
Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 1

Programming Projects
(Last updated: January 31, 2014)

Teams:

You are to work in teams of two students. Each team will work on a
project, do the design, implementation, testing, and prepare a final
report. Both members of the team are expected to participate equally in
all aspects of the project. Both members of the team will receive the same
grade on the project. You are expected to form groups and choose a topic
by Thursday, February 27, 2014.

Project Requirements:

The team is expected to do a project that uses or develops techniques,
theory, or algorithms introduced in the class. Students are encouraged to
develop projects that have some relationship to their own interests, but a
list of suggested projects is presented to help get started. Some are
general, others specific. You can

• Pick a project from the list,

• Modify a project to suit your interests, or

• Suggest your own project.

The key idea is to be creative either in developing a new algorithm or in
implementing an existing one. Results, whether good or bad, should be
compared with those obtained from existing implementations.

The project implementation may be developed for any platform. You can
use C, C++, C#, Java, Matlab, Python, Ruby, or Perl. The World Wide
Web contains many programs as well as the source code. You may use
and modify such code provided appropriate acknowledgements and
citations are made.

The final project grade will be computed in the following way:

a) Team Formation: 10% b) Progress Report: 20% c) Project report: 70%

Important Dates:

a) Team Formation
Thursday, February 27: Each team submits a paper containing the

names of the team members and the
chosen topic. If the topic is not the one
described under “List of Suggested
Projects” below, then the team includes a
detailed description of their proposed
project.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 2

b) Progress Report

 Thursday, April 10: Two-page progress report by each team is
due at the beginning of the lecture.
Include the title of the project and a
description of what has been achieved.
Alternatively, the team can submit all the
work that has been done up to April 10,
2014.

c) Project Report
Tuesday, May 6: Printed copies of the final project are due

at the beginning of the lecture. Do not
forget to include all pertinent documents.
Also, submit a CD or USB flash drive
containing all the files described under
“Submission Requirements” below.

Submission Requirements:

A) Submit a hard copy of the project containing all of the following:

1) Title page.

2) Table of contents (with page numbers).

3) An essay of not more than 6, and not less than 4, 1 and 1/2
spaced pages (font size: 11 or 12 points) describing the problem, the
overall organization, design of your program, and results of your
project. The essay should give the user an overall roadmap of your
code. Include a flowchart, or UML or a structure chart to show the
design of your program. Do not forget to number pages!

4) A one page description of the choice of the test data and the testing
strategy you used.

5) Include one sample output of your program. Make sure that your
output is readable and well formatted.

6) Instructions for running your program.

A good project report will include the following:

 Background of the problem from the literature search

 A clear definition of the problem

 An explanation and justification of methods of data analysis.

 A description and justification of the data sources.

 Analysis of the results and comparison with existing tools.

 Conclusions based on the results.

 Possible directions for future research.

 Instructions on how to compile and execute your program

 A full list of references.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 3

B) Submit a CD, or USB flash drive, labeled with your names, course
number and semester, and containing:
 a) The source code (fully documented)
 b) The input files
 c) The document specified in part A
Please make sure that all the files on the CD or USB key are readable.

List of Suggested Projects

1. Problems from CLRS

Pick any problem and choose an algorithm to implement and test. A few
suggestions:

• Rod cutting. Section 15.1, pages 360-370.

• Matrix-chain multiplication. Section 15.2, pages 370-378.

• Longest common subsequence. Section 15.4, pages 390-397.

• Edit distance. Problem 15-5, pages 406-408.

• Viterbi algorithm. Problem 15-7, pages 408-409.

• Scheduling to minimize average completion time. Prob 16-2, p 447.

• Off-line caching. Problem 16-5, page 449.

• Toeplitz matrices. Problem 30-2, page 921.

• Multidimensional fast Fourier transform. Prob 30-3, pages 921-922.

[CLRS] Introduction to Algorithms by T. Cormen, C. Leiserson, R. Rivest,
and C. Stein. MIT Press, 2009.

2. NP-Hard problems from CLRS

Pick any NP-hard problem and choose a heuristic algorithm or
approximation algorithm to implement and test. A few suggestions:

• Clique problem. Section 34.5.1, pages 1086-1089.

• Vertex cover problem. Section 34.5.2, pages 1089-1091.

• Hamiltonian cycle problem. Section 34.5.3, pages 1091-1096.

• Traveling salesperson problem. Section 34.5.4, pages 1096-1097.

• Subset sum problem. Section 34.5.5, pages 1097-1100.

• Subgraph-isomorphism problem. Problem 34.5-1, page 1100.

• Set-partitioning problem. Problem 34.5-5, page 1101.

• Longest-simple-cycle problem. Problem 34.5-7, page 1101.

• Independent-set problem. Problem 34-1, pages 1101-1102.

• Graph-coloring problem. Problem 34-3, pages 1103-1104.

• Scheduling with profits and deadlines. Problem 34-4, pages 1104.

[CLRS] Introduction to Algorithms by T. Cormen, C. Leiserson, R. Rivest,
and C. Stein. MIT Press, 2009.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 4

3. More Problems

• Exon chaining. Problem 6.29, pages 185-186 [DPV06].

• Reconstruction evolutionary trees by maximum parsimony. Problem
6.30, pages 186-187 [DPV06].

• Sequencing by hybridization. Problem 8.21, pages 268-269 [DPV06].

• Minimum Steiner Tree. Problem 9.6, page 294 [DPV06].

• Maximum Cut. Problem 9.9, page 295 [DPV06].

• Abductive inference (Diagnosis). Section 6.3, pages 245-254 [NN96].

• 0/1 knapsack problem. [DPV06].
 [DPV06] Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V.
Vazirani. McGraw-Hill, 2006.
All the chapters of textbook can be found at:

http://www.cs.berkeley.edu/~vazirani/algorithms/all.pdf

[NN96] Foundations of algorithms by R. Neapolitan and K. Naimipour. D.
C. Heath and Company, 1996.

4. Simulated Annealing

The main purpose of the projects in this category is to design,
implement, and run a simulated annealing algorithm to solve an NP-hard
problem. You can choose any problem from “2. NP-Hard problems from
CLRS” or from “3. More Problems”, or any NP-hard problem not
previously mentioned. Once done, you should compare your results to
the results obtained from running a publically available package.

5. Artificial Neural Networks

The main purpose of the projects in this category is to design,
implement, and run an artificial neural network algorithm to solve an
NP-hard problem. You can choose any problem from “2. NP-Hard
problems from CLRS” or from “3. More Problems”, or any NP-hard
problem not previously mentioned. Once done, you should compare your
results to the results obtained from running a publically available
package.

6. Approximation Algorithm

The main purpose of the projects in this category is to design,
implement, and run an approximation algorithm to solve an NP-hard
problem. You can choose any problem from “2. NP-Hard problems from
CLRS” or from “3. More Problems”, or any NP-hard problem not
previously mentioned. Once done, you should compare your results to
the results obtained from running a publically available package.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 5

7. Evolutionary Algorithms

The main purpose of the projects in this category is to design,
implement, and run an evolutionary algorithm (genetic algorithm, genetic
programming, and evolution strategy) to solve an NP-hard problem. You
can choose any problem from “2. NP-Hard problems from CLRS” or from
“3. More Problems”, or any NP-hard problem not previously mentioned.
Once done, you should compare your results to the results obtained from
running a publically available package. The following is an additional
problem where evolutionary algorithms have been successfully applied.

A) Craniofacial Superimposition in Forensic Identification

“Craniofacial superimposition is a process that aims to identify a person
by overlaying a photograph and a model of the skull.” [Ballerini, 2007]
“Photographic supra-projection is a forensic process where photographs
or video shots of a missing person are compared with the skull that is
found. By projecting both photographs on top of each other (or, even
better, matching a scanned three-dimensional skull model against the
face photo/video shot), the forensic anthropologist can try to establish
whether that is the same person.” [Ibáñez, 2009].

This project involves reading the literature (use the 3 articles mentioned
below as a starting point) and writing your own evolutionary algorithm-
based program, modeled after their work, running and comparing your
results to theirs.

[Ballerini, 2007] Ballerini, L., Cordón, O., Damas, S., Santamaría, J.,
Alemán, I., and Botella, M. Craniofacial superimposition in forensic
identification using genetic algorithms, in: Proceedings of the IEEE
International Workshop on Computational Forensics, Manchester, UK,
2007, pp. 429–434.

[Ibáñez, 2009] Ibáñez, O., Ballerini, L., Cordón, O., Damas, S.,
Santamaría, J. An experimental study on the applicability of evolutionary
algorithms to craniofacial superimposition in forensic identification.
Information Sciences 179 (2009) 3998–4028.

Nickerson, B., Fitzhorn, P., Koch, S., and Charney, M. (1991). A
methodology for near-optimal computational superimposition of two
dimensional digital facial photographs and three-dimensional cranial
surface meshes. Journal of Forensic Sciences 36(2), 480–500.

8. Hidden Markov Models

The main purpose of the projects in this category is to design,
implement, and run a hidden Markov Model algorithm to solve
probabilistic problems such as the Dishonest Casino Problem. Once
done, you should compare your results to the results obtained from
running a publically available package.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 6

9. Rough Sets

The main purpose of the projects in this category is to design,
implement, and run a rough set algorithm to solve the 7-Segment Light
Emission Diode Display or an NP-hard decision problem (or any NP-hard
problem). You can choose any problem from “2. NP-Hard problems from
CLRS” or from “3. More Problems”, or any NP-hard problem not
previously mentioned. Once done, you should compare your results to
the results obtained from running a publically available package. The
following is a definition of Rough Sets by the founder of the field,
Zdzisław Pawlak.

“Rough set theory can be regarded as a new mathematical tool for
imperfect data analysis. The theory has found applications in many
domains, such as decision support, engineering, environment, banking,
medicine and others. Rough set philosophy is founded on the
assumption that with every object of the universe of discourse some
information (data, knowledge) is associated. Objects characterized by the
same information are indiscernible (similar) in view of the available
information about them. The indiscernibility relation generated in this
way is the mathematical basis of rough set theory. Any set of all
indiscernible (similar) objects is called an elementary set, and forms a
basic granule (atom) of knowledge about the universe. Any union of some
elementary sets is referred to as a crisp (precise) set – otherwise the set is
rough (imprecise, vague). Each rough set has boundary-line cases, i.e.,
objects which cannot be with certainty classified, by employing the
available knowledge, as members of the set or its complement. Obviously
rough sets, in contrast to precise sets, cannot be characterized in terms
of information about their elements. With any rough set a pair of precise
sets, called the lower and the upper approximation of the rough set, is
associated. The lower approximation consists of all objects which surely
belong to the set and the upper approximation contains all objects which
possibly belong to the set. The difference between the upper and the
lower approximation constitutes the boundary region of the rough set.
Approximations are fundamental concepts of rough set theory.” [Pawlak,
2003]

[Pawlak, 2003] “Rough set theory and its applications” by Zdzisław
Pawlak; Journal of Telecommunications and Information Technology,
2003.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 7

10. Implementing Games

• HEX

Hex is a board game played on a hexagonal grid, theoretically of any size
and several possible shapes, but traditionally as an 11x11 rhombus.
Other popular dimensions are 13x13 and 19x19 as a result of the game's
relationship to the older game of Go.

Each player has an allocated color, Red and Blue being conventional.
Players take turns placing a stone of their color on a single cell within the
overall playing board. The goal is to form a connected path of your stones
linking the opposing sides of the board marked by your colors, before
your opponent connects his sides in a similar fashion. The first player to
complete his connection wins the game. The four corner hexagons each
belong to two sides.

To make it more challenging, you can also implement the “pie rule”.
Since the first player to move in Hex has a distinct advantage, the pie
rule is generally implemented for fairness. This rule allows the second
player to choose whether to switch positions with the first player after
the first player makes the first move.

From: http://en.wikipedia.org/wiki/Hex_(board_game)

• Checkers

Checkers is played on the dark squares only. A piece may move one
square at a time, diagonally. If one of your pieces is next to one of your
opponent’s pieces and the square beyond it is free, you are required to
jump over the opponent’s piece. The opponent’s piece is then removed
from the board. It is possible to jump many times in a row with the same
piece, capturing several of your opponent’s pieces. In the beginning,
pieces can only move and jump forward. However, if a piece reaches the
far end of the board (in the case of the person playing red, the top), then
it becomes a king. (In checkers, a king is usually signified by stacking
two checkers one on top of the other. In this program, the king has a star
on it.) A king is allowed to move and jump diagonally backwards and
forwards. Kings can be captured like any other piece. You win by
capturing all of your opponent’s pieces, or by blocking them so that they
cannot move.

From: http://www.darkfish.com/checkers/Checkers.html

• The Game of LIFE

The life cellular automaton is run by placing a number of filled cells on a
two-dimensional grid. Each generation then switches cells on or off
depending on the state of the cells that surround it. The rules are defined
as follows. All eight of the cells surrounding the current one are checked

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 8

to see if they are on or not. Any cells that are on are counted, and this
count is then used to determine what will happen to the current cell.

1. Death: if the count is less than 2 or greater than 3, the current cell is
switched off.

2. Survival: if (a) the count is exactly 2, or (b) the count is exactly 3 and
the current cell is on, the current cell is left unchanged.

3. Birth: if the current cell is off and the count is exactly 3, the current
cell is switched on.

From: http://mathworld.wolfram.com/GameofLife.html

• Other games, such as Chess, Othello (Reversi), GO, Jenga, Tetris and
Chess.

11. Data Compression Algorithms

11.1. Dictionary-Based Data Compression Techniques

There are several approaches to data compression. This project
concentrates on the dictionary-based approach.

The original dictionary-based data compression methods were the two
Lempel-Ziv methods known today as LZ77 and LZ78. The latter was
improved by Welch, resulting in the popular LZW method. Quite a few
variants of these methods are known today, the most popular being
LZSS, LZMW, LZAP, LZY and LZP.

The project involves literature search, studying two or three of the above
variants, and implementing one of them.

References:

D. Salomon, G. Motta, and D. Bryant, Data Compression: The Complete
Reference, Fourth Edition, 2007.

T. Bell, J. Cleary, and I. Witten, Text Compression, Prentice Hall, 1990.

Mark Nelson et al., The Data Compression Book, M&T Books, 2nd
edition, 1996.

Sayood, K. Introduction to Data Compression, Third Edition, Morgan
Kaufmann Publishers, 2005.

11.2 PC and UNIX Data Compression Programs

There are many data compression methods for all common computers
but they are based on just a few principles.

The three main principles used for compressing data are run-length
encoding, Huffman codes, and LZ methods (dictionary-based). Almost all

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 9

common data compression programs such as ARC, Zip, PKzip, LHarc
and ARJ for the PC, and compress for UNIX, use variants or
combinations of those principles.

The project consists of two parts. The first, larger part involves a
literature search to find how the popular data compression programs
work, how they are based on the basic principles listed above, and what
techniques and data structures they use. The second part is an
implementation of one of these. It should be simple and readable, and
does not have to be fast, efficient or fancy.

See Bibliography for 11.1.

11.3 Scrambling as a Prefix to Data Compression

A useful approach to data compression is to scramble the data before it
is compressed. The scrambling should satisfy two conditions:

1. It should be reversible (otherwise it is impossible to decode the
compressed file).

2. It should transform the original data to a more correlated form. In the
case of text compression, the scrambled data should have concentrations
of identical characters. In the case of image compression, scrambling
should bring pixels of the same color close together.

One approach to scrambling is the Burrows-Wheeler transform. It
transforms any data—text, images and sound—to a more correlated form
that can later be highly compressed using traditional methods. Another
approach—for image compression—is to scan the image along a space-
filling curve instead of by scan lines.

This project involves both literature search and implementation and
testing of one algorithm (such as Burrows-Wheeler).

See Bibliography for 11.1

11.4 Context-Based Text Compression.

Statistical methods for text compression assign variable-size codes to the
text characters, such that common characters are assigned short codes.
The problem is that every document has a different distribution of
characters. The letter ‘E’, e.g., occurs most often in English texts, but
each document may have a different percentage of ‘E’s in it.

Modern text-compression methods are thus adaptive. They adjust
themselves to the frequencies of characters in the particular document
being compressed ‘on the fly.’ If the letter ‘E’, e.g., does not occur very
often at the beginning of a particular document, it may be initially
assigned a long code. If it appears more often later in the document, it
may be reassigned a shorter code.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 10

A context-based adaptive compression method goes one step further. It
takes into account not just the frequency of occurrence of a character,
but the probability that the character will appear in a certain context. If
the last characters to be read and compressed were, e.g., “rea”, then the
algorithm has to find how many times this string was seen in the past,
and how many times it was followed by ‘l’, by ‘p’ and so on. Based on this
data, the algorithm decides what probability to assign to the next
character, and how to encode it.

This is a complex method that involves implementing arithmetic coding
as part of the overall project. However, it is ideal for someone who is
seriously interested in data compression since it gives an insight on how
modern compression methods work.

This project involves both literature search and implementation and
testing of one adaptive algorithm, such as the Adaptive Huffman
Algorithm.

See Bibliography for 11.1.

12. Fast Fourier and Other Similar Transforms

• Hadamard Transforms and applications.

• Walsh Transforms, including fast Walsh transforms and discrete
Walsh transforms, and their applications.

• Haar Transforms, including fast Haar transforms and discrete Haar
transforms, and their applications.

13. Visualization/Animation Algorithms

The main purpose of the projects in this category is to develop a
visualization or animation tool to assist students in learning how the
algorithm works. One should be able to use the interactive, user-friendly,
educational tool you are to develop, in classroom demonstrations, hands-
on laboratories, self-directed work outside of class, and distance
learning. The visualization package will include background material, a
detailed explanation of the algorithm, with examples, and quizzes and
exercises. Using Java is highly recommended.

For these projects you have to implement visualization or an animation
for one of the algorithms that we discussed in class, or an algorithm
related to the topics covered in this course.

13.1. Image Compression by DCT or Wavelet Transforms

JPEG is a lossy compression algorithm that has been conceived to
reduce the file size of natural, photographic-like true-color images as
much as possible without affecting the quality of the image as

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 11

experienced by the human sensory engine. We perceive small changes in
brightness more readily than we do small changes in color. It is this
aspect of our perception that JPEG compression exploits in an effort to
reduce the file size. [WWW1]

Image files tend to be large, so users are constantly looking for efficient
image compression methods. Images can be greatly compressed because:

(1) a typical image tends to have much redundancy, and

(2) some image information can be lost in the compression, without the
user noticing any degradation of image quality when the image is
decompressed and displayed.

The discrete wavelet transform is used in several modern image
compression methods and achieves excellent results, especially for lossy
compression. The idea is to identify the various frequencies in different
parts of the image, and to delete the highest frequencies in each part.

Mastering wavelet transforms is beyond the scope of this project, but it is
possible to understand the principles and to implement some useful code
by concentrating on the simplest wavelet transforms.

The project is a JAVA-based visualization package that illustrates the
principles of wavelet image compression through the use of the

• Discrete Cosine Transform, or

• Haar Wavelet Transform.

Simple code should be written to demonstrate how this method results in
subbands that reflect the various frequencies of pixels in the image.

Reference: www.cs.sjsu.edu/faculty/khuri/publications.html

S. Khuri, H. Hsu, Interactive Packages for Learning Image Compression
Algorithms, Proceedings of the 5th Annual Conference on Innovation and
Technology in Computer Science Education, July, 2000, pp. 73-76.

[WWW1] www.prepressure.com/techno/compressionjpeg.htm

13.2. Elementary Graph Algorithms

Design and implement a visual interactive software package to
demonstrate how the different graph algorithms described in Chapter 22
of [CLRS].

[CLRS] Introduction to Algorithms by T. Cormen, C. Leiserson, R. Rivest,
and C. Stein. MIT Press, 2009.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 12

14. Probabilistic Graphical Models

The main purpose of the projects in this category is to design,
implement, and run a probabilistic graphical model algorithm to solve an
NP-hard decision problem (or any NP-hard problem).

According to K Murphy (www.cs.ubc.ca/~murphyk/Bayes/bnintro.html):
Probabilistic graphical models (PGMs) are graphs in which nodes
represent random variables, and the (lack of) arcs represent conditional
independence assumptions. Hence they provide a compact
representation of joint probability distributions. Undirected graphical
models, also called Markov Random Fields (MRF) or Markov networks,
have a simple definition of independence: two (sets of) nodes A and B are
conditionally independent given a third set, C, if all paths between the
nodes in A and B are separated by a node in C. By contrast, directed
graphical models, also called Bayesian Networks or Belief Networks (BN),
have a more complicated notion of independence, which takes into
account the directionality of the arcs. Undirected graphical models are
more popular with the physics and vision communities, and directed
models are more popular with the AI and statistics communities. A
graphical model specifies a complete joint probability distribution (JPD)
over all the variables. Given the JPD, we can answer all possible
inference queries by marginalization (summing out over irrelevant
variables). However, summing over the JPD takes exponential time.
PGMs are full of many efficient algorithms.

This project involves reading the literature (use the first three references:
[1], [2], and [3], mentioned below as a starting point) and writing your
own PGM-based program, that solves one of many possible applications,
such as, medicine, meteorology, speech recognition, intelligent tutoring,
gambling, monitoring, games (Sudoku [4], [5]), constraint satisfaction
problems [6], low-density parity-check codes [7], and text classification
[8]. Then, you should run your program and compare your results with
those obtained from running publically available packages.

[1] Probabilistic Graphical Models, Coursera & Stanford – Daphne Koller,
last retrieved on January 1, 2014.

https://class.coursera.org/pgm/lecture/preview

[2] Koller D. & Nir Friedman. Probabilistic Graphical Models. MIT press
ISBN 978-0262013192

[3] Kevin Murphy; www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

[4] Khan, Sheehan; Jabbari, Shahab; Jabbari, Shahin; Ghanbarinejad,
Majid., “Solving Sudoku Using Probabilistic Graphical Models”.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 13

[5] Goldberger, J., “Solving Sudoku Using Combined Message Passing
Algorithms”, Technical Report TRBIU-ENG-2007-05-03, Engineering
School, Bar-Ilan Univ. (2007).

[6] A. Braunstein, M. Mezard and R. Zecchina. Survey propagation: an
algorithm for satisfiability. Random Structures and Algorithms 27, 201-
226. (2005).

[7] C. Di, D. Proietti, T. Richardson, E. Telatar, and R. Urbanke. Finite
length analysis of low-density parity-check codes on the binary erasure
channel. IEEE Trans. on Info. Theory, pp. 1570-1579. (2002).

[8] http://www.stanford.edu/class/cs124/lec/naivebayes.pdf.

15. Fragment Assembly Problem

To sequence a DNA molecule is to obtain the string bases (A, C, G, or T)
that it contains. In large scale DNA sequencing, we have to sequence
large DNA molecules (hundreds of thousands of base pairs). It is
impossible to directly sequence contiguous stretches of more than a few
hundred bases. On the other hand, we know how to produce enough
copies of the molecule to sequence and how to cut random pieces of a
long DNA molecule. The problem is that these pieces (fragments) have to
be assembled. Thus, the fragment assembly problem consists in
reconstructing a DNA sequence (a sequence of characters over the
alphabet {A,C,G,T}) from a collection of randomly sampled fragments.

This project consists in:

1. Choosing an algorithm, such as the greedy algorithm (Section 4.3.4 in
[SM97]), or any other heuristic, such as the ones described in Section 4.4
of [SM97] and in [KS99], and in Sections 8.3 to 8.9, pages 262 to 280 in
[JP04],

2. Reading, understanding and implementing the algorithm you choose,

3. Comparing your program’s performance to an existing
implementation, e.g. phrap, cap, etc.

[JP04] Jones, N., and Pevzner, P. Bioinformatics Algorithms. MIT Press,
2004.

[KS99] Kim, S., and Segre, A., AMASS: A Structured Pattern Matching
Approach to Shotgun Sequence Assembly. Journal of Computational
Biology, 6(2), 1999, pp 163-186; 1999.

[SM97] Setubal, J. and Meidanis J. Introduction to Computational
Molecular Biology. PWS Publishing Company, 1997.

Computer Science 155 Spring 2014

Introduction to the Design and Analysis of Algorithms

©2014 Sami Khuri 14

16. Genome Rearrangement

Various global rearrangements of permutations, such as reversals and
transpositions, have recently become of interest because of their
applications in computational molecular biology. A reversal is an
operation that reverses the order of a substring of a permutation. The
problem of determining the smallest number of reversals required to
transform a given permutation into the identity permutation is called
sorting by reversals. This problem is of interest because the
permutations can be used to represent sequences of genes in
chromosomes, and the global rearrangements then represent
evolutionary events. As a result, these problems are called genome
rearrangement problems. Genome rearrangement problems seem to be
unlike previously studied algorithmic problems on sequences, so new
methods have had to be developed to deal with them. [DC98]

This project consists in choosing an algorithm, such as the ones
described in Section 7.2 of [SM97], in Chapter 5 in [JP04], and in [DC98];
reading, understanding and implementing the algorithm you choose and
testing it on several different input data.

[DC98] Genome Rearrangement Problems. Ph.D. Dissertation by David
Alan Christie. University of Glasgow, Scotland. 1998.

[JP04] Jones, N., and Pevzner, P. Bioinformatics Algorithms. MIT Press,
2004.

[SM97] Setubal, J. and Meidanis J. Introduction to Computational
Molecular Biology. PWS Publishing Company, 1997.

