffix of the

two strings by at least one character on average. The sequence of two prefix-reversals

is only selected if the strings are at least three characters long. Therefore, at most

n−1 prefix-reversals like those indicated by Lemma 5.4.2 will be required to transform

S into T . 2

5.4.3 Prefix-reversal diameter of Bn

The prefix-reversal diameter of Bn, prD2(n), is defined to be the maximum value of

prd(S, T) over all related binary strings S and T of length n. More formally

prD2(n) = max{prd(S, T) : S, T are related binary strings of length n}.

Chapter 5. Sorting Strings by Global Transformations 124

Lemma 5.4.3 For all k ≥ 1, prd(Bk, Ck) = 2k − 1, and prd(0 ++ Bk, 0 ++ Ck) = 2k.

Proof This follows at once by application of Theorem 5.4.1 and Theorem 5.4.2 to

these strings. 2

Theorem 5.4.3 For all n ≥ 1, prD2(n) = n − 1.

Proof This is a simple consequence of Theorem 5.4.2 and Lemma 5.4.3. 2

Theorem 5.4.4 Let S and T be related strings of length n ≥ 2. Then prd(S, T) =

n − 1, when n is even, if and only if S and T are prefix isomorphic to Cn/2 and Bn/2,

and prd(S, T) = n − 1, when n is odd, if and only if S and T are prefix isomorphic to

0 ++ Cbn/2c and 0 ++Bbn/2c.

Proof We prove this theorem by induction. The base cases are when n = 2 and n = 3.

It is easy to verify the theorem for these values of n. Now suppose that the theorem

holds for n ≤ k. Let S and T be strings of length k + 1 such that prd(S, T) = k. We

show that S and T are isomorphic to the strings indicated.

We can assume, without loss of generality, that S(1) = 0. By Lemma 5.4.2 we can

apply a prefix-reversal or two prefix-reversals to S or T , in such a way that each prefix-

reversal, on average, increases the common suffix of the two strings by a character.

By the proof of Lemma 5.4.2, we can assume that r prefix-reversals are applied to S,

resulting in the string S∗. It must be that lcs(S∗, T) = r, and prd(S∗, T) = k − r,

since any alternative would contradict the choice of S, and T . Let S∗
e , and Te be the

strings S∗ and T excluding the common suffix. By the induction hypothesis, S∗
e and

Te must be prefix isomorphic to the strings indicated in the statement of the lemma.

Let l = k + 1 − r. Then l is the length of S∗
e and Te. If l is even then either:

a) S∗
e = B l

2
, and Te = C l

2
,

b) S∗
e = C l

2
, and Te = B l

2
,

c) S∗
e = B−1

l

2

, and Te = C−1
l

2

, or

d) S∗
e = C−1

l

2

, and Te = B−1
l

2

.

If l is odd then either:

e) S∗
e = 0 ++ B l−1

2
, and Te = 0 ++ C l−1

2
,

f) S∗
e = 0 ++ C l−1

2
, and Te = 0 ++ B l−1

2
,

g) S∗
e = 1 ++ B−1

l−1
2

, and Te = 1 ++ C−1
l−1
2

, or

h) S∗
e = 1 ++ C−1

l−1
2

, and Te = 1 ++ B−1
l−1
2

.

Chapter 5. Sorting Strings by Global Transformations 125

By the proof of Lemma 5.4.2, there are essentially three different ways that the

prefix-reversal or prefix-reversals could be applied to S, as typified by cases (i), (iii)

and (v) in that proof. We take each case in turn, and show that S and T must be

prefix isomorphic to the strings indicated above if prd(S, T) = n − 1.

First of all, suppose that k + 1 is even.

Case (i). S = 0 . . . 1 and T = . . . 0. In this case the prefix-reversal reverses the

whole of S. Only one prefix-reversal is applied so l is odd. Only two cases g) and h)

need to be considered since S∗ must begin with 1. Both cases establish the induction

step.

g) S = 0 ++ B k−1
2

++ 1 = 000 ∼ 011 ∼ 11 = B k+1
2

and T = 1 ++ C−1
k−1
2

++ 0 =

10101 ∼ 010 = C k+1
2

.

h) S = 0 ++ C k−1
2

++ 1 = 01010 ∼ 101 = C−1
k+1
2

and T = 1 ++ B−1
k−1
2

++0 = 111 ∼

100 ∼ 00 = B−1
k+1
2

.

Case (iii). S = 0 . . . 0, and T = 1 . . . 01. In this case a sequence of two prefix-

reversals is applied to S to obtain S ′′, where S′ = [0 ∼ 01] . . . 0, and S ′′ = [10 . . . 0].

Therefore l is even. Only two cases a) and d) need to be considered, since T must

begin with 1. However both cases lead to a contradiction.

a) S′′ = B k−1
2

++01 = 00 ∼ 011 ∼ 101, and T = C k−1
2

++ 01 = 1010 ∼ 1001.

So S = 0111 ∼ 100 ∼ 0. Take T ′ = [1010 . . . 100]1, then T ′′ = [001 . . . 011]. Then

prd(S, T ′′) < k − 2 by the induction hypothesis, so prd(S, T) < k.

d) S′′ = C−1
k−1
2

++ 01 = 0101 ∼ 0101, and T = B−1
k−1
2

++ 01 = 11 ∼ 100 ∼ 001.

So S = 0110 . . . 1010. Take T ′ = [11 . . . 10]0 . . . 01, and T ′′ = [011 . . . 10 . . . 01]. Then

prd(S, T ′′) < k − 2 by the induction hypothesis, so prd(S, T) < k.

Case (v). S = 0 . . . 11 . . . 00, and T = 1 . . . 11. In this case two prefix-reversals are

applied to S to obtain S ′′, where S′ = [0 . . . 11] . . . 00, and S ′′ = [11 . . . 00]. Therefore

l is even. Only case a) needs to be considered, since S ′′ begins with ‘00’, but, in fact,

even this case cannot occur.

a) S′′ = B k−1
2

++ 11 = 00 ∼ 011 ∼ 111 and T = C k−1
2

++ 11 = 1010 ∼ 1011. But

the first prefix-reversal on S should end with the first ‘11’ substring in S. However,

that would mean that S ′′ could not possibly have the form shown. So this case cannot

occur.

Now, let us suppose k + 1 is odd.

Case (i). S = 0 . . . 1 and T = . . . 0. The prefix-reversal reverses the whole of S.

Therefore l is even. Only case b) and c) need to be considered, since S ′ begins with 1.

Case b) leads to a contradiction, and case c) establishes the induction step.

b) S = 0 ++ C−1
k

2

= 00101 ∼ 01 and T = B k

2
++ 0 = 00 ∼ 011 ∼ 10. Take

T ′ = [00 ∼ 01]1 ∼ 10, and then T ′′ = [100 ∼ 011 ∼ 10]. Now prd(S, T ′′) < k − 2, by

the inductive hypothesis, so prd(S, T) < k.

c) S = 0 ++B k

2
= 000 ∼ 011 . . . 1 and T = C−1

k

2

++0 = 0101 ∼ 010 = 0 ++ C k

2
.

Chapter 5. Sorting Strings by Global Transformations 126

Case (iii). S = 0 . . . 0, and T = 1 . . . 01. In this case two prefix-reversals are applied

to S to obtain S ′′, where S′ = [0 . . . 01] . . . 0, and S ′′ = [10 . . . 0]. Therefore l is odd.

But T (1) = 1, and S ′′(1) = 0 and so by the induction hypothesis prd(S ′′, T) < k − 2.

Therefore, prd(S, T) < k.

Case (v). S = 0 . . . 11 . . . 00, and T = 1 . . . 11. In this case two prefix-reversals are

applied to S to obtain S ′′, where S′ = [0 . . . 11] . . . 00 and S ′′ = [11 . . . 00]. Therefore l

is odd. But T (1) = 1, and S ′′(1) = 0 and so by the induction hypothesis prd(S ′′, T) <

k − 2. Therefore, prd(S, T) < k.

So, by induction, we have proved the theorem. 2

5.4.4 Sorting by prefix-reversals

We show that prd(S, Sı) can be determined in polynomial-time.

The following lemma can be verified easily.

Lemma 5.4.4 Let S′ be a string obtained from S by a single prefix-reversal. Then

z(S′) ≥

{

z(S) − 1, if S(1) = 0,

z(S), otherwise.

With this lemma we can determine prd(S, Sı).

Theorem 5.4.5 For any binary string S,

prd(S, Sı) =

{

2(z(S) − 1), if S(1) = 0,

2z(S) − 1, otherwise.

Proof If a prefix-reversal reduces the value of z, then it must bring 1 to the front of

the string, and then by Lemma 5.4.4 the next prefix-reversal cannot reduce the value of

z. Note also that the final prefix-reversal cannot reduce the value of z because it must

bring 0 to the front. Therefore prd(S, Sı) ≥ 2(z(S) − 1). If S(1) = 0, then z(S) − 1

prefix-reversals of the form [0 ∼ 01 ∼ 1]0 . . . interleaved with z(S)−1 prefix-reversals of

the form [1 ∼ 10 ∼ 0]b . . ., where b ∈ {1, ω}, transform S into Sı. If S(1) = 1, then an

extra prefix-reversal is required, since the first prefix-reversal cannot reduce the value

of z. This bound can be achieved by performing the prefix-reversal [1 ∼ 10 ∼ 0]b . . .,

where b ∈ {1, ω}, before performing the 2(z(S) − 1) prefix-reversals just described for

when S(1) = 0. 2

The distance described in Theorem 5.4.5 can be calculated easily in polynomial-

time. The question of whether, in general, the prefix-reversal distance between any

two strings can be calculated in polynomial-time remains open.

Chapter 5. Sorting Strings by Global Transformations 127

5.5 Transposition distance between binary strings

In this section, we present an upper bound and a lower bound for transposition distance

between binary strings. These bounds are used to determine the transposition diameter

of Bn, and identify some strings that achieve the diameter. A restricted version of the

problem, that is in some ways analogous to the problem of sorting by transpositions,

is shown to be solvable in polynomial-time.

5.5.1 A lower bound

In this section, breakpoints are used to obtain a lower bound for transposition distance.

Transposition breakpoints are defined in a similar way to reversal breakpoints. For

example, if S contains more 11 substrings than T then each extra 11 substring con-

tributes a breakpoint. However a crucial difference between reversal breakpoints and

transposition breakpoints is that 01 substrings and 10 substrings are counted sepa-

rately. As before prepend α and append ω to each string.

The number of transposition breakpoints (over a binary alphabet) is therefore

tb(S, T) = |f00(S) − f00(T)| + |f01(S) − f01(T)| + |f10(S) − f10(T)|

+|f11(S) − f11(T)| + |fα0(S) − fα0(T)| + |fα1(S) − fα1(T)|

+|f0ω(S) − f0ω(T)| + |f1ω(S) − f1ω(T)|.

Clearly, tb(T, T) = 0. However it is possible that tb(S, T) = 0, even when S 6= T .

For example, if S = 101001 and T = 100101, then tb(S, T) = 0.

Lemma 5.5.1 Suppose that S ′ is obtained from S by a single transposition. Then

tb(S′, T) ≥

{

tb(S, T) − 6, if the transposition moves the first and last letters of S,

tb(S, T) − 4, otherwise.

Proof The transposition must have the form . . . a[b . . . c][d . . . e]f . . ., where a ∈

{α, 0, 1}, b, c, d, e ∈ {0, 1}, and f ∈ {0, 1, ω}. The transposition results in the string

. . . a[d . . . e][b . . . c]f Now let us suppose that the none of the substrings ‘ab’, ‘cd’,

or ‘ef ’ is the same as any of the substrings ‘ad’, ‘eb’, or ‘cf ’. Then ‘cd’6=‘cf ’, so d 6= f .

Similarly, c 6= a, b 6= f , and e 6= a. Now suppose that a 6= α. Then c = e. But then

‘ef ’=‘cf ’, a contradiction. Similarly if f 6= ω then ‘ab’=‘ad’. Therefore, if a 6= α, or

f 6= ω, then at least one of the substrings ‘ab’, ‘cd’, or ‘ef ’ is the same as one of the

substrings ‘ad’, ‘eb’, or ‘cf ’.

If a transposition does move the first and last characters of S then at most three

substrings of length two may change as a result of the transposition. Therefore, in such

cases, the frequency counts of substrings in S ′ are the same as the frequency counts of

substrings in S except that the frequency counts of up to three substrings are reduced

Chapter 5. Sorting Strings by Global Transformations 128

by one, and the frequency counts of up to three substrings are increased by one. Given

the definition of tb(S ′, T), this means that tb(S ′, T) ≥ tb(S, T) − 6.

However, if a transposition does not move the first and last characters of S, then

at most two substrings of length two may change as a result of the transposition. In

such cases tb(S ′, T) ≥ tb(S, T) − 4. 2

Theorem 5.5.1 Let S and T be related binary strings, of length n. Then

td(S, T) ≥

{

dtb(S, T)/4e, if S(1) = T (1), or S(n) = T (n),

d(tb(S, T) − 2)/4e, otherwise.

Proof A sequence of transpositions that transforms S into T can contain at most one

transposition that reduces the number of breakpoints by six. Such a transposition is

only possible if S(1) 6= T (1), and S(n) 6= T (n). Every other transposition can reduce

the number of breakpoints by at most four. The theorem follows easily from these

observations. 2

This lower bound is not exact. For example, if S = 011100110001 and T =

100011001110, then the bound is 1, but td(S, T) = 2.

5.5.2 An upper bound

In this section a simple upper bound is derived for transposition distance.

Lemma 5.5.2 Let S and T be related strings of length n, such that S 6= T . Then it is

possible either:

a) to apply a transposition to S resulting in a string S ′ such that lcp(S ′, T)+lcs(S′, T) ≥

lcp(S, T) + lcs(S, T) + 2, or

b) to apply a transposition to T resulting in a string T ′ such that lcp(S, T ′)+lcs(S, T ′) ≥

lcp(S, T) + lcs(S, T) + 2.

Proof Without loss of generality, it can be assumed that S(1) = 0, S(1) 6= T (1),

and S(n) 6= T (n). The transposition that is applied to S or T depends on S and T .

Three cases are described, and for each case a transposition is shown with the required

property. The three cases cover all possibilities for S and T , though the cases are not

necessarily mutually exclusive.

Case (i). S(n) = 1: Then S = 0 . . . 1 and T = 1 . . . 0, so take S ′ = [0 ∼ 0][1 . . . 1],

where the ‘01’ substring that is split apart by the transposition is the first ‘01’ substring

in S.

Case (ii). f11(S) > 0: Then S = 0 . . . 11 . . . 0, and T = 1 . . . 1 so take S ′ = [00 ∼

01][1 . . . 0], where the ‘11’ substring that is split apart by the transposition, is the first

‘11’ substring in S.

Case (iii). f00(T) > 0: Then S = 0 . . . 0, and T = 1 . . . 00 . . . 1 so, by considering

S−1, and T−1, this case is similar to Case (ii).

Chapter 5. Sorting Strings by Global Transformations 129

These cases are sufficient to prove the lemma because Cases (i) and (ii) can only

fail to apply if S contains more zeros than ones, whereas Cases (i) and (iii) can only

fail to apply when T contains more ones than zeros. 2

Theorem 5.5.2 Let S and T be related binary strings, of length n. Then

td(S, T) ≤ bn/2c.

Proof Lemma 5.5.2 describes a way to increase the the combined length of the common

prefix and suffix of S and T by at least two using a single transposition. So a sequence

of bn/2c such transpositions will be enough to transform S into T . 2

5.5.3 Transposition diameter of Bn

The transposition diameter of Bn, tD2(n), is the maximum value of td(S, T) taken over

all related binary strings of length n. More formally

tD2(n) = max{td(S, T) : S, T are related binary strings of length n}.

Lemma 5.5.3 For all k ≥ 1, td(Bk, Ck) = k, and td(0 ++ Bk, 0 ++ Ck) = k.

Proof In both cases, this follows at once by application of Theorem 5.5.1, and Theorem

5.5.2. 2

Theorem 5.5.3 For all n ≥ 1, tD2(n) = bn/2c.

Proof This is an immediate consequence of Theorem 5.5.2 and Lemma 5.5.3. 2

Theorem 5.5.4 Let S and T be related binary strings of length 2n ≥ 4. Then

td(S, T) = n, if and only if S and T are isomorphic to Cn and Bn.

Proof We prove this theorem by induction. The base case is when 2n = 4. Then

the only strings for which td(S, T) = 2 are isomorphic to B2 and C2. Now suppose

that the theorem holds for n ≤ k. Let S and T be strings of length 2k + 2, such that

td(S, T) = k + 1. We show that S and T are isomorphic to Ck+1 and Bk+1.

We can assume, without loss of generality, that S(1) = 0. By the proof of Lemma

5.5.2 we can assume that the transposition is applied to S resulting in the string S ′. It

must be that lcp(S ′, T)+ lcs(S′, T) = 2, and td(S ′, T) = k, since any alternative would

contradict td(S, T) = k + 1. Let S ′
e and Te be the strings S ′ and T excluding common

prefix and suffix. By the induction hypothesis, S ′
e and Te must be isomorphic to Bk

and Ck. Therefore, either:

Chapter 5. Sorting Strings by Global Transformations 130

a) S′
e = Bk and Te = Ck; or

b) S′
e = Ck and Te = Bk; or

c) S′
e = Bk and Te = Ck; or

d) S′
e = Ck and Te = Bk.

By the proof of Lemma 5.5.2, there are essentially two ways that the transposition

can be applied to S, as typified by cases (i) and (ii) in that proof. We take each case

in turn, and show that for the four possible values of S ′
e and Te, td(S, T) = k +1 if and

only if S and T are isomorphic to Bk+1 and Ck+1.

Case (i). S = 0 . . . 1, T = 1 . . . 0. In this case the transposition moves the block of

zeros at the front of S to the end. We show that cases c) and d) for S ′
e and Te establish

the induction step, whereas cases a) and b) lead to contradictions.

a) S′ = 1 ++ Bk ++0 = 100 ∼ 011 ∼ 10 and T = 1 ++ Ck ++ 0 = 11010 ∼ 100. So

S = 0100 ∼ 011 ∼ 1. But then the transposition 0[100][. . . 011. . . 1] produces a string

S′′ such that td(S ′′, T) < k, by the induction hypothesis. So td(S, T) < k + 1, giving a

contradiction.

b) S′ = 1 ++ Ck ++ 0 = 11010 ∼ 100 and T = 1 ++ Bk ++ 0 = 100 ∼ 011 ∼ 10. Then

S = 0011010 . . . 01. But then the transposition [0011010 . . . 0][1] produces a string S ′′

such that td(S ′′, T) < k, by the induction hypothesis. So td(S, T) < k + 1, giving a

contradiction.

c) S′ = 1 ++ Bk ++ 0 = Bk+1 and T = 1 ++ Ck ++ 0 = Ck+1. So S = Bk+1.

d) S′ = 1 ++ Ck ++ 0 = Ck+1 and T = 1 ++Bk ++ 0 = Bk+1. So S = Ck+1.

Case (ii). S = 0 . . . 11 . . . 0, T = 1 . . . 1. In this case the transposition is applied to

S to obtain S ′ = [0 . . . 1][1 . . . 0]. Now S ′ must contain 00, so only cases a) and c) need

to be considered. However, both cases lead to contradictions.

a) S′ = 1 ++ Bk ++ 1 = 100 ∼ 011 ∼ 11 and T = 1 ++ Ck ++ 1 = 11010 ∼ 101.

However the transposition that splits the first ‘11’ in S cannot produce a string like

S′. So this case cannot occur.

c) S′ = 1 ++ Bk ++ 1 = 111 ∼ 100 ∼ 01 and T = 1 ++ Ck ++ 1 = 10101 ∼ 011. Then

S = 00 ∼ 011 ∼ 100 ∼ 0. However the transposition 00 ∼ 011 ∼ [11][00 ∼ 0] produces

a string S′′ such that td(S ′′, T) < k, by the induction hypothesis. So td(S, T) < k + 1,

giving a contradiction.

So td(S, T) = k + 1 if and only if S and T are isomorphic to Bk+1 and Ck+1.

Therefore by induction the theorem is true. 2

5.5.4 Sorting by transpositions

We show that td(S, Sı) can be determined in polynomial-time. The following lemma

can be verified easily.

Lemma 5.5.4 Let S′ be a string obtained from S by a single transposition. Then

z(S′) ≥ z(S) − 1.

Chapter 5. Sorting Strings by Global Transformations 131

With this lemma we can determine td(S, Sı).

Theorem 5.5.5 For any binary string S,

td(S, Sı) =

{

z(S) − 1, if S(1) = 0,

z(S), otherwise.

Proof By Lemma 5.5.4, td(S, Sı) ≥ z(S)−1. If S(1) = 0, then z(S)−1 transpositions

of the form 0 ∼ 0[1 . . . 1][0 ∼ 0]b . . ., where b ∈ {1, ω}, transform S into Sı. If S(1) = 1,

an extra transposition is required, because is is impossible to change the character at

the front of the string to 0 with a transposition, and also reduce the value of z. The

bound in this case can be achieved by performing the transposition [1 . . . 1][0 ∼ 0]b . . .,

where b ∈ {1, ω}, before the sequence of transpositions used when S(1) = 0. 2

The distance described in Theorem 5.5.5 can be calculated easily in polynomial-

time. The question of whether, in general, the transposition distance between any two

strings can be calculated in polynomial-time remains open.

5.6 Block-Interchange distance between binary strings

In this section, we present a lower bound and an upper bound for block-interchange

distance between binary strings. These bounds are then used to determine the block-

interchange diameter, and also to identify some strings that achieve the diameter. A

restricted version of the problem, that is in some ways analogous to sorting permuta-

tions by block-interchanges, is shown to be solvable in polynomial-time. However, in

Section 5.7 the general problem of determining block-interchange distance between two

strings is shown to be NP-hard.

5.6.1 A lower bound

In this section, the concept of a breakpoint is adapted to obtain a lower bound for

block-interchange distance.

Block-interchange breakpoints are defined in exactly the same way as transposition

breakpoints. So the number of block-interchange breakpoints (over a binary alphabet)

is

bb(S, T) = |f00(S) − f00(T)| + |f01(S) − f01(T)| + |f10(S) − f10(T)|

+|f11(S) − f11(T)| + |fα0(S) − fα0(T)| + |fα1(S) − fα1(T)|

+|f0ω(S) − f0ω(T)| + |f1ω(S) − f1ω(T)|.

Clearly, bb(T, T) = 0. However it is possible that bb(S, T) = 0, even when S 6= T .

For example, if S = 101001 and T = 100101, then bb(S, T) = 0.

Chapter 5. Sorting Strings by Global Transformations 132

Lemma 5.6.1 Suppose that S ′ is obtained from S by a single block-interchange. Then

bb(S′, T) ≥ bb(S, T) − 8.

Proof Four substrings of length two may change as the result of a block-interchange.

So the frequency counts of substrings in S ′ are the same as the frequency counts of

substrings in S except that the frequency counts of the four removed substrings are

reduced by one, and the frequency counts of the four new substrings are increased by

one. Given the definition of bb(S ′, T), this means that bb(S ′, T) ≥ bb(S, T) − 8. 2

The following lower bound for block-interchange distance can be deduced easily

from the above lemma.

Theorem 5.6.1 Let S and T be related binary strings. Then

bd(S, T) ≥ dbb(S, T)/8e.

This lower bound is not exact. For example, if S = 011100110001 and T =

100011001110, then the bound is one , whereas bd(S, T) = 2. In fact this lower bound

can be strengthened, since a block interchange can only reduce the number of break-

points by eight if f00 and f11 are both reduced by two, and f01 and f10 are both

increased by two, or vice versa. However, this lower bound is sufficiently tight for our

purposes.

5.6.2 An upper bound

In this section, a simple upper bound is derived for block-interchange distance.

Lemma 5.6.2 Let S and T be related binary strings of length n, such that S 6= T and

n ≥ 4. Then it is possible to apply either:

a) a block-interchange to S obtaining S ′ such that lcp(S ′, T) + lcs(S′, T) ≥ lcp(S, T) +

lcs(S, T) + 4, or

b) a block-interchange to T obtaining T ′ such that lcp(S, T ′) + lcs(S, T ′) ≥ lcp(S, T) +

lcs(S, T) + 4.

Proof Without loss of generality, it can be assumed that S(1) = 0, S(1) 6= T (1),

and S(n) 6= T (n). If the strings are represented by their first two and last two char-

acters then, up to isomorphism, all possible remaining combinations of S and T are

represented by the 18 pairs shown in Table 5.1.

If S(2) = 0 then cases (i) to (xvi) cover all the possibilities for S and T . If S ends

with 00 or 11, or T begins or ends with 00 or 11 then strings isomorphic to S and T are

covered by one of the first sixteen cases. Otherwise there are only two possible cases

remaining and these are cases (xvii) and (xviii).

Chapter 5. Sorting Strings by Global Transformations 133

Case S T

(i) 00. . . 00 10. . . 01

(ii) 00. . . 00 10. . . 11

(iii) 00. . . 00 11. . . 01

(iv) 00. . . 00 11. . . 11

(v) 00. . . 01 10. . . 00

(vi) 00. . . 01 10. . . 10

(vii) 00. . . 01 11. . . 00

(viii) 00. . . 01 11. . . 10

(ix) 00. . . 10 10. . . 01

(x) 00. . . 10 10. . . 11

(xi) 00. . . 10 11. . . 01

(xii) 00. . . 10 11. . . 11

(xiii) 00. . . 11 10 . . . 00

(xiv) 00. . . 11 10. . . 10

(xv) 00. . . 11 11. . . 00

(xvi) 00. . . 11 11. . . 10

(xvii) 01. . . 01 10. . . 10

(xviii) 01. . . 10 10. . . 01

Table 5.1: The 18 possible combinations of S and T .

Chapter 5. Sorting Strings by Global Transformations 134

These eighteen cases are now investigated in turn and for each case, either a block-

interchange is demonstrated that satisfies the statement of the lemma, or the case is

shown to be similar to a previous case.

Case (i). S must contain at least two ones, so take S ′ = [00 . . . 01] . . . [10 . . . 00].

Case (ii). This case can be subdivided into two cases:

a) S contains 11 before 10: take S ′ = [00 . . . 11] . . . [10 . . . 00]; else

b) T contains 00 before 00: take T ′ = [10 . . . 00] . . . [00 . . . 11].

These cases are exhaustive, because if a) fails then S contains more zeros than ones,

whereas if b) fails then T contains at least as many ones as zeros.

Case (iii). S = 00 . . . 00 and T = 10 . . . 11 so this case is identical to Case (ii) by

symmetry.

Case (iv). This case can be subdivided into two cases:

a) S contains 11 before 11: take S ′ = [00 . . . 11] . . . [11 . . . 00]; else

b) T contains 00 before 00: take T ′ = [11 . . . 00] . . . [00 . . . 11].

These cases are exhaustive, because if a) fails then S contains more zeros than ones,

whereas if b) fails then T contains more ones than zeros.

Case (v). This case can be subdivided into two cases:

a) S ends with 001: take S ′ = [00 . . . 00][1]; else

b) S ends with 101: take S ′ = [00] . . . [101].

These cases are obviously exhaustive.

Case (vi). This case can be subdivided into two cases:

a) S contains 100: take S ′ = [00 . . . 10]0 . . . 0[1]; else

b) S ends with 101: take S ′ = [00 . . . 10][1].

These cases are exhaustive because if S does not contain 100 then S must end with

101.

Case (vii). Clearly S must contain another one since T contains two ones. So take

S′ = [00 . . . 00]1 . . . 0[1].

Case (viii). This case can be subdivided into seven cases:

a) S contains 10 before 11: take S ′ = [00 . . . 10] . . . [11 . . . 01]; else

b) S contains 111: take S ′ = [0]0 . . . 1[11 . . . 01]; else

c) S contains 101, but not only as a suffix: take S ′ = [00 . . . 10]1 . . . 0[1]; else

d) S = 001101 and T = 110010: take S ′ = [00][11]01; else

e) T contains 01 before 00: take T ′ = [11 . . . 01] . . . [00 . . . 10]; else

f) T contains 000: take T ′ = [1]1 . . . 0[00 . . . 10]; else

g) T contains 010, but not only as a suffix: take T ′ = [11 . . . 01]0 . . . 1[0].

These cases are exhaustive, because if a), b), c) and d) fail then S contains more zeros

than ones, whereas if d), e), f) and g) fail then T contains more ones than zeros.

Case (ix). Clearly S must contain another one since T contains two ones. So take

S′ = [00 . . . 01] . . . [10].

Case (x). This case can be subdivided into two cases:

a) S contains 11 before 10: S ′ = [00 . . . 11] . . . [10 . . . 10]; else

Chapter 5. Sorting Strings by Global Transformations 135

b) T contains 10 before 00: T ′ = [10 . . . 10] . . . [00 . . . 11].

These cases are exhaustive, because if a) fails S then contains more zeros than ones,

whereas if b) fails then T contains more ones than zeros.

Case (xi). This case can be subdivided into two cases:

a) S contains 01 before 11: S ′ = [00 . . . 01] . . . [11 . . . 10]; else

b) T contains 10 before 00: T ′ = [11 . . . 10] . . . [00 . . . 01].

These cases are exhaustive, because if a) fails S then contains more zeros than ones,

whereas if b) fails then T contains more ones than zeros.

Case (xii). S
−1

= 10 . . . 11 and T
−1

= 00 . . . 00 so this case is isomorphic to Case

(ii).

Case (xiii). S = 11 . . . 00 and T = 00 . . . 01 so this case is isomorphic to Case (vii).

Case (xiv). Take S ′ = [0]0 . . . 1[1].

Case (xv). Take S ′ = [00] . . . [11].

Case (xvi). S−1 = 11 . . . 00 and T−1 = 00 . . . 01 so this case is isomorphic to Case

(vii).

Case (xvii). This case can be subdivided into two cases:

a) S contains 100: take S ′ = [01 . . . 10]0 . . . 0[1]; else

b) S ends with 101: take S ′ = [01 . . . 10][1].

These cases are exhaustive, because if S does not contain 100 then it must end with

101.

Case (xviii). Take S ′ = [01] . . . [10]. 2

Theorem 5.6.2 Let S and T be related binary strings of length n. Then

bd(S, T) ≤ d(n − 1)/4e.

Proof Lemma 5.6.2 describes a way to extend the combined length of the common

prefix and suffix of S and T by at least four using a single block-interchange. So a

sequence of d(n− 1)/4e such block-interchanges will be enough to transform S into T .

2

5.6.3 Block-interchange diameter of Bn

The block-interchange diameter of Bn, bD2(n), is the maximum value of bd(S, T) taken

over all related binary strings S and T of length n. More formally

bD2(n) = max{bd(S, T) : S, T are related binary strings of length n}.

Lemma 5.6.3 For all k ≥ 1, bd(B2k, C2k) = k, bd(0 ++ B2k, 0 ++ C2k) = k, bd(B2k+1,

C2k+1) = k + 1, and bd(0 ++B2k+1, 0 ++ C2k+1) = k + 1.

Chapter 5. Sorting Strings by Global Transformations 136

Proof In each case, this follows at once by application of Theorem 5.6.1 and Theorem

5.6.2. 2

Theorem 5.6.3 For all n ≥ 1, bD2(n) = d(n − 1)/4e.

Proof This is trivially true for n = 1. For n ≥ 2, it is an immediate consequence of

Theorem 5.6.2 and Lemma 5.6.3. 2

Conjecture 5.6.1 Let S and T be related binary strings of length 4k + 2. Then

bd(S, T) = k + 1, if and only if S and T are isomorphic to C2k+1 and B2k+1.

It is conjectured that for other lengths of strings, more pairs of strings achieve the

block-interchange diameter.

5.6.4 Sorting by block-interchanges

We show that bd(b, Sı) can be determined in polynomial-time. The following lemma

can be verified easily.

Lemma 5.6.4 Let S′ be a string obtained from S by a single block-interchange. Then

z(S′) ≥ z(S) − 2.

With this lemma we can determine bd(S, Sı).

Theorem 5.6.4 For any binary string S,

bd(S, Sı) =

{

d(z(S) − 1)/2e, if S(1) = 0

dz(S)/2e, otherwise

Proof By Lemma 5.6.4, bd(S, Sı) ≥ d(z(S) − 1)/2e. If S(1) = 0, and z(S) is odd,

then d(z(S)− 1)/2e block-interchanges of the form 0 ∼ 0[1 . . . 1]0 ∼ 01 . . . 1[0 ∼ 0]b . . .,

where b ∈ {1, ω}, transform S into Sı. If S(1) = 0, and z(S) is even, then not every

block-interchange can reduce z by two, therefore at least dz(S)/2e block-interchanges

are required. This bound can be achieved with a block-interchange of the form 0 ∼

0[1 ∼ 1][0 ∼ 0]b . . ., where b ∈ {1, ω} followed by b(z(S)− 1)/2c block-interchanges like

those used above when z(S) was odd.

If S(1) = 1, an extra block-interchange may be required, because is is impossible to

change the character at the front of the string to 0 with a block-interchange, and also

reduce the value of z by two. If we apply the block-interchange [1 . . . 1]0 ∼ 01 . . . 1[0 ∼

0]b . . . (or [1 ∼ 1][0 ∼ 0]b . . ., when z(S) = 1) , where b ∈ {1, ω}, before the sequence of

d(z(S) − 2)/2e block-interchanges used when S(1) = 0, the bound in this case, can be

achieved. 2

The distance described in Theorem 5.6.4 can be calculated easily in polynomial-

time. In Section 5.7 it is shown that, in general, determining bd(S, T) is NP-hard.

Chapter 5. Sorting Strings by Global Transformations 137

5.7 NP-completeness of reversal distance and block-inter-

change distance

In this section, we prove that the general problem of finding the reversal distance be-

tween two strings is NP-hard, even when the strings are drawn from a binary alphabet.

We also prove a similar result for block-interchange distance.

We begin with a definition of the reversal distance problem as a decision problem

(RD):

RD

Instance: Related strings S and T of length n, over an alphabet of size

t ≥ 2, and a bound d ∈ Z+.

Question: Is rd(S, T) ≤ d?

We transform an NP-complete problem into RD to obtain the NP-completeness

result. The problem we start from is 3-Partition:

3-Partition

Instance: A set A of 3m elements, a bound B ∈ Z+, and a size s(a) ∈ Z+ for

each a ∈ A such that B/4 < s(a) < B/2 and such that
∑

a∈A s(a) = mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such

that, for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B? (Note that each Ai must contain

exactly three elements from A).

However, the transformation from 3-Partition to RD is a little unusual in that it is a

pseudo-polynomial transformation. We now define pseudo-polynomial transformations,

and also present the definition of NP-complete in the strong sense.

Let I be an instance of a decision problem that involves numbers. Then Length(I)

is defined to be the size of the problem instance, and Max(I) is defined to be the

magnitude of the largest number in the problem instance. A decision problem Π is

NP-complete in the strong sense if there is a polynomial p such that Πp is NP-complete,

where Πp is the problem Π restricted to instances I with Max(I) ≤ p(Length(I)).

The following lemma is due to Garey and Johnson [GJ75] (see also Chapter 4.2 of

[GJ79]).

Lemma 5.7.1 3-Partition is NP-complete in the strong sense.

Let Π and Π′ denote arbitrary decision problems with instance sets DΠ and DΠ′ ,

and yes sets YΠ and YΠ′ , with specified functions Max and Length, and Max′ and

Length′ respectively. A pseudo-polynomial transformation from Π to Π′ is a function

f : DΠ → DΠ′ such that:

Chapter 5. Sorting Strings by Global Transformations 138

a) for all I ∈ DΠ, I ∈ YΠ if and only if f(I) ∈ YΠ′ .

b) f can be computed in time polynomial in the two variables Max(I) and

Length(I).

c) there exists a polynomial q1 such that for all I ∈ DΠ

q1(Length′(f(I))) ≥ Length(I).

d) there exists a two variable polynomial q2 such that, for all I ∈ DΠ

Max′(f(I)) ≤ q2(Max(I), Length(I)).

Lemma 5.7.2 If Π is NP-complete in the strong sense, Π′ ∈ NP , and there exists a

pseudo-polynomial transformation from Π to Π′, then Π′ is NP-complete (in the strong

sense).

Proof This is proved in Chapter 4.2 of [GJ79]. Essentially the pseudo-polynomial

transformation is a polynomial-time transformation for instances of Πp. 2

We can now prove the NP-completeness result for reversals.

Theorem 5.7.1 RD is NP-complete, even when t = 2.

Proof RD is in NP because, given a sequence of reversals, it can easily be checked

in polynomial-time that the sequence transforms S into T and has length at most d.

By Lemma 5.7.2, the proof will be completed by demonstrating a pseudo-polynomial

transformation from 3-Partition to RD. We now describe the transformation.

Let I be an instance of 3-Partition. From this instance construct an instance, I ′, of

RD with S = (++3m−1
i=1 0s(ai)13) ++ 0s(a3m), T = (++m

i=10
B1) ++ 18m−3, and d = 3m − 1.

So the blocks of zeros in S represent elements of A, and the lengths of the blocks

represent the sizes of the elements.

We first show that rd(S, T) ≥ 3m − 1.

Let U be a string that is related to S and T . Recall that z(U) is the number of

blocks of zeros in the string U . Define o(U) as the number of blocks of ones of length

one in U . Then the function f(U) = z(U)−o(U)−1 can be viewed as a kind of distance

function between strings U and T , since f(T) = 0. Furthermore, f(S) = 3m − 1. We

show that, if U ′ is obtained from U by applying a single reversal, then f(U ′) ≥ f(U)−1.

Suppose that ρ is a reversal that transforms U into U ′ with f(U ′) < f(U). Then ρ

must reduce the number of blocks of zeros or increase the number of blocks of ones of

length one.

If ρ reduces the number blocks of zeros then it must have the form . . . 1[0 . . . 1]0 . . .

or . . . 0[1 . . . 0]1 . . ., so f(U)−f(U ′) = 1. So it is impossible for ρ to increase the number

of blocks of ones of length one as well as reduce the number of blocks of zeros.

Chapter 5. Sorting Strings by Global Transformations 139

If ρ increases the number of blocks of ones of length one then it must be of

the form . . . 01[10 . . . 0]0 . . ., or . . . 1[10 . . . 11]0 . . ., or . . . 01[1 . . . 0]11 . . ., or the mir-

ror image of one of these three reversals. (Note, the reversals . . . 01[11 . . . 0]0 . . ., and

. . . 11[10 . . . 0]0 . . . do not reduce the value of f .) In each case f(U) − f(U ′) = 1. So

rd(S, T) ≥ 3m − 1.

Note that the first of the reversals in the previous paragraph is special because it

increases the number of blocks of length one by two, but also increases the number of

blocks of zeros. We call this kind of reversal a bad reversal.

We now show that the given transformation from 3-Partition to an instance of RD

is a pseudo-polynomial transformation. We verify the four properties, a), b), c) and d)

in turn.

For property a), we have to show that I is a yes instance of 3-Partition if and only

if rd(S, T) ≤ 3m − 1.

We have already shown that rd(S, T) ≥ 3m − 1. We now show that, if rd(S, T) =

3m− 1, then no minimal length sequence of reversals that transform S into T contains

a bad reversal.

Suppose that rd(S, T) = 3m − 1. Every reversal in a minimal length sequence

that transforms S into T must reduce the value of f by one. For a reversal to be bad

the string must contain 0110 as a substring. However S contains no such substring,

and no reversal that reduces the value of f by one can create such a substring. So if

rd(S, T) = 3m − 1, then no minimal length sequence of reversals that transforms S

into T contains a bad reversal.

This means that, if rd(S, T) = 3m − 1, each block of zeros in T is constructed

from three blocks of zeros in S. It follows that I is a yes instance of 3-Partition if

rd(S, T) = 3m − 1.

Now we show that if I is a yes instance of 3-Partition then rd(S, T) ≤ 3m − 1.

Since I is a yes instance, we can partition A into m disjoint sets A1, . . ., Am, each

of which contains three elements, and sums to B. For each subset Ai in turn, we

can use two reversals, of the form . . . 0[1 . . . 0]a . . ., where a ∈ {1, ω} (where ω is the

special character used to denote the end of the string), to merge the three blocks of

zeros representing the elements of Ai into a single block of zeros of length B, without

affecting any other block of zeros. (Note that the reversals shown do not move the

block of zeros at the front of the string). Then we can use m− 1 reversals, of the form

. . . 01[11 . . . 0]1 . . ., to create blocks of ones of length one separating the blocks of zeros.

This sequence of reversals has length 3m − 1, so rd(S, T) ≤ 3m − 1. This establishes

the required property a).

To prove properties b), c) and d) we need Length and Max functions for 3-Partition

and RD. For 3-Partition, reasonable definitions are Length(I) = |A|+
∑

a∈Adlog2 s(a)e,

and Max(I) = max{s(a) : a ∈ A} [GJ79]. For RD, reasonable definitions are, for

example, Length′(I ′) = 2n + dlog2 de, and Max′(I ′) = 1 (since RD is not a number

problem). Note that n =
∑

a∈A s(a) + |A| − 3.

Chapter 5. Sorting Strings by Global Transformations 140

Given these functions, properties b), c) and d) can be proved quite easily.

So the transformation is a pseudo-polynomial time transformation, and therefore,

by Lemma 5.7.2, RD is NP-complete. 2

The transformation just described was obtained after several other simpler trans-

formations had been shown to fail. For example, we tried the following transfor-

mation from sorting by reversals to RD. Given a permutation π, define strings

S = (++n−1
i=1 0π(i)1) ++ 0π(n), and T = (++n−1

i=1 0i1) ++ 0n. One might conjecture that

determining the value of rd(S, T) must also determine the value of rd(π). However,

if π = 3142, then rd(π) = 3, but S = 0001010000100, T = 0100100010000 and

rd(S, T) = 2. So this transformation does not work.

We now prove that the general problem of finding the block-interchange distance

between two strings is NP-hard, even when the strings are drawn from a binary al-

phabet. The block-interchange distance problem can be defined as a decision problem

(BD), as follows:

BD

Instance: Related strings S and T of length n, over an alphabet of size

t ≥ 2, and a bound d ∈ Z+.

Question: Is bd(S, T) ≤ d?

This time the transformation starts from a special case of 3-Partition called Odd-

3-Partition.

Odd-3-Partition

Instance: A set A of 3m elements, where m is odd , a bound B ∈ Z+, and

a size s(a) ∈ Z+ for each a ∈ A with B/4 < s(a) < B/2 and
∑

a∈A s(a) =

mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such

that, for 1 ≤ i ≤ m,
∑

a∈Ai
s(a) = B? (Note that each Ai must contain

exactly three elements from A)

We now show that this special case of 3-Partition is NP-complete in the strong

sense.

Lemma 5.7.3 Odd-3-Partition is NP-complete in the strong sense.

Proof Let I be an instance of 3-Partition. We transform I into an instance of Odd-

3-Partition. If m is odd then I is already an instance of Odd-3-Partition. Otherwise,

let m′ = m + 1, A′ = A∪ {a3m+1, a3m+2, a3m+3}, s′(a) = 3.s(a) for a ∈ A, s′(a3m+1) =

s′(a3m+2) = B − 1, s′(a3m+3) = B + 2, and B′ = 3B. Then A′, m′, s′, and B′ define

an instance of Odd-3-Partition. It is easy to verify that this is a yes instance of Odd-

3-Partition if and only if I is a yes instance of 3-Partition. The transformation can be

Chapter 5. Sorting Strings by Global Transformations 141

performed in polynomial-time, therefore Odd-3-Partition must be NP-complete in the

strong sense. 2

Theorem 5.7.2 BD is NP-complete, even when t = 2.

Proof We prove this theorem using a transformation that is very similar to the one

used in the proof of Theorem 5.7.1.

BD is in NP because, given a sequence of block-interchanges, it can easily be checked

in polynomial-time that the sequence transforms S into T and has length at most

d. By Lemma 5.7.2 the proof is completed by demonstrating a pseudo-polynomial

transformation from Odd-3-Partition to BD. The transformation is now described.

Let I be an instance of Odd-3-Partition. From this instance construct an instance

I ′ of BD with S = (++3m−1
i=1 0s(ai)13) ++0s(a3m), T = (++m

i=10
B1) ++18m−3, and d =

(3m− 1)/2. So the blocks of zeros in S represent elements of A and the lengths of the

blocks represent the the sizes of the elements.

We now show that this transformation from Odd-3-Partition to BD is a pseudo-

polynomial transformation. There are four properties a), b), c) and d), that must be

verified, and because the transformation is so similar to the transformation used in

Theorem 5.7.1 properties b), c) and d) follow easily from the proof of that theorem.

For property a), we have to show that I is a yes instance of Odd-3-Partition if and

only if bd(S, T) ≤ (3m − 1)/2.

First of all we prove that bd(S, T) ≥ (3m − 1)/2.

As in the proof of Theorem 5.7.1, f(U) = z(U) − o(U) − 1. We show that, for any

block-interchange that transforms U into U ′, f(U ′) ≥ f(U) − 2. This will prove that

bd(S, T) ≥ (3m − 1)/2, since f(S) = 3m − 1, and f(T) = 0.

Suppose ρ is a block-interchange that transforms U into U ′ such that f(U ′) < f(U).

Then ρ must reduce the number of blocks of zeros, or increase the number of blocks of

ones of length one, or do both.

Suppose ρ is a transposition such that f(U ′) < f(U). If ρ reduces the number of

blocks of zeros, then f(U ′) = f(U)−1 because a transposition can reduce the number of

blocks of zeros by at most one (Lemma 5.5.4), and such a transposition cannot increase

the number of blocks of ones of length one. If ρ increases the number of blocks of ones

of length one then f(U ′) ≥ f(U)−2, because a transposition can increase o by at most

two. If U does not contain any 0110 substrings then then f(U ′) = f(U) − 1 because

then ρ can only increase o by one without increasing z, or it can increase o by two while

also increasing z by one, e.g., . . . 11[10 . . . 01][11 . . . 0]0 If U does contain a 0110

substring then f(U ′) ≥ f(U) − 2, and this bound can be achieved by a transposition

that creates two blocks of ones of length one without changing the number of blocks

of zeros, e.g., . . . 01[10 . . . 111][0 . . . 0]11

If ρ is not a transposition then ρ must have the form

. . . a[b . . . c]d . . . e[f . . . g]h . . . = . . . af . . . gd . . . eb . . . ch.

Chapter 5. Sorting Strings by Global Transformations 142

Note that changes at ab and ef happen independently of changes at cd and gh. Sup-

pose that the number of blocks of zeros is decreased by the action of ρ at ab and

ef . Then ρ must have the form . . . 0[1 . . .] . . . 1[0 . . .] . . ., or alternatively the form

. . . 1[0 . . .] . . . 0[1 . . .] Therefore, f is decreased by one as a result of this part of the

block-interchange. Now suppose that the number of blocks of ones of length one is

increased by the action of ρ at ab and ef . Then ρ has the form:

(i) . . . 01[1 . . .] . . . 11[0 . . .] . . .,

(ii) . . . 11[0 . . .] . . . 01[1 . . .] . . .,

(iii) . . . 0[11 . . .] . . . 1[10 . . .] . . .,

(iv) . . . 1[10 . . .] . . . 0[11 . . .] . . .,

(v) . . . 01[10 . . .] . . . 0[0 . . .] . . ., or

(vi) . . . 0[0 . . .] . . . 01[10 . . .]

In each case f is reduced by one as a result of this part of the block-interchange. Note

that other apparent possibilities, e.g., . . . 01[11 . . .] . . . 0[0 . . .] . . ., increase the number

of blocks of zeros and hence do not decrease f . The changes that can happen at cd

and gh are identical to those that can happen at ab and ef , therefore f can be reduced

overall by two by a single block-interchange. Hence bd(S, T) ≥ (3m − 1)/2.

A block-interchange is bad if it splits a 00 substring or it is a transposition. Suppose

that bd(S, T) = (3m−1)/2. Then we show that no sequence of block-interchanges that

achieves this bound contains a bad block-interchanges. Clearly every block-interchange

in the sequence that transforms S into T must reduce f by two. For a block-interchange

in a minimal length sequence to be bad, the string must contain 0110 as a substring.

However S contains no such substring, and no block-interchange that reduces f by two

can create such a substring. So if bd(S, T) = (3m − 1)/2, then no shortest sequence of

block-interchanges that transforms S into T contains a bad block-interchange.

Therefore, if bd(S, T) = (3m − 1)/2, then any minimum length sequence of block-

interchanges must assemble each block of zeros in T out of three blocks of zeros in S.

So if bd(S, T) = (3m − 1)/2 then I is a yes instance of Odd-3-Partition.

We now show that if I is a yes instance of Odd-3-Partition, then bd(S, T) ≤ (3m−

1)/2. For each subset Ai use a block-interchange of the form . . . 0[1 . . . 1]0 . . . 1[0 ∼

0]1 . . . to merge the three blocks of zeros representing elements of Ai into a single

block of zeros. Then use (m − 1)/2 block-interchanges of the form . . . 01[1 . . . 1]10 ∼

01 . . . 1[0 ∼ 0]1, to create the blocks of ones of length one separating the blocks of zeros.

This establishes the required property a). So, by Lemma 5.7.2, BD is NP-complete.

2

5.8 Conclusion

In this chapter we have shown that, just as sorting permutations by reversals is NP-

hard, so also is finding the reversal distance between two strings, even when the

Chapter 5. Sorting Strings by Global Transformations 143

strings are drawn from a binary alphabet. We have also shown that finding the block-

interchange distance between two strings is NP-hard. This contrasts with sorting per-

mutations by block-interchanges, for which a polynomial-time algorithm was presented

in Chapter 4.

The complexity of finding the transposition distance between two strings remains

open, just as the complexity of sorting permutations by transpositions is open. The

complexity of finding the prefix-reversal distance between two strings (over a fixed

size alphabet) is also open, unlike the complexity of sorting permutations by prefix-

reversals, which is known to be NP-hard.

For all four problems on strings, we derived lower and upper bounds for the distance

between binary strings, and used these bounds to find the diameter of Bn.

A summary of the known complexity of the distance problems on strings (over a

fixed size alphabet) and the distance problems on permutations is presented in Table

5.2. The table also shows the diameter of Bn under each of the operations.

Reversals Prefix-Reversals Transpositions Block-Interchanges

permutations NP-hard NP-hard Open P

strings NP-hard Open Open NP-hard

diameter of Bn bn/2c n − 1 bn/2c d(n − 1)/4e

Table 5.2: The complexity of the different problems, and the diameter of Bn.

Pevzner and Waterman discuss the problem of sorting strings by reversals (they

call the problem sorting words by reversals) in their open problems paper [PW95].

Their Problem 4 is to devise a performance guarantee algorithm for sorting words by

reversals. Finding an algorithm with a performance guarantee for any of the distance

problems on strings remains an open problem.

Glossary

Symbol Short description Page

Bk Bk = 0k ++ 1k 115

BRn the broken permutation of length n 82

Bn the set of binary strings of length n 115

bb(S, T) the number of block-interchange breakpoints 131

bD(n) the block-interchange diameter of Sn 110

bD2(n) the block-interchange diameter of Bn 135

bd(S, T) the block-interchange distance between strings S and T 114

bd(π) the block-interchange distance of π 12

bi the black edge (π(i), π(i − 1)) 50

b(S) the number of blocks in S 116

Ck Ck = (10)k 115

Cmax the position of the rightmost edge of cycle C 51

Cmin the position of the leftmost edge of cycle C 51

|C| the number of cycles in C 27

CM a cycle decomposition derived from M 38

C+ the augmented cycle decomposition derived from C 18

C · ρ(u) the cycle decomposition derived from C after applying ρ(u) 20

fab(S) the number of occurrences of the substring ‘ab’ in S 117

gl(π) the ‘glued’ permutation derived from π 48

g(v) the grey edge of rG′(π) associated with v 18

I(C) the inner sequence of cycle C 55

i(C, k) the kth element of the inner sequence of C 55

ı the identity permutation 2

ın the identity permutation of length n 2

+ı +ı = [+1 +2 . . . +n] 6

−ı −ı = [−1 −2 . . . −n] 9

KM the subgraph of rR(CM) that is related to kernel K 45

L(C) the canonical labelling of cycle C 55

lb(u) the position of the leftmost black edge adjacent to g(u) in C 18

l(C) the length of cycle C 50

lcp(S, T) the length of the longest common prefix of S and T 116

144

Glossary 145

lcs(S, T) the length of the longest common suffix of S and T 116

lg(u) the position of the leftmost element incident to g(u) 18

lis(π) the length of the longest increasing subsequence of π 11

n the length of a permutation 2

O(C) the outer sequence of cycle C 55

o(C, k) the kth element of the outer sequence of C 55

o(S) the number of blocks of ones of length one in S 138

prb(π) the number of prefix reversal breakpoints in π 8

prD(n) the prefix reversal diameter of Sn 8

prD2(n) the prefix reversal diameter of Bn 124

prd(S, T) the prefix reversal distance between strings S and T 114

prd(π) the prefix reversal distance of π 8

p(π, u) the position of the edge u in tG(π) 52

Rn the reverse permutation of length n 11

+Rn +Rn = [+n +(n − 1) . . . +1] 7

R(π) set of 2-reversals on π 37

rb(S, T) the number of reversal breakpoints 117

rb(u) the position of the rightmost black edge incident to g(u) in C 18

rb(π) the number of reversal breakpoints in π 4

rc(π) the size of a maximum alternating cycle decomposition of rG(π) 5

rc2(π) the least number of 2-cycles in any maximum cycle decomposition 28

rc3∗(π) the number of cycles of length greater than 2 28

rD(n) the reversal diameter of Sn 5

rD2(n) the reversal diameter of Bn 119

rd(S, T) the reversal distance between strings S and T 114

rd(π) the reversal distance of π 3

rF (π) the matching graph 29

rF ∗(π) the bridge free subgraph of rF (π) 39

rf(π) the fortress value of π 7

rG(π) the reversal cycle graph of π 4

rG′(π) the augmented reversal cycle graph of π 18

rg(u) the position of the rightmost element adjacent to g(u) 18

rh(π) the number of hurdles in rG(π) 7

rL(M) the ladder graph 29

rR(C) the reversal graph based on C 18

ru(C) the number of unoriented components in rR(C+) 27

S the string S in reverse order 115

Sı the string related to S that has the form 0 ∼ 01 ∼ 1 121

Sk the string obtained by concatenating k copies of S 115

Sn the symmetric group 2

S−1 the string obtained by swapping 1s and 0s in S 115

Glossary 146

sd(X, Y) the syntenic edit distance between X and Y 14

sprD(n) the signed prefix reversal diameter 9

sprd(π) the signed prefix reversal distance of π 8

srD(n) the signed reversal diameter of Σn 7

srd(π) the signed reversal distance of π 6

tb(S, T) the number of transposition breakpoints 127

tb(π) the number of transposition breakpoints in π 10

tc(π) the number of alternating cycles in tG(π) 50

tcodd(π) the number of odd length alternating cycles in tG(π) 10

tceven(π) the number of even length alternating cycles in tG(π) 50

tD(n) the transposition diameter of Sn 10

tD2(n) the transposition diameter of Bn 129

td(S, T) the transposition distance between strings S and T 114

td(π) the transposition distance of π 10

tG(π) the transposition cycle graph of π 10

tH(π) the transposition cycle overlap graph of π 77

th(π) the number of hurdles in tG(π) 78

thd(π) the number of detectable hurdles in tG(π) 79

tld(A, B) the reciprocal translocation distance between A and B 14

tl(π) a lower bound for td(π) 79

ui a vertex of rR(C) 18

z(S) the number of blocks of zeros in S 116

∼ a symbol used to represent repetition in strings 116

++ concatenation operator 34

(i1, . . . , ik) an alternating cycle 51

α a special character used to represent the start of a string 117

β(i, j, k, l) a block-interchange 107

∆f(π, τ) The change in f as a result of applying τ to π 48

κk a permutation with k knots in tG(π) 79

|π| the length of π 2

πC the component permutation 78

π · γ the permutation obtained by applying γ to π 3

ρ(i, j) a reversal 3

ρ(u) the reversal represented by u 20

Σn the set containing all signed permutations of length n 7

τ(i, j, k) a transposition 9

ω a special character used to represent the end of a string 117

ωr the permutation of length 2r whose cycle graph is a knot 58

Bibliography

[ABIR89] N. Amato, M. Blum, S. Irani, and R. Rubinfeld. Reversing trains: A turn

of the century sorting problem. Journal of Algorithms, 10:413–428, 1989.

[AD86] D. Aldous and P. Diaconis. Shuffling cards and stopping times. American

Mathematical Monthly, 93(5):333–348, 1986.

[AL90] A. Aggarwal and T. Leighton. A tight lower bound for the train reversal

problem. Information Processing Letters, 35:301–304, 1990.

[AW87] M. Aigner and D. B. West. Sorting by insertion of leading elements. Jour-

nal of Combinatorial Theory, Series A, 45:306–309, 1987.

[BH96] P. Berman and S. Hannenhalli. Fast sorting by reversals. In Combinatorial

Pattern Matching, Proceedings of the 7th Annual Symposium (CPM’96),

number 1075 in Lecture Notes in Computer Science, pages 168 – 185, 1996.

[BKS96] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rear-

rangement. Gene, 172:GC 11–GC 17, 1996.

[BP93] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by

reversals. In Proceedings of the 34th IEEE Symposium on Foundations of

Computer Science, pages 148–157, 1993.

[BP95a] V. Bafna and P. A. Pevzner. Sorting by reversals: Genome rearrangements

in plant organelles and evolutionary history of X chromosome. Molecular

Biology and Evolution, 12(2):239–246, 1995.

[BP95b] V. Bafna and P. A. Pevzner. Sorting by transpositions. In Proceedings

of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

614–623, 1995.

[BP96] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by

reversals. SIAM Journal on Computing, 25(2):272–289, 1996.

[BP98] V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM Journal on

Discrete Mathematics, 11(2):224–240, 1998.

147

Bibliography 148

[Cap97a] A. Caprara. Formulations and complexity of multiple sorting by reversals.

Technical Report OR-97-15, DEIS - Operations Research Group, Univer-

sity of Bologna, 1997.

[Cap97b] A. Caprara. Sorting by reversals is difficult. In Proceedings of the

First International Conference on Computational Molecular Biology (RE-

COMB’97), pages 75–83. ACM Press, 1997.

[Cap97c] A. Caprara. Sorting permutations by reversals and eulerian cycle decom-

positions. Technical Report OR-97-4, DEIS - Operations Research Group,

University of Bologna, 1997.

[Cap98] A. Caprara. On the tightness of the alternating-cycle lower bound for sort-

ing by reversals. Technical Report OR-98-4, DEIS - Operations Research

Group, University of Bologna, 1998.

[CB95] D. S. Cohen and M. Blum. On the problem of sorting burnt pancakes.

Discrete Applied Mathematics, 61:105–120, 1995.

[Chr96] D. A. Christie. Sorting permutations by block-interchanges. Information

Processing Letters, 60(4):165–169, 1996.

[Chr98] D. A. Christie. A 3/2-approximation algorithm for sorting by reversals. In

Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algo-

rithms, pages 244–252, 1998.

[CKb] Just be.

[CLN95] A. Caprara, G. Lancia, and S. K. Ng. A column-generation based branch-

and-bound algorithm for sorting by reversals. Presented at the DIMACS

4th Annual Implementation Challenge Workshop, 1995. Also Technical Re-

port OR-95-10, DEIS - Operations Research Group, University of Bologna.

[CS95] T. Chen and S. S. Skiena. Sorting with fixed-length reversals. Technical

Report 95-18, DIMACS, June 1995.

[CS96] T. Chen and S. S. Skiena. Sorting with fixed-length reversals. Discrete

Applied Mathematics, 71:269–295, 1996.

[Dew87] A. K. Dewdney. Computer recreations. Scientific American, 256(6):128–

129, 1987.

[DJK+97] B. DasGupta, T. Jiang, S. Kannan, M. Li, and Z. Sweedyk. On the

complexity and approximation of syntenic distance. In Proceedings of the

1st Annual International Conference on Computational Molecular Biology

(RECOMB’97), pages 99–108, 1997.

Bibliography 149

[DMP95] P. Diaconis, M. McGrath, and J. Pitman. Riffle shuffles, cycles, and de-

scents. Combinatorica, 15:11–29, 1995.

[Dwe75] H. Dweighter. American Mathematical Monthly, 82:1010, 1975.

[EG81] S. Even and O. Goldreich. The minimum-length generator sequence prob-

lem is NP-hard. Journal of Algorithms, 2:311–313, 1981.

[Eid86] J. A. Eidswick. Cubelike puzzles—what are they and how do you solve

them? American Mathematical Monthly, 93(3):157–176, 1986.

[FHL80] M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for permu-

tation groups. In Proceedings of the 21st IEEE Symposium on Foundations

of Computer Science, pages 36–41, 1980.

[FNS96] V. Ferretti, J. H. Nadeau, and D. Sankoff. Original synteny. In Com-

binatorial Pattern Matching, Proceedings of the 7th Annual Symposium

(CPM’96), number 1075 in Lecture Notes in Computer Science, pages 159

– 167, 1996.

[Fri98] T. Frings. Approximationsalgorithmen für das Problem “Sorting by Re-

versals” auf Permutationen. Diplomarbeit, Rheinische Friedrich-Wilhelms-

Universität Bonn, March 1998.

[GHV95] S. A. Guyer, L. S. Heath, and J. P. C. Vergara. Subsequence and run

heuristics for sorting by transpositions. Presented at the DIMACS 4th

Annual Algorithm Implementation Challenge, 1995. Also Technical Report

TR-97-20, Virginia Tech Department of Computer Science.

[GJ75] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor

scheduling under resource constraints. SIAM Journal of Computing, 4:397–

411, 1975.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company, New

York, 1979.

[GP79] W. H. Gates and C. H. Papadimitriou. Bounds for sorting by prefix re-

versal. Discrete Mathematics, 27:47–57, 1979.

[GPIC97] Q.-P. Gu, S. Peng, K. Iwata, and Q. M. Chen. A heuristic algorithm

for genome rearrangements. In Proceedings of the Genome Informatics

Workshop, Tokyo, 1997. Universal Academy Press. http://www.tokyo-

center.genome.ad.jp/manuscripts/GIW97/Poster/GIW97P08.pdf.

Bibliography 150

[GPS96] Q.-P. Gu, S. Peng, and H. Sudborough. Approximation algorithms

for genome rearrangements. In Proceedings of the Genome Informatics

Workshop, Tokyo, 1996. Universal Academy Press. http://www.tokyo-

center.genome.ad.jp/manuscripts/GIW96/Oral/GIW96O02.ps.

[GPS99] Q.-P. Gu, S. Peng, and H. Sudborough. A 2-approximation algorithm

for genome rearrangements by reversals and transpositions. Theoretical

Computer Science, 210(2):327–339, 1999.

[Gus97] D. Gusfield. Algorithms On Strings, Trees and Sequences: Computer Sci-

ence and Computational Biology. Cambridge University Press, Cambridge,

1997.

[Han95a] S. Hannenhalli. Polynomial-time algorithm for computing translocation

distance between genomes. In Combinatorial Pattern Matching, Proceed-

ings of the 6th Annual Symposium (CPM’95), number 937 in Lecture Notes

in Computer Science, pages 162–176, 1995.

[Han95b] S. Hannenhalli. Transforming men into mice (a computational theory of

genome rearrangements). PhD thesis, Pennsylvania State University De-

partment of Computer Science and Engineering, 1995.

[Han96] S. Hannenhalli. Polynomial-time algorithm for computing translocation

distance between genomes. Discrete Applied Mathematics, 71:137–151,

1996.

[HCKP95] S. Hannenhalli, C. Chappey, E. V. Koonin, and P. A. Pevzner. Genome

sequence comparison and scenarios for gene rearrangements: A test case.

Genomics, 30:299–311, 1995.

[HP95a] S. Hannenhalli and P. A. Pevzner. Towards a computational theory of

genome rearrangements. Lecture Notes in Computer Science, 1000:184–

202, 1995.

[HP95b] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip (poly-

nomial algorithm for sorting signed permutations by reversals). In Pro-

ceedings of the 27th Annual ACM Symposium on Theory of Computing,

pages 178–189, 1995.

[HP95c] S. Hannenhalli and P. A. Pevzner. Transforming men into mice (poly-

nomial algorithm for genomic distance problem). In Proceedings of

the 36th Annual IEEE Symposium on Foundations of Computer Science

(FOCS’95), pages 581–592, 1995.

[HP96] S. Hannenhalli and P. A. Pevzner. To cut . . . or not to cut (applications of

comparative physical maps in molecular evolution). In Proceedings of the

Bibliography 151

7th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 304–

313, 1996.

[HS] M. H. Heydari and I. H. Sudborough. Pancake sorting is NP-complete.

manuscript.

[HS97] M. H. Heydari and I. H. Sudborough. On the diameter of the pancake

network. Journal of Algorithms, 25:67–94, 1997.

[HV95] L. S. Heath and J. P. C. Vergara. Some experiments on the sorting by

reversals problem. Technical Report TR-95-16, Virginia Tech Department

of Computer Science, September 1995.

[HV97] L. S. Heath and J. P. C. Vergara. Sorting by bounded block-moves. Tech-

nical Report TR-97-09, Virginia Tech Department of Computer Science,

May 1997. To appear in Discrete Applied Mathematics.

[HV98] L. S. Heath and J. P. C. Vergara. Sorting by short block-moves. Tech-

nical Report TR-98-03, Virginia Tech Department of Computer Science,

February 1998.

[IC95] R. W. Irving and D. A. Christie. Sorting by reversals: on a conjecture

of Kececioglu and Sankoff. Technical Report TR-95-12, Department of

Computing Science of The University of Glasgow, May 1995.

[Jer85] M. R. Jerrum. The complexity of finding minimum-length generator se-

quences. Theoretical Computer Science, 36:265–289, 1985.

[Jor95] E. M. Jordan. Visualising measures of genetic distance. Presented at

the DIMACS 4th Annual Implementation Challenge Workshop, 1995.

http://medg.lcs.mit.edu/people/emjordan/final.ps.

[Knu73] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-

gramming. Addison-Wesley, Reading, Massachusetts, first edition, 1973.

[Knu98] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer

Programming. Addison-Wesley, Reading, Massachusetts, second edition,

1998.

[KR95] J. D. Kececioglu and R. Ravi. Of mice and men: Algorithms for evo-

lutionary distances between genomes with translocation. In Proceedings

of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

604–613, 1995.

[KS93] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the

inversion distance between two chromosomes. In Combinatorial Pattern

Bibliography 152

Matching, Proceedings of the 4th Annual Symposium (CPM’93), volume

684 of Lecture Notes in Computer Science, pages 87–105, 1993.

[KS94] J. D. Kececioglu and D. Sankoff. Efficient bounds for oriented chromosome

inversion distance. In Combinatorial Pattern Matching, Proceedings of

the 5th Annual Symposium (CPM’94), volume 807 of Lecture Notes in

Computer Science, pages 307–325, 1994.

[KS95] J. Kececioglu and D. Sankoff. Exact and approximation algorithms for

sorting by reversals, with application to genome rearrangement. Algorith-

mica, 13:180–210, 1995.

[KST97] H. Kaplan, R. Shamir, and R. E. Tarjan. Faster and simpler algorithm for

sorting signed permutations by reversals. In Proceedings of the 8th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 344–351, 1997.

[LP86] L. Lovász and M. D. Plummer. Annals of Discrete Mathematics (29):

Matching Theory. Number 121 in North-Holland Mathematics Studies.

North-Holland, Amsterdam, 1986.

[LW75] R. Lowrance and R. A. Wagner. An extension of the string-to-string cor-

rection problem. Journal of the Association for Computing Machinery,

22(2):177–183, April 1975.

[MWD97a] J. Meidanis, M. E. M. T. Walter, and Z. Dias. Distância de reversão de

cromossomos cirulares com sinais. In Proceedings of the 14th SEMISH -

Software and Hardware Seminar, 1997.

[MWD97b] J. Meidanis, M. E. M. T. Walter, and Z. Dias. Transposition distance

between a permutation and its reverse. In Proceedings of the 4th South

American Workshop on String Processing, pages 70–79, 1997.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,

Massachusetts, 1994.

[PW95] P. A. Pevzner and M. S. Waterman. Open combinatorial problems in com-

putational molecular biology. In Proceedings of the 3rd Israel Symposium

on the Theory of Computing and Systems, pages 158–173, 1995.

[SM97] J. Setubal and J. Meidanis. Introduction to Computational Molecular Bi-

ology. PWS Publishing Company, Boston, 1997.

[Tra97] N. Tran. An easy case of sorting by reversals. In Combinatorial Pat-

tern Matching, 8th Annual Symposium, volume 1264 of Lecture Notes in

Computer Science, pages 83–89. Springer, 1997.

Bibliography 153

[Ver97] J. P. C. Vergara. Sorting by Bounded Permutations. PhD thesis, Virginia

Tech Department of Computer Science, April 1997.

[Wag83] R. A. Wagner. On the complexity of the extended string-to-string correc-

tion problem. In D. Sankoff and J. B. Kruskal, editors, Time Warps, String

Edits and Macromolecules: The Theory and Practice of Sequence Compar-

ison, pages 215–235. Addison-Wesley, Reading, Massachusetts, 1983.

[WDM98] M. E. M. T. Walter, Z. Dias, and J. Meidanis. Reversal and transposition

distance of linear chromosomes. To be presented at SPIRE’98 - String

Processing and Information Retrieval: A South American Symposium,

September 1998.

[WEHM82] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromo-

some inversion problem. Journal of Theoretical Biology, 99:1–7, 1982.

[WF74] R. A. Wagner and M. J. Fischer. The string-to-string correction prob-

lem. Journal of the Association for Computing Machinery, 21(1):168–173,

January 1974.

