Assignment ONE

Problem 1

We define the relation \approx on the set of all running-time functions: $f(n) \approx g(n)$ if $f(n)$ is $\Theta(g(n))$.
Show that \approx is an equivalence relation (i.e., a relation that is reflexive, symmetric, and transitive). Note that an equivalence class of \approx consists of all functions with a specified growth rate. In other words, $f(n)$ and $g(n)$ have the same growth rate $\Leftrightarrow f(n) \approx g(n)$.

Problem 2

Exercise 3.1-1 page 52.

Problem 3

Exercise 3.1-2 page 52.

Problem 4

Exercise 3.1-4 page 53.

Problem 5

Exercise 3.1-8 page 53 .

Problem 6

Show that 2^{n} is $O(n!)$.

Problem 7

Order the growth rates of the following running-time functions, from lowest to highest:

$$
\begin{aligned}
& n, 2^{n}, n \log _{2} n, n-n^{3}+7 n^{5}, n^{2}+\log _{2} n, n^{2} \\
& n^{3}, \log _{2} n, \sqrt{n}+\log _{2} n,\left(\log _{2} n\right)^{2}, n!, \ln n
\end{aligned}
$$

Problem 8

The scientist Fu Tur is working on a computer that will run 10000 times faster than our present computers. Assuming that Dr. Tur's dream is realized, complete the following table that shows the size of the largest problem instance solvable in one hour for a few growth rates.

Growth Rate	Size of largest problem instance solvable in 1 hour with present com- puter	Size of largest prob- lem instance solvable in 1 hour with computer 10000 times faster
n	N_{1}	$10000 N_{1}$
n^{2}	N_{2}	
n^{5}	N_{3}	
2^{n}	N_{4}	
5^{n}	N_{5}	

Problem 9

Determine the growth rate of $\binom{n}{i}$, where i is a fixed positive integer.

Problem 10

What is the growth rate of $\sum_{i=1}^{n} H_{i}$, where $H_{i}=\sum_{j=1}^{i} \frac{1}{j}$ (the $i^{\text {th }}$ Harmonic number)?

Problem 11

An AVL-tree is defined to be a binary tree that satisfies the property that, for any node X, the depths of the left and right subtrees of X differ by at most one. Let $M(n)$ denote the minimum number of nodes in an AVL-tree of depth n.
a) Show that $M(0)=1, M(1)=2$, and $M(n)=1+M(n-1)+M(n-2)$, for $n \geq 2$.
b) Prove by induction that $M(n)=f_{n+2}-1$, for all $n \geq 0$, where $f_{0}=f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ are the Fibonacci numbers.

