
December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

OTTER-LAMBDA, A THEOREM-PROVER
WITH UNTYPED LAMBDA-UNIFICATION

MICHAEL BEESON

Computer Science Department, San José State University
1 Washington Square

San José, California 95192, USA
beeson@cs.sjsu.edu

Support for lambda calculus and an algorithm for untyped lambda-unification has been
implemented, starting from the source code for Otter. The result is a new theorem prover

called Otter-λ. This is the first time that a resolution-based, clause-language prover
(that accumulates deduced clauses and uses strategies to control the deduction and

retention of clauses) has been combined with a lambda-unification algorithm to assist
in the deductions. The resulting prover combines the advantages of the proof-search

algorithm of Otter and the power of higher-order unification. We describe the untyped
lambda unification algorithm used by Otter-λ and give several example theorems.

Keywords: Unification; lambda calculus; automated deduction.

Introduction

Our purpose in this paper is to demonstrate the successful combination of lambda
unification with the well-known resolution-based theorem prover Otter 19. What
we call “untyped lambda unification” is similar to second-order or higher-order
unification, but those algorithms are designed for use in typed theories, and we
have chosen to use a new name for this algorithm, since it is a new algorithm and
is applied in a different context.

The advantages of clause-based provers like Otter lie in the retention of deduced
conclusions and the development of effective search strategies to generate and/or
retain desired, rather than undesired, new conclusions. The advantages of type-
based systems are the greater ease of describing mathematical concepts at a “higher
level” and the availability of higher-order unification. By adding lambda unification
to Otter, we have created a system offering a combination of both advantages.

The implementation of lambda calculus and an algorithm for lambda unification
in Otter are described in the last sections of this paper. A soundness proof for the
algorithm is given in6. That paper answers the question, In what logic does Otter-λ
find proofs?. This paper reports on several examples intended to demonstrate some
of the capabilities of Otter-λ, as we call our enhanced version of Otter (or when

1

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

2 Michael Beeson

typography dictates, Otter-lambda). The main point is to explore the combination
of lambda unification with a clause-based theorem prover using search strategies
to generate new conclusions, as opposed to either a type-based prover (unaided
by retention of many clauses, demodulation and paramodulation, and a variety of
inference strategies) or a first-order, clause-based prover (unaided by higher-order
unification and types).

First, we show that our enhancements give Otter-λ the ability to manipulate
quantifiers at the clausal level, so that definitions involving quantifiers can be con-
veniently used in proofs. Second, we take up the algebraic part of Lagrange’s theo-
rem, to demonstrate how lambda unification enables the automatic construction of
maps needed in algebraic proofs. Third, we give an example to show how Otter-λ
can find a proof in algebra that uses mathematical induction, namely, there are no
nilpotents in an integral domain. Fourth, we reproduce the well-known automatic
deduction of Cantor’s theorem, which appears to depend heavily on a typed logical
system, to show that it can be done in Otter-λ; and that a similar approach in
Otter-λ can yield Russell’s paradox and fixed-point constructions, which cannot be
formalized in type theory. Our fifth and last example is a proof by mathematical
induction, directly from the axioms of Peano arithmetic, of the commutativity of
addition. Both the basis case and the induction step of the main induction must in
turn be proved by mathematical induction. Otter-λ is able to find all three instances
of induction on its own, and complete the proof.

Input files and the proofs produced by Otter-λ for all these examples can be
found on the Otter-λ web site. 7a

Lambda unification

We focus on the attempt to extend unification to instantiate variables for functions
by means of λ-terms. All past research and implementation in this subject has
involved typed formalisms. In that context, it is known as higher-order unification.
What is novel in this paper is the implementation of (a version of) higher-order
unification in an untyped formalism. We call our unification “untyped lambda-
unification”. In23,24, Pietrzykowski gave an algorithm for higher-order unification,
which we here call typed λ-unification. Huet17 did not invent this algorithm, but
his cited paper contains another important contribution and has become the classic
reference. An encyclopedic treatment of type theory and second-order unification
can be found in1,14; we shall say no more about the thirty years of research covered
there. We note the following points about our implementation:

aTo clear up some misconceptions about Otter-λ: It is a theorem-prover, built on Otter, but it is

not a “library” that can be plugged into other provers, not even Otter, since it was necessary to
modify Otter at several points to connect the new capabilities. On the other hand, it performs on

first-order problems exactly like Otter–the new code is never invoked unless appropriate flags are
set in the input file. Thus Otter files run in Otter-λ, and at the same speed, though they may use

a few percent more memory since one data structure was slightly expanded.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 3

• We do not implement the full (typed) higher-order λ-unification algorithm.
• Our algorithm can solve problems which are not solvable in a typed setting,

e.g. finding a term X such that X(y) = f(X(y)).

Otter-λ recognizes the reserved words lambda and Ap (or synonymously ap).
One uses lambda(x,Ap(f,x)) to enter the term λx.f(x). Beta-reduction has been
implemented in the framework Otter uses for demodulation. To understand this
paper, the reader will need to read both the examples and the algorithm for untyped
lambda-unification. Either one is difficult to understand without the other, so it may
be best to read them in parallel. Logically the algorithm definition should precede
the examples, and the paper is organized that way, but it should also work to skip
the rest of this section for now and return to it later.

A substitution σ is a λ-unifier of terms t and s if λ-logic 6 proves t = s. A λ-
unification algorithm is an algorithm that finds one or more lambda unifiers, when
given as input two terms t and s. We have (so far) implemented a single-valued
version of second order unification. It therefore misses some unifiers that would be
returned by a multiple-valued version, but it also solves some problems that cannot
be solved in a typed theory, and it works efficiently, and it works in Otter. (We hope
to extend the implementation in summer 2005 to return multiple unifiers.)

In this paper, as in Otter and Otter-λ, we distinguish between variables (which
can be instantiated by unification) and constants (which cannot be instantiated)
by a typographic convention: variable names begin with upper case or lower case
x,y,z,u,v,w. Names beginning with other letters, such as f or c, are constants. The
scope of a free variable is the clause in which it occurs. The scope of a λ-bound
variable is the λ-term in which it occurs. The same variable will never occur both
free and λ-bound in the same clause. (Nested λ-bindings of the same variable are
allowed during unification, but for technical reasons are renamed when kept clauses
are stored.) Technically, a variable refers to an integer varnum and a context, which
is a table of pairs of the form (term, context) whose entries describe a substitution.
Unification algorithms take as input two pairs (t, c) where t is a term and c is a
context. In this section we refer to such a pair as a term, leaving the context implicit,
or referring to it as the context of t. A term t depends on a variable y if t contains
y or if t contains a variable that has been assigned, in the context of t, a value
depending on y. When we say in the pseudocode below that x := t we mean that
an entry is made under the varnum of x in the context of x assigning x the value t.
This setup is exactly as in first-order unification; see19 for details.

The definition of λ-unification makes use of the concept of a variable y being
forbidden to a variable x. This means that unification is not allowed to assign x a
value depending on y. The context data structure is expanded to allow for storing,
for each variable x, a list of variables forbidden to x. To forbid t to x means to add
to the forbidden list of x, all free variables of t that have no values in the context of
t, and all variables forbidden to those free variables of t that do have values assigned
in the context of t.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

4 Michael Beeson

Three functions are involved in our λ-unification algorithm: unify2, unify lambda,
and subst. The first two are are called from Otter’s unification algorithm, unify;
subst is mutually recursive with unify. When unify has to unify two terms s and t,
if either one has functor Ap, then unify2 is called, and if both have functor λ, then
unify lambda is called. We will give commented pseudocode for each of these three
functions.

unify lambda(lambda(x,t), lambda(y,s))
{ saveit = term currently assigned to x; // NULL unless x is a nested bound variable

x:=y; // assign y to x in the context of t
forbid y to all free variables in t or s;
unify(t,s);
x:= saveit;

}

Example: λx. f(x) unifies with λy. f(y). No (net) variable assignment is made in
either context.

The substitution algorithm subst is mutually recursive with unification. It takes
three terms r, s, and t and returns a term (and a context). It is assumed r is a
variable that does not occur in the contexts of s or t. The term is the result of
substituting r for s in t. Here is pseudocode:

subst(r,s,t)
{ if(unify(r,s))

{ z = nextvar(t); // get unused variable z in the context of t
z:= r; // assign z the value r in the context of t
return t[s:=z]; // return t with s replaced by z

}
if(t is a variable and not λ-bound, and already assigned in the context of t to q)

return subst(r,s,q);
if(t is a variable or name)

return t;
n = arity of t;
ans = new term with arity n and same symbol as t;
for(i=0;i<n;i++)

i-th argument of ans = subst(r,s,q);
return ans;

}

Example: substituting z for g(X) in g(Y), we return the substitution X = Y and
the term z. Below we write t[s ::= r] for the term returned by subst.

We now give pseudocode for unify2. The code assumes that t and s are already
dereferenced, i.e. are not variables that have values in their respective contexts.

int unify2(t,s) // return value is 1 for success, 0 for failure

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 5

{ if(t has the form Ap(t1,t2) and s has the form Ap(s1,s2))
if(unify(t1,s1) and unify(t2,s2))

return 1;
if(t has the form Ap(lambda(x,r),q))

{ z = a new variable;
rename x in (a copy of) r to z;
z:=q // in the context of t
return unify(r,s); // perform a beta-reduction before unifying
// if unification fails, destroy the copy of r before returning
no memory used for this beta-reduction as context keeps track of it

}
if(s has the form Ap(lambda(x,r),q))

return unify(s,t);
if(t is a variable not occurring in s)

{ t:= s;
return 1; // but don’t fail if occurs check fails

}
if(s is a variable not occurring in t)

{ s:= t;
return 1;

}
if(t has the form Ap(X,r))

return unify2(s,t);
if(s has the form Ap(X,r) and X is already assigned a value lambda(z,q))

{ // for simplicity omitting some details about clash of bound variables
label z as “not lambda bound”;
z:= r;
rval = unify(q,t);
label z as “bound”;
return rval;

}
if(s does not have the form Ap(X,r) with X a variable)

return 0; // unification fails
fix X and w with s = Ap(X,w);
z = new variable not occurring in s or t;
if(w is a variable and X does not occur in t)

{ b = getConstant(t); // explained below
rr = subst5(z,b,t); // explained below
X:= lambda(z,rr);
return 1; // success

}
else if(w is a variable and X does occur in t)

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

6 Michael Beeson

{ b = getMaskingSubterm(t); // explained below
rr = subst(z,b,t);
X:= lambda(z,rr);
return 1; // success

}
else if w is not a variable

{ rr = subst(z,w,t);
if(X occurs in rr)

return 0; // failure
X:= lambda(z,rr);
return 1; // success

}
}

The above pseudocode outlines the algorithm, but leaves the functions getConstant,
getMaskingTerm, and subst5 still to explain. The two cases in question are unifying
Ap(X, w) with t, where w is a variable, and X either does occur in t (in which case
getMaskingTerm is used) or does not occur in t (in which case getConstant is used).
We illustrate with examples of each.

We first explain getConstant. Suppose t is (a+ b = b+a), as occurs when we try
to prove the commutativity of addition by induction. Then getConstant(t) returns
b, and subst5 substitutes z for both occurrences of b (in this case), resulting in
X := λz. a + z = z + a, the right propositional function for this inductive proof. In
general, however, there will be many choices of a possible constant, and then subst5
has to choose which occurrences of the constant to substitute for. For example, if t

is (b + b) + b = b + (b + b) there are 65 possible choices of X. In the future, a more
difficult implementation could allow unify2 to return multiple unifiers, but we have
had good success with the existing code, which just picks the rightmost constant
and substitutes for all occurrences of it that do not occur inside Skolem terms from
the induction axioms, if any. (The user indicates the Skolem terms to be avoided by
using reserved symbols in the statement of the induction axioms.) This definition
of subst5 allows Otter-λ to find the correct instances of induction for some nested
inductive proofs, such as the commutativity of multiplication, where the basis case
and induction step must themselves be proved by induction.

Now we describe getMaskingSubterm, which is used when unifying Ap(X, w)
with t where t does contain X. A masking subterm of t is a subterm r of t such
that (i) r contains all the occurrences of X or variables forbidden to X in t, and
(ii) r is not forbidden to w, and (iii) r does not contain any variables bound in
t. We call such a term r a “masking subterm”, because it masks the forbidden
values of X. Any masking subterm could in principle be used to form a unifying
substitution, as follows: We substitute the new variable z for r in t, obtaining R, and
take X := λz. R. Let σ be the substitution assigning this value to X and assigning

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 7

r to w. Then we verify that σ is a lambda unifier of X(w) and t as follows:

Ap(X, w)σ = Ap(Xσ, wσ) (1)

= Ap(λz. R), r) (2)

= R[z := r] (3)

= t (4)

The present implementation always chooses (if possible) a maximal masking sub-
term which respects any typing constraints the user has supplied in the input file
under list(types); or if no list(types) is provided, a maximal masking subterm which
is a second argument of an Ap term; that is, a masking subterm which occurs as
a second argument of Ap and contains no masking subterm occurring as a second
argument of Ap. In general we would get different potential unifiers for every mask-
ing subterm. There will sometimes be many of them. In the future the algorithm
getMaskingSubterm can be altered or even made to return multiple values without
affecting the soundness of the algorithm, as proved in6. In this way the tradeoff
between efficiency and completeness can be further explored.

Finally, we give an example to illustrate the case where subst is called. To unify
Ap(X, s) with t, where s is a compound term: We create a new variable z and
use subst to substitute z for s in t. We remind the reader of the convention that
t[x ::= z] (with a double colon) means the result of using subst to substitute z for
x in t. If the result successfully eliminates the variables in t that are forbidden to
X (that is, if t[s ::= z] is not forbidden to X), then unification succeeds, giving X

the value λz. t[s ::= z]. Example: in attempting to unify Ap(X, g(X)) with g(Y),
we substitute z for g(X) in g(Y), so t[x ::= z] is z and the substitution is X = Y ,
and the substitution returned by unify2 is X = λz. z.b

Regarding the implementation details: It was possible to make use of Otter’s
“Layer 1” tools, so that we had relatively little low-level implementation to do.
Most of the code we wrote was directly related to the algorithm. We were able to
allow Otter to manage memory, restoring trails after unification failures, etc. Otter
uses the data structures described in18 to perform unification without needing to
allocate and deallocate memory for substitutions; we were also able to make good
use of these data structures. The result was that we were able to add lambda-
calculus, beta reduction, and second order (or “higher-order” if you like) unification
to Otter by adding fewer than 2000 lines of C code. However, we did have to modify
the indexing code that keeps track of possible subsuming terms, to take care of
difficulties caused by λ-bound variables having scope less than the entire clause.

bIn the example, we have missed the other solution, X = λz. g(Y). But we already knew that we

are missing some of the unifiers produced by typed λ-unification. The question is, do we get the
unifiers that we need to prove theorems of interest, and do we get them fast enough? Yes, we do,

as shown by examples.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

8 Michael Beeson

Example. We give an example in which untyped λ-unification succeeds, while typed
λ-unification fails. The example is this:

Ap(X, y) = f(Ap(X, y))

See14, p. 1035 for a discussion of why this fails, and how the failure is detected
by one algorithm for typed λ-unification but not by another. Here we show how it
works in untyped λ-unification. First we identify a masking subterm on the right:
it is not Ap(X, y) since this contains y, while a masking subterm on the right must
be not be forbidden to y. For the same reason f(Ap(X, y)) is not a masking term.
The only masking term is X itself. The unification algorithm therefore delivers the
values

X = λz. f(Ap(z, z))

y = X

Checking that this is a solution we find, using these equations,

Ap(X, y) = Ap(λz. f(Ap(z, z)), X))

= f(Ap(X, X))

= f(Ap(X, y))

Of course, this is the standard fixed-point construction in λ-calculus; the solution
cannot be typed in simple type theory, and hence in a typed setting there is no so-
lution to this unification problem. But in an untyped setting, untyped λ-unification
can find fixed points.

Implementation of λ-calculus in Otter

Since second order unification involves lambda terms, it is first necessary to imple-
ment the lambda-calculus. It is the untyped lambda-calculus that is implemented.
See6 for the theoretical background and a soundness proof of the algorithm whose
implementation is reported here. Otter-λ recognizes the reserved words lambda and
ap (or synonymously Ap). One uses lambda(x,Ap(f,x)) to enter the term λx.f(x).
Beta-reduction has been implemented in the framework Otter uses for demodula-
tion. Technicalities necessary to avoid clash of bound variables have been success-
fully dealt with. The following Otter proof shows a beta-reduction combined with
an ordinary demodulation, given the demodulator x∗x = x. The theorem proved is

(λx.x ∗ x)c = c.

Of course the proof is trivial: it is only meant to demonstrate the successful imple-
mentation of β-reduction working more or less the same way as ordinary demod-
ulation in a first-order theorem-prover. Line 3 of the proof is the negation of the
goal. The first two lines are axioms. The proof completes with the derivation of a
contradiction.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 9

1 [] x=x.

2 [] x*x=x.

3 [] ap(ap(lambda(x,lambda(y,x)),c*c),y)!=c.

4 [3,demod,2,beta,beta] c!=c.

5 [binary,4.1,1.1] .

We give several more examples that demonstrate the correct handling of the λ

calculus. For brevity we give only the negated goal from the input file and a brief
comment. These examples have short proofs–a single unification leads to a unit
conflict with the input x = x. The formulas shown are negated because one negates
a goal when submitting it to Otter-λ. The symbol != means “not equals”.

ap(lambda(x,lambda(y,x)),c) != lambda(z,c).

alpha-conversion (renaming bound variables)
lambda(x,a) != lambda(z,x).

The first x is renamed and then unification succeeds with x := a.
ap(c,ap(lambda(x,ap(c,ap(x,x))), lambda(x,ap(c,ap(x,x))))) !=

ap(lambda(x,ap(c,ap(x,x))), lambda(x,ap(c,ap(x,x)))).

This verifies that qq = λx. f(xx) is a fixed point of f , i.e. f(qq) = qq. This
example demonstrates that we are not working in a typed environment. Otter-λ
is also capable of finding fixed points, not just verifying them as in this simple
example.

Twenty-one years ago, in18, the Argonne group published a description of the
layered architecture which still underlies Otter. They remarked (p. 76), “The data
structures of Layer 1 support greater generality (including, for example, the λ-
calculus), but for the time being Layer 1 contains no manipulative procedures other
than the basic ones.” The “time being” lasted twenty-one years.

Quantification in a clausal theorem-prover

Although it is normal in resolution-based theorem provers to remove quantifiers by
Skolemization before submitting a problem to the prover, this makes it difficult to
deal with definitions that involve quantifiers, such as continuity of a function, or
the “divides” relation on integers. In this section we show how this problem can be
solved in Otter-λ. We show how to treat quantification at the clause level, based on
the machinery of λ-calculus and second-order unification. An example proof will be
worked through in detail.

One can regard ∃ as a boolean-valued functional, whose arguments are boolean
functions (defined, for simplicity, on the integers, let’s say). Then ∃n.P (n) is an
abbreviation for ∃(λn.P (n)). Introducing a constant symbol ∃ this takes the ex-
plicit form Ap(∃, λn.P (n)). This definition of quantification allows one to work
with quantified statements directly in Otter-λ. Since Otter-λ uses only characters
on the keyboard, the constant is written exists in Otter-λ input files. One of the
rules for ∃ can be expressed in an Otter-λ file (it is not hard-coded):

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

10 Michael Beeson

-Ap(Z,w) | exists(lambda(x, Ap(Z,x)).

This works in Otter-λ as follows: if Z(t) can be proved for any term t, then
the literal −Ap(Z, w) will be resolved away, using the substitution w := t. Then
∃(λx.Z(x)) is deduced, which can be abbreviated to ∃x.Z(x). No machinery is
added to Otter-λ to accomplish this, other than what has already been added for
λ-calculus.

This will permit the use of definitions that explicitly involve a quantified formula
in the definition. For example, we could define

divides(u,v) = exists(lambda(x,u*x = v)).

Now, given the clause 2 ∗ 3 = 6, Otter can deduce divides(2,6) as follows:
First, the negated goal -divides(2,6) will rewrite to

-exists(lambda(x,2*x = 6)).
This will unify with exists(lambda(x,Ap(Z,x)) if 2 ∗ x = 6 will unify with

Ap(Z, x). Second-order unification will be called with x forbidden to Z, since the
unification happens within the scope of the bound variable x. We get Z := λw.(2 ∗
w = 6). Resolution of the two clauses containing exists will then generate a new
clause containing the single literal −Ap(Z, w) with this value of Z. Specifically,

−Ap(λw. (2 ∗ w = 6), w).

That will be β-reduced to 2∗w 6= 6 so the clause finally generated will be 2∗w 6= 6.
That resolves with 2 ∗ 3 = 6, producing a contradiction that completes the proof. c

If one wants to prove, say, the transitivity of the divides relation, then one needs
the other law for the existential quantifier. Space does not permit the inclusion of
this example, but it is posted on the Otter-λ website7.

The algebraic part of Lagrange’s theorem

In this section we use Otter-λ to find a proof of the algebraic part of Lagrange’s
theorem: the existence of the map λz. z ∗ a from H to the coset Ha, where a ∈ G,
and the inverse of this map.

To prepare this for Otter-λ, we assume that the range of the variables is the
group G, so we do not need a unary predicate G(x). (See the section on “implicit
typing” for justification.) We use a unary predicate H(x) for the subgroup H, and
include the axioms that assert that the universe is a group under ∗ with identity

cWe emphasize that this example is not meant to demonstrate prowess in number theory; we

told the program that 2 ∗ 3 = 6 and concluded that 2 divides 6, which is trivial as number
theory. Our point is rather to demonstrate how the program expanded a definition that involved a

quantifier, and then used the second-order definition of quantifiers and second-order unification to
automatically complete the proof. On the other hand, even though unmodified Otter incorporates

a utility for Skolemizing first-order formulas, so that in some sense one can input quantifiers, it
cannot do what is demonstrated here: use quantified formulas within the clause language while a

resolution proof is being constructed.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 11

e and inverse i(x), and that H is closed under ∗ and inverse. We also include a
constant a for a fixed element of G, and the definition of “there exists”:

-Ap(Z,w) | exists(lambda(x,Ap(Z,x))).

Now consider how to formalize the coset Ha. We have

Ha = {ha : h ∈ H}
= {w : ∃h.(h ∈ H ∧ h ∗ a = w)}
= λw.(∃h.(h ∈ H ∧ h ∗ a = w))

= λw.(∃(λ(h, H(h) ∧ h ∗ a = w)))

We put this into Otter-λ using a function symbol f, as follows:

f(w) = exists(lambda(h, and(H(h), h*a = w))).

We use this as a demodulator, so that it will be used to rewrite any literal -f(t)
that arises. Now, for simplicity, we begin by proving that there is a function F from
H to Ha, without worrying about the one-to-one and onto part yet. The goal is
then

∃F∀x(x ∈ H → Ap(F, x) ∈ Ha)

Since we are using f for the characteristic function of Ha this becomes

∃X∀x(x ∈ H → f(Ap(X, x)))

Introducing a Skolem function g, and replacing x by g(X), the negated goal becomes
the two clauses

H(g(X)).

−f(Ap(X, g(X))).

The literal −f(Ap(X, g(X))) demodulates and resolves with the existential axiom;
the unification produces the substitution

Z := λ(x, and(H(x), x ∗ a = Ap(X, g(X))))

and the resolution produces the unit clause

−Ap(λ(x, and(H(x), x ∗ a = Ap(X, g(X)))), w).

This clause however is not stored yet, because it β-reduces to

−and(H(w), w ∗ a = Ap(X, g(X))).

We now require a special rule of inference that connects the function symbol ‘and ’ to
its logical meaning: from −and(X, Y) | Z we can infer the clause −X | −Y | Z, where
of course X or Y could be negative or positive literals, Z could be a list of literals,
and X and Y do not necessarily come first in the clause. This rule of inference, along

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

12 Michael Beeson

with a similar rule for the function symbol ‘or ’, has been implemented in Otter-
λ. These rules are sound in the sense that they are provable in λ-logic (6). Thus
Otter-λ obtains the clause −H(w)|w ∗ a 6= Ap(X, g(X)). Next the literal −H(w)
resolves with H(g(Z)). The inferred clause is g(Z) ∗ a 6= Ap(X, g(X)). The single
literal in this clause can be unified with the equality axiom x = x. This results in
unifying g(Z) ∗ a with Ap(X, g(X)). Since g(X) is not atomic, the only way this
unification can take place is if g(Z) ∗ a can be written as a term in g(X). More
precisely, substituting a new variable z for g(X) in g(Z) ∗ a gives us z ∗ a, unifying
X with Z, so the top level call to unify returns the result X = λz.z ∗ a. That is
exactly the desired result for the proof of Lagrange’s theorem: λz.z ∗a is the desired
map from H to the coset Ha.

The construction of the map λz. z ∗ a required nothing but the definition of
“there exists” and the existence of a binary operation. The next step is to prove the
existence of an inverse map Y = λw. w ∗ i(a), by giving Otter-λ the negated goal

−f(Ap(X, g(X))) | − Ap(X, Ap(Y, r(Y))) = r(Y) (5)

instead of only the first half, which was the goal in the example just completed. Here
r(Y) represents an arbitrary “constant” forbidden to Y , using the usual Skolem-
ization technique. After finding X = λz. z ∗ a as described above, the program
deduces

Ap(λz. z ∗ a, Ap(Y, r(Y))) 6= r(Y)

which beta-reduces to

Ap(Y, r(Y)) ∗ a 6= r(Y).

Now some group theory is finally needed. The program has to deduce

Ap(Y, r(Y)) 6= r(Y) ∗ i(a).

using the axioms of group theory. Once that is done, this clause is resolved against
x = x, which will cause the unification of Ap(Y, r(Y)) with r(Y)∗ i(a). Since r(Y) is
forbidden to Y , the definition of unification causes a new variable w to be substituted
for r(Y) in r(Y) ∗ i(a)), and the result is Y = λw. w ∗ i(a) as desired. In order not
to distract attention from the main issues of this paper, we put the group-theoretic
lemma

u ∗ x = v | u 6= v ∗ i(x)

into the input file; but this is not necessary–one can comment that line out. Otter
is generally good at this sort of thing, and unmodified Otter easily finds a four-line
proof of this lemma.

This example, although it is only the algebraic part of Lagrange’s theorem, still
shows the usefulness of second-order unification operating as part of a resolution-
based prover. The rest of Lagrange’s theorem involves natural numbers, and the
concepts of partition and counting. Otter-λ is also useful in those areas.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 13

No nilpotents in an integral domain, solved in Otter

An integral domain is a ring satisfying xy = 0 → x = 0∨y = 0. A nilpotent element
is an x such that for some natural number n, xn = 0. As a warming-up exercise
in combining mathematical induction with algebra, we asked Otter-λ to prove that
there are no nilpotents in an integral domain. It should discover the instance of
induction required for itself. This experiment was successful, and there are several
aspects of it worth discussing, before we move on to more difficult examples of
mathematical induction.

First, the clausal formulation of induction. Experience has shown that this is
neither familiar nor intuitive to many people, even experts in automated deduction,
and therefore we spell it out. Second, the issue of “sorts” and its solution by “implicit
typing”. Although this also arises in connection with ordinary Otter (or other first-
order provers), again many people are not familiar with the concept. Third, the use
of λ-unification to instantiate the variable property in the induction axiom, thus
“finding the correct instance of induction” to use. This is the important point of
the example–the other two points are just prerequisites.

We take up the clausal form of induction now. We start with the usual formu-
lation of induction, using a variable y for a predicate of natural numbers:

Ap(y, 0) ∧ ∀x(Ap(y, x) → Ap(y, s(x))) → Ap(y, z)

We now reduce it to clausal form. The universally quantified x in the antecedent
has to get Skolemized as g(z, y), where g is a new Skolem function symbol. As an
intermediate step we obtain

Ap(y, 0) ∧ Ap(y, g(z, y)) → ap(y, s(g(z, y))) → Ap(y, z).

Changing the first implication P → Q to Q| − P (where as usual in the clause
language the vertical bar means “or” and the dash means “not”), we have

Ap(y, 0) ∧ (−Ap(y, g(z, y))|Ap(y, s(g(z, y)))) → Ap(y, z)

and doing that again we get

−Ap(y, 0)|(Ap(y, g(z, y)) ∧−ap(y, s(g(z, y))))|Ap(y, z)

Because of the conjunction, this splits into two clauses:

−Ap(y, 0)|Ap(y, g(z, y))|Ap(y, z).

−Ap(y, 0)| − Ap(y, s(g(z, y)))|Ap(y, z).

Note that if we humans choose a particular formula P (z) to replace Ap(y, z),
we can express induction on one particular P in ordinary first order logic. People
say that Otter cannot do induction, but actually it can do induction, if you tell
it what instance of induction to use. In the case of the problem of “no nilpotents
in an integral domain”, obviously we should take P (x, z) to be xz 6= 0. If we do

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

14 Michael Beeson

that, and give Otter the two resulting clauses to use and the negated goal an = 0,
it is not difficult to set Otter’s inference rules and parameters so that it finds a
proof. However, one may object that with this formulation we have only proved the
theorem for integral domains whose underlying set is the natural numbers; if we
want something more general we ought to have used unary predicates for the ring
and for the natural numbers. We will see in the next section that this is not so.

Implicit Typing

In the “no nilpotents in an integral domain” problem, there are three kinds, or
“sorts”, of things involved: ring elements, natural numbers, and predicates of natu-
ral numbers (because the induction axiom is stated with a variable for a predicate,
and we expect Otter-λ to instantiate that variable). Should we use unary predi-
cates to define these three “sorts”? Generally we wish to avoid using such unary
predicates if possible. The method of “implicit typing” shows that under certain
circumstances we can dispense with these unary predicates. One assigns a type to
each predicate, function symbol, and constant symbol, telling what the sort of each
argument is, and the sort of the value (in case of a function; predicates have Boolean
value). Specifically each argument position of each function or predicate symbol is
assigned a sort and the symbol is also assigned a “value type” or “return type”.
For example, in this problem the ring operations + and ∗ have type R × R → R,
which we might express as type(R, +(R, R)). If we use N for the sort of natural
numbers then we need to use a different symbol for addition on natural numbers,
say type(N, plus(N, N)), and we need to use a different symbol for 0 in the ring
and zero in N . The symbol Ap in this problem satisfies type(N, Ap(P, N)), where
P represents the sort of predicates. The Skolem symbol g in the induction axiom
satisfies type(N, g(N, P)). We call a formula or term “correctly typed” if it is built
up consistently with these type assignments. Note that variables are not typed; e.g.
x + y is correctly typed no matter what variables x and y are. But when a variable
occurs in a formula, it inherits a type from the term in which it occurs, and if it
occurs again in the same clause, it must have the same type at the other occcurence
for the clause to be considered correctly typed. Once all the function symbols, con-
stants, and predicate symbols have been assigned types, one can check (manually
for now) whether the clauses supplied in an input file are correctly typed. Then one
observes that if the rules of inference preserve the typing, and if the axioms are
correctly typed, and the prover finds a proof, then every step of the proof can be
correctly typed. That means that it could be converted into a proof that used unary
predicates for the sorts. Hence, if it assists the proof-finding process to omit these
unary predicates, it is all right to do so. This technique was introduced long ago
in28, but McCune says it was already folklore at that time. It implies that the proof
Otter finds using an input file corresponding to the above formulation actually is
a valid proof of the theorem, rather than just of the special case where the ring
elements are the natural numbers.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 15

No nilpotents in an integral domain, solved in Otter-λ

Using Otter-λ instead of Otter, we just give the prover the general formulation of
induction, with a variable for the predicate. Recall those two clauses:

−Ap(y, 0)|Ap(y, g(z, y))|Ap(y, z).

−Ap(y, 0)| − Ap(y, s(g(z, y)))|Ap(y, z).

Otter-λ will apply binary resolution to the negated goal an = 0 and the third literal
in each of the two induction clauses. Untyped λ-unification will get the inputs
Ap(y, z) and an 6= 0 as terms to be unified. The result will be to instantiate y

to λz. az 6= 0. The term −Ap(y, 0) will become −Ap(λz. az 6= 0), 0), which will
beta-reduce to a0 6= 0, readily recognized as the basis case of the induction. This
case can be solved (resolved away) using the axioms x0 = 1 and 1 6= 0. There then
remain two clauses with one literal each. Writing c to abbreviate g(n, λ(z. az 6= 0)),
the remaining clauses can be written ac = 0 and as(c) 6= 0. This is evidently the
induction step, set up for proof by contradiction. The Skolem term c can be thought
of as an arbitrary “constant”. Indeed Otter-λ finds a proof.

But does this proof actually prove the theorem? We ask whether implicit typing
remains a valid technique in Otter-λ, where beta-reduction and lambda-unification
are used in the inference process. A λ-term λx. t (which in Otter-λ is written
lambda(x,t)) is correctly typed if t is correctly typed. In that case if x occurs
in t it inherits a type from its parents in t (and since t is correctly typed it in-
herits the same type from all occurrences). If that type is R and the return type
of t is S then λx. t has the return type R → S of functions from R to S. We can
also ask whether the algorithm for untyped lambda-unification preserves correct
typings. For now, suffice it to say that in the case of the “no nilpotents” problem,
lambda-unification is used only to instantiate y to λz. az 6= 0. (This is the 0 of the
ring, not the zero of N , so that Ap(y, z) is made equal to az 6= 0. In the induction
clauses, Ap can be correctly typed by type(Boolean, Ap(Pred, N)), where Pred is
the type of predicates on N , i.e., N → Bool. Thus y inherits the type Pred from
its occurrences in (each of) those clauses. The term λz. az 6= 0 also has type Pred,
so at least in this proof, implicit typing does apply.

This argument illustrates the point that while we can sometimes guarantee in
advance of running a prover (Otter or Otter-λ) that a proof obtained from a par-
ticular input file will certainly be correctly typabled , it is also possible to run the
prover first, and then inspect the resulting proof, verifying that it can be correctly
typed. In the example at hand, it is possible to carry out an a priori argument, but
we do not do that here and now. We simply want to illustrate how Otter-λ can find
the correct instance of induction, and how implicit typing can be used. As of June

dThere is an essay about implicit typing on the Otter-λ website7 containing a theorem about this,

but it is too long to include here.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

16 Michael Beeson

2004, Otter-λ can make use of an optional list of typings of function symbols and
predicates supplied in the input file to ensure that it produces only unifiers that
respect those typings.

Cantor’s theorem and Russell’s paradox

One of the most celebrated examples of the use of higher-order unification in
theorem-proving is the automatic generation of the “diagonal” proof of Cantor’s
theorem (see e.g.4). Since this theorem and its proof seem at first glance to be heav-
ily dependent, on type theory, we want to show that Otter-λ also can find the proof.
We use the method of “implicit typing” discussed above to formulate this problem.
Intuitively, we have a set (or type) α and its power set P (α), and we suppose for
proof by contradiction that we have a map c from α onto P (α). Then the statement
to be proved contradictory is

∀x ∈ P (α)∃j ∈ α∀z ∈ α(Ap(x, z) = Ap(Ap(c, j), z)).

As usual we introduce a Skolem function j = J(x). Then the “negated goal” becomes

Ap(x, z) = Ap(Ap(c, J(x)), z).

We also need the following two axioms:

w 6= not(w) definition of negation

u 6= v|v = u symmetry of equality

The (implicit) typings in this problem are as follows:

α J(P (α)) J maps P (α) into α

P (α) c(α) c maps α into P (α)

Prop Ap(P (α), α) Ap is proposition-valued on P (α)

P (α) Ap(β, α) where β is the type of maps from α to P (α)

Prop not(Prop) the negation of a proposition is a proposition

These types are implicit, i.e. do not form part of the input to the prover. Note that
Ap does not have a unique implicit type in this problem, unlike in the problem about
nilpotents in integral domains. Nevertheless the second argument of Ap always has
type α. We do not, then, know a priori that an Otter-λ proof of contradiction from
the goal given above will be correctly typable, but this can easily be verified by
inspection if it is true for a given proof. Otter-λ finds such a proof instantaneously:
It resolves the equation Ap(x, z) = Ap(Ap(c, J(x)), z) with u 6= v|v = u, producing
the new conclusion

Ap(Ap(c, J(x)), y) = Ap(x, y).

This is then resolved with w 6= not(w); the first step assigns w the value
Ap(Ap(c, J(x)), y), and then we have the unification problem

Ap(x, y) = not(Ap(Ap(c, J(x)), y)).

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 17

The “masking term” on the right, i.e. the smallest term that contains all oc-
currences of x, and occurring as a second argument of Ap, is J(x). Therefore
our unification algorithm selects J(x) and y to be replaced by the new λ-bound
variable, and takes x = λu.not(Ap(Ap(c, u)), u)) and y = J(x), or explicitly,
y = J(λu.not(Ap(Ap(c, u)), u)). We check this solution: Ap(x, y) then beta-reduces
to not(Ap(Ap(c, y)), y)), but y = J(x), so we have not(Ap(Ap(c, J(x)), y)), which
is the right-hand side of the unification problem. Yes, they are equal. The Otter-λ
input file and resulting proof are available online at7. It is apparent that the Otter-λ
proof is correctly typable.

It is quite amusing that this very same proof is also a proof of Russell’s paradox.
To see this, we use the usual representation of sets in λ-calculus, namely we regard
u ∈ v as an abbreviation for Ap(v, u), where v is a Prop-valued mapping. Then
if we add the axioms Ap(c, x) = x and Ap(J, x) = x to the input file, the term
x = λu.not(Ap(Ap(c, u)), u)) is just another notation for {u : u 6∈ Ap(c, u)} = {u :
u 6∈ u}. That is just the Russell set R, automatically defined by the magic of higher-
order unification. But note that the Russell paradox cannot even be formulated in
type theory–that was, after all, the point of Russell’s invention of type theory. Of
course, we could remove c and J entirely, rather than adding extra axioms saying
they are the identity, but leaving them in shows the relation between Cantor’s
theorem and Russell’s paradox more clearly.

We can modify this input file in two different ways to escape Russell’s paradox;
these modifications correspond directly to the traditional “solutions” of the paradox.
First, we can simply regard the paradox as showing that there is no fixed point of
not: it is the axiom w 6= not(w) that is suspect. We can say that this holds only
for propositions. Alternately we can say that the problem is that Ap is not total.
We need to allow for propositions that “never converge” to true or false. We can do
that by introducing a “logic of partial terms”, replacing the equality axiom x = x

by x = x|E(x), where E(x) means “x is defined” or “x exists”. Then we get no
contradiction unless we also assume E(R); in other words, the “paradox” shows
that the expression “defining” the Russell set is actually undefined; or one may
choose to express this by saying the Russell set does not exist.

This latter fine distinction is reflected in different logics of partial terms. More
than one such logic has been studied (see5, p. 97.), and now we are able to deal with
them in Otter-λ. Feferman’s theories of classes and operations (see5, Chapter X),
which have been put forward as a competitor to type theory for the formalization of
mathematics, are based on a logic of partial terms (or the equivalent). Now, higher-
order unification can be used with these theories, not only with type theory. See6

for more on this subject.

Commutativity of addition proved from Peano’s axioms

We now give an example to illustrate search and untyped λ-unification working
in concert. The example is, to prove the commutativity of addition from Peano’s

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

18 Michael Beeson

axioms. Of course, we don’t need the axioms about multiplication–all we need is
the definition of addition and the induction axioms. Specifically the axioms and the
negated goal are shown in the first six lines of the proof:

1 [] x+0=x.

10 [] x=x.

13 [] -ap(y,0)|ap(y,g(z,y))|ap(y,z).

14 [] -ap(y,0)| -ap(y,s(g(z,y)))|ap(y,z).

15 [] x+s(y)=s(x+y).

16 [] a+n!=n+a.

At the next step, Otter-λ finds the correct instance for the main induction:

a!=0+a|a+s(g(n,lambda(x,a+x=x+a)))!=s(g(n,lambda(x,a+x=x+a)))+a.

The occurrence of this lambda term shows that Otter-λ is attempting to prove
a + x = x + a by induction on x. Later in the proof Otter-λ constructs and uses the
terms lambda(y,y=0+y), indicating that it will try to prove the basis case of the
main induction by induction on the other variable, and

lambda(y,s(g(n,lambda(z,a+z=z+a))+y)=s(g(n,lambda(u,a+u=u+a)))+y).

Writing c to abbreviate the inner Skolem term, this is lambda(y,s(c+y)=s(c)+y),
showing that it has identified the crucial lemma: it will try to prove s(c+y) =

s(c)+y by induction on y. When I proved this theorem by hand, I chose to prove
c+s(y) = s(c)+y by induction on y, which is just one step away from Otter-λ’s
choice, by the definition of addition. Here are the remaining twenty steps of Otter-
λ’s proof of the theorem, edited for readability by substituting c, b, and d for Skolem
terms involving the three instances of induction just mentioned. The unedited proof
can be read (or regenerated) at7. The search was modest by Otter’s standards: 8980
clauses were generated, and the proof took two seconds of CPU time to find. Even
so, finding it unaided direct from Peano’s axioms is an interesting achievement.

17 [binary,16.1,14.3,demod,beta,1,beta] a!=0+a|a+s(c)!=s(c)+a.

18 [binary,16.1,13.3,demod,beta,1,beta] a!=0+a|a+c=c+a.

35 [binary,17.1,14.3,demod,beta,1,beta,unit_del,10] a+s(c)!=s(c)+a|s(b)!=0+s(b).

36 [binary,17.1,13.3,demod,beta,1,beta,unit_del,10] a+s(c)!=s(c)+a|b=0+b.

56 [binary,18.1,14.3,demod,beta,1,beta,unit_del,10] a+c=c+a|s(b)!=0+s(b).

57 [binary,18.1,13.3,demod,beta,1,beta,unit_del,10] a+c=c+a|b=0+b.

85 [para_from,57.2.2,15.1.2.1] 0+s(b)=s(b)|a+c=c+a.

102 [para_from,36.2.2,15.1.2.1] 0+s(b)=s(b)|a+s(c)!=s(c)+a.

716 [para_from,85.1.1,56.2.2,unit_del,10,factor_simp] a+c=c+a.

719 [para_from,716.1.1,15.1.2.1] a+s(c)=s(c+a).

735 [para_from,719.1.1,15.1.1] s(c+a)=s(a+c).

759 [para_into,735.1.2,15.1.2] s(c+a)=a+s(c).

1598 [para_from,102.1.1,35.2.2,unit_del,10,factor_simp] a+s(c)!=s(c)+a.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 19

1612 [para_into,1598.1.1,759.1.2] s(c+a)!=s(c)+a.

1620 [binary,1612.1,14.3,demod,beta,1,1,beta,unit_del,10] s(c+s(d))!=s(c)+s(d).

1621 [binary,1612.1,13.3,demod,beta,1,1,beta,unit_del,10] s(c+d)=s(c)+d.

1634 [para_into,1621.1.1,15.1.2] c+s(d)=s(c)+d.

1663 [para_from,1634.1.1,15.1.2.1] c+s(s(d))=s(s(c)+d).

1710 [para_into,1620.1.2,15.1.1] s(c+s(d))!=s(s(c)+d).

1764 [para_into,1663.1.1,15.1.1] s(c+s(d))=s(s(c)+d).

1765 [binary,1764.1,1710.1] $F.

Related work

For references to the hundreds of technical papers about higher-order unification
in typed formalisms, see1,14. As far as I can determine, there has been no previ-
ous implementation of lambda-calculus and second-order unification in an untyped,
resolution-based, first-order theorem prover. Therefore the related work consists
mostly of implementations of higher-order logic. These include:

• PVS, developed at SRI under the direction of N. Shankar26

• HOL-Light, which was written by John Harrison15,16, and is currently being
used by him at Intel’s Portland facility

• NuPrl, developed at Cornell under the direction of Constable11

• Isabelle, developed by Paulson and Nipkow22

• Coq, developed at INRIA, and also in use in Nijmegen12

• λ-Prolog21

• TPS20,2,4

PVS, HOL-Light, NuPrl, Isabelle, Theorema, and Coq are primarily proof-
checkers, not proof-finders, although all of them have some ability to fill in the small
steps of a proof automatically. Isabelle uses higher-order unification (see22, p. 77).
Coq is based on the Calculus of Constructions13. A discussion of the theoretical basis
of Coq and a history of its development can be found in the introduction to12, which
states that “the salient feature which clearly distinguishes our proof assistant . . . is
its possibility [ability] to extract programs from the constructive content of proofs.”
Coq uses at least some higher-order unificatione, but has no significant proof-search
capabilities. Theorema inherits lambda-calculus from Mathematica (Function[x,t] is
Mathematica notation for λx. t), but the deduction apparatus of Theorema is based
on first-order natural deduction. The architecture of Theorema allows for multi-
ple (special-purpose) provers, but no prover using higher-order unification has been
designed or implemented. NuPrl does not use higher-order unification; its proof-

eI could not find this stated in the Coq tutorial or manual, but searching the Coq source code
one finds several mentions of it, e.g. the comment in the implementation of the apply tactic: “Last

chance: if the head is a variable, apply may try second order unification”. On the other hand Coq
often reports “Cannot solve a second-order unification problem,” but one cannot be certain what

that implies about the implementation details, if anything.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

20 Michael Beeson

checking method is based on term reduction of a proof term constructed by the
user-directed application of tactics. That same description applies to HOL-Light.
PVS is similar, but with emphasis placed on the inclusion of decision procedures,
and more recently, model-checking26. PVS has mainly been applied to the verifi-
cation of programs, e.g. microcode for a commercial chip. λ-Prolog extends Prolog
to a larger class of formulae using higher-order techniques, but like Prolog, it is
based on a depth-first search algorithm rather than an architecture that maintains
a database of generated conclusions and uses strategies to control the retention of
conclusions and the selection of the parents for the next generation of conclusions.
It does make use of higher-order unification. The table below summarizes this infor-
mation. ACL28 and Theorema10 are included, even though they do not implement
higher-order logic.

System Higher order Accumulates Proof Can vary rules
unification? Conclusions? Search? and strategies?

PVS matching n some y
HOL-Light y n MESON TAC n
Isabelle y n n y
NuPrl n n n n
Coq y n n n
Theorema n n some y
λProlog y n HH formulas only n
TPS y y y some
ACL2 n n y n
Otter n y y y
Otter-λ some y y y

Of the systems mentioned, the one most relevant to our work is TPS. In3, the
creators of TPS say,

TPS combines ideas from two fields which, regrettably, have not achieved much

cross-fertilization. On the one hand, there is the traditional work in first-order

theorem proving using such methods as resolution, model elimination, or connec-

tion graphs. On the other hand we find avant-garde proof-checkers and theorem

provers for type theories of a variety of flavors, mostly centered around interactive

proof construction with the aid of tactics.

The same could be said about Otter-λ. The difference is that TPS imports inference
mechanisms from first-order provers into a typed system, while we import unification
methods from higher-order logic into a first-order system. Is there any point in
taking this different approach to the problem? After all the higher-order methods
are complete for first-order logic, so it might be (and has been!) alleged that it is a

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 21

waste of energy to try to incorporate higher-order methods in an existing first-order
prover like Otter.f Here is another quote from3:

Naturally, TPS can be used to prove theorems of first-order logic, but we focus
mainly on examples from higher-order logic. (Apart from the development of path-
focused duplication, a relatively small part of the development effort for TPS has
been devoted thus far to certain basic issues of search which are important for
first-order logic.)

Specifically, those “issues of search” include having a variety of rules of inference
useful for different problems, and having a variety of strategies available for control-
ling the search, such as pick-and-purge, weight templates, etc., as well as making use
of the indexing and memory management techniques provided in the layered archi-
tecture on which Otter is based. It is, however, clear that the first-order capabilities
of TPS, and even more of the other systems listed, do not at present compare to
those of Otter, in part because they lack the features just mentioned. We do not
mean to criticize TPS or any of the systems above; the facilities that TPS offers
for higher-order unification are probably superior to what we have added to Otter.
Decades of work by many very capable experts have gone into these systems and
admirable results (commensurate with the efforts) have been obtained. We are only
trying to make clear where Otter-λ fits in. In the conclusion of 4, the authors say

There is much to be done in the development of methods for higher-order theorem

proving Some major areas where work is needed are: the basic mechanisms

of searching for matings; the efficiency of higher-order unification; the treatment

of equality; the introduction of rewrite rules. . ..

Three of these four are addressed in the present work by using the existing solution
to these problems in Otter.

Regarding the specific example of Lagrange’s theorem: A proof of Lagrange’s
theorem has been checked by the use of Nqthm29. Curiously, this proof is not the
usual proof, but a proof by induction on the order of the subgroup. Lagrange’s
theorem has also been formalized (using set theory) in the Mizar library27.

Acknowledgments

I am grateful to Bill McCune for prompt and lucid answers to questions about
Otter, and to Larry Wos and Freek Wiedijk for discussions and suggestions. This
research was supported by NSF grant number CCR-0204362.

References

1. Andrews, P., Classical type theory, Chapter 15 of25.

f I have been told that the interest of the creators of TPS was more in closing the gap between
automatic and interactive theorem proving, than in closing the gap between first-order and higher-

order theorem proving.

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

22 Michael Beeson

2. Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning, The TPS Theo-
rem Proving System, in: Stickel, Mark (ed.), 10th International Conference on Au-
tomated Deduction, 641–642, Lecture Notes in Artificial Intelligence 449, Springer-
Verlag, (1990).

3. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, Hong-
wei Xi, TPS: A Theorem Proving System for Classical Type Theory, Carnegie Mellon
University Department of Mathematics Research Report 94-166A, February, 1995.
Available at http://gtps.math.cmu.edu/tps94-report-94-166a.pdf, while4 is not avail-
able electronically.)

4. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, Hong-
wei Xi, TPS: A Theorem Proving System for Classical Type Theory, Journal of Au-
tomated Reasoning 16, 1996, 321-353.

5. Beeson, M., Foundations of Constructive Mathematics, Springer-Verlag, Berlin/ Hei-
delberg/ New York (1985).

6. Beeson, M., Lambda Logic, accepted for publication in the proceedings of IJCAR
2004. Also available for download near the bottom of
www.cs.sjsu.edu/faculty/beeson/Papers/pubs.html, along with a supplement contain-
ing two proofs that are not included in the version for publication.

7. Beeson, M., the Otter-λ website, temporarily to be found at
http://mh215a.cs.sjsu.edu.

8. Boyer, R. S., and Moore, J. S., A Computational Logic Handbook, Academic Press,
Boston (1988).

9. Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel, and
Lawrence Wos, Set theory in first-order logic: Clauses for Gödel’s axioms. Journal
of Automated Reasoning 2 287–327, 1986.

10. Buchberger, B., et. al. A Survey of the Theorema Project, RISC Technical Report
97-15 (1997), available online at
ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1997/97-15.ps.gz.

11. Constable, R. L. et. al., Implementing Mathematics with the Nuprl Proof Development
System, Prentice-Hall, Englewood Cliffs, New Jersey (1986).

12. Coq development team, The Coq Proof Assistant Reference Manual: Version 7.2,
Rapport Technique RT-0255 de l’INRIA (2002).

www.inria.fr/rrrt/rt-0255.html
13. Coquand, T. and Huet, G., The Calculus of Constructions, Information and Compu-

tation 76, 1988, 95-120.
14. Dowek, G., Higher-order unification and matching, Chapter 16 of25.
15. Harrison, J., and Théry, L.: Extending the HOL theorem prover with a computer

algebra system to reason about the reals, in Higher Order Logic Theorem Proving and
its Applications: 6th International Workshop, HUG ’93, pp. 174–184, Lecture Notes
in Computer Science 780, Springer-Verlag (1993).

16. Harrison, J., Theorem Proving with the Real Numbers, Springer-Verlag, Berlin/ Hei-
delberg/ New York (1998).

17. G. Huet, A unification algorithm for typed λ-calculus, Theoretical Computer Science
1 (1975) 27–52.

18. Lusk, E., McCune, W., Overbeek, R., Logic machine architecture: kernel functions,
in: Loveland, D. W. (ed.) 6th Conference on Automated Deduction 70–79, Springer-
Verlag, Berlin/ Heidelberg/ New York (1982).

19. McCune, W., Otter 3.0 Reference Manual and Guide, Argonne National Laboratory
Tech. Report ANL-94/6, 1994.

20. Miller, D., Cohen, E. L., and Andrews, P., A look at TPS, in: Loveland, D. (ed.), 6th

December 7, 2004 19:40 WSPC/INSTRUCTION FILE esfor

Otter-lambda, a theorem-prover with untyped lambda-unification 23

Conference on Automated Deduction, 50–69, Lecture Notes in Computer Science 138,
Springer-Verlag, (1982).

21. G. Nadathur and D. Miller, An Overview of λ-Prolog, in: Bowen and Kowalski (eds.),
Proceedings of the Fifth International Symposium on Logic Programming, Seattle, Au-
gust 1988.

22. Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science 2283, Springer-Verlag,
Berlin/ Heidelberg/ New York (2003).

23. Pietrzykowski, T., and Jensen, D., A complete mechanization of second order logic,
J. Assoc. Comp. Mach. 20 (2) pp. 333-364, 1971. +

24. Pietrzykowski, T., and Jensen, D., A complete mechanization of ω-order type theory,
ASsoc. Comp. Math. Nat. Conf. 1972, Vol. 1, 82–92.

25. Robinson, Alan, and Voronkov, A. (eds.) Handbook of Automated Reasoning, Volume
II, Elsevier Science B. V. Amsterdam, 2001. Co-published in the U. S. and Canada
by MIT Press, Cambridge, MA.

26. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas, PVS: Combining Specifi-
cation, Proof Checking, and Model Checking, in Alur, R., and Henzinger, T. A. (eds.)
Computer-Aided Verification, CAV ’96, 411–414, Lecture Notes in Computer Science
1102, Springer-Verlag, New Brunswick, N. J. (1996).

27. Trybulec, W. A. Subgroup and Cosets of Subgroups, Journal of Formalized Mathe-
matics 12, 1990.
http://mizar.uwb.edu.pl/JFM/Vol2/group 2.miz.html.

28. Wick, C., and McCune, W., Automated reasoning about elementary point-set topol-
ogy, J. Automated Reasoning 5(2) 239–255, 1989.

29. Yuan Yu, Computer proofs in group theory, J. Automated Reasoning 6(3) pp. 251–
286, 1990.

