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1 Introduction

In the last ten years, what Heyting called “the constructive trend in mathe-
matics” has broadened and branched, partly in response to the impact of the
computer. This paper gives an overview of these developments. Specifically, we
will discuss:

e constructive type theories in computer science
e semantics of constructive systems

actual implementation of constructive systems

e computer algebra as constructive mathematics

spread of the computational viewpoint in mathematics

constructivity and the sciences

2 Historical Origins of the Subject

It is worthwhile to review the original reasons for interest in constructivity.
An interesting starting point is the controversy over Zermelo’s proof that the
set of real numbers can be well-ordered. Zermelo presented this proof to the
International Congress of Mathematicians in 1906. It was not well-received,
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primarily because Zermelo could not exhibit the well-ordering he claimed to
have proved existed. Zermelo responded, as a mathematician must, by writing
his proof up in more detail. This process led to the first explicit formulation of
the axiom of choice.

This was not the first such controversy, for there had already been a similar
furor over Hilbert’s proof of existence of invariants. But Zermelo’s proof came
just three years after Russell’s paradox had shaken the foundations of mathe-
matics, and it seemed to some that the wolf was at the door, because Zermelo’s
theorem concerned not some abstract set that could be dispensed with if it
turned out to be contradictory, but the real numbers themselves.

The climate was ripe for a general philosophical reflection on the meaning of
existence. Such investigations were undertaken by Brouwer in the second decade
of the century, and in the twenties Hilbert’s proof theory was intended to address
the same issue. Brouwer and Hilbert are often portrayed as antagonists, but it
is important to remember that they were bothered by the same thing—existence
proofs that could not be supported by example-giving. Their differences arose
only in what they proposed to do about this difficulty. Brouwer wanted to give
up all such proofs and any parts of mathematics that required them. Hilbert
wanted a systematic way to show that they were unnecessary in principle.

The efforts to make the questions precise led to proof theory, which in turn
led to the precise formulation of the Entscheidungsproblem, or decision problem
for predicate calculus. This problem in turn led to the development of mathe-
matical theories of computation by Turing, Church, Kleene, and Goédel in the
thirties, and to the incompleteness theorems of Godel. The point is that, directly
or indirectly, the troublesome business of existence proofs without examples was
the stimulus to all these important developments.

In the forties, Gentzen and Kleene led the way back to the original questions,
armed with the new technical tools. With their inventions of cut-elimination
and recursive realizability, they were able to show how exemplifying information
(examples and algorithms for constructive examples) could be extracted from
certain kinds of formal proofs. With the help of Gdédel’'s two interpretations
(the double-negation and the Dialectica)! it could be said that some progress
was made in the direction pointed to by Hilbert, using tools invented by those
following in the footsteps of Brouwer.

The computer was born about 1950, but had little immediate influence on
the subject. A man thirty years ahead of his time, N. de Bruijn, built AU-
TOMATH in the fifties [14], but not until the eighties did this line of work get
carried forward. The fifties were a period of consolidation, in which Kleene’s
book on intuitionistic analysis, many papers of Kreisel, Heyting’s book, and the
Amsterdam volume Constructivity in Mathematics appeared, applying the tools
of proof theory and realizability systematically to various systems. This devel-

1The Dialectica interpretation was known in the early forties, although it was not published
until 1958.



opment continued into the sixties, and became increasingly technical. These
technical developments, while of great interest in their own right, did not cast
further light on the philosophical issues raised by Zermelo’s proof. Indeed, in
the meantime mathematics had marched ahead, and the non-constructive ex-
istence proof held sway in the land without dissension, save for a handful of
proof-theorists, who were not even considered “real mathematicians”.

Bishop’s book, Foundations of Constructive Analysis [11], was written to
show that modern analysis does have a constructive content. Bishop hoped
that his work would produce a widespread appreciation for the constructive
viewpoint among the mathematical community, and died disappointed with the
results. But his work has been very influential, although not perhaps as directly
or as quickly as he had hoped. His work stimulated the logicians to develop
new theories, capable of formalizing constructive mathematics more naturally.
These theories, due to Myhill [50], Friedman, and Feferman [22], and the type
theories of Martin-Lof [48] (which were developed independently of Bishop’s
influence), were formulated and studied during the 1970’s and half the 1980’s.
The results are summarized in [4].

3 Type theory and the Curry-Howard isomor-
phism

Curry and Howard realized that typed lambda-terms could be thought of as
denoting formal proofs, and that types are isomorphic to propositions. A proof
of a proposition is a lambda-term of the type of that proposition. The rule of
inference

A A— B
B
corresponds to the rule of typed A-calculus

p: A g:A— B
qp: B

and the rule

p: Bz : A)
:Ap:A—B

corresponds to the logical rule

4]
B
A— B
In this way typed lambda-calculus represents the implicational fragment of a
natural-deduction logical calculus. Other type-forming operations correspond




to other logical connectives. For example, Cartesian product A x B corresponds
to conjunction. A proof of A A B is just a member of the product A x B.

The natural question was, what type-formation operations are required to
extend this isomorphism to include disjunction and quantifiers? Disjunction
corresponds to the “disjoint union” type-forming operation, in which a member
of A+ B is a member of A or of B together with a “label” ( for example 0 or
1) telling which.

Quantification on the logical side requires “dependent products” and “de-
pendent sums” on the type-theory side. Dependent products are written

(Ilz : A)B(z)

and intuitively their members are “functions” such that for z : A, we have
f(z) : B(z). Note that the set-theoretic range would be the union of the B(z)
for z : A, which doesn’t exist in the type theory. Dependent sums

(3z: A)B(z)

are a kind of generalized Cartesian product; the members are pairs (z,y) with
z:Aandy: B(z).

These were introduced by Martin-Lof around 1970. His type theories were
refined and developed throughout the 1970’s; see [48] and [4] for detailed for-
mulations.

Girard’s thesis introduced his System F, which has a second-order type for-
mation rule, allowing quantification over types. On the logical side, this cor-
responds to second-order propositional logic. The rules of System F are fairly
simple:

IfU and V are types, then U — V is a type.
IfV is a type and X a type variable, then 1IX.V is a type.

If T is a type then we have variables of type T. In other words, all variables
are labelled with a type.

Terms of type T are formed by (first-order) application and A-abstraction,
or by second-order application and A-abstraction:

If v : V then AX.w : IIX.V, provided X is not free in the type of a free
variable of v.

Ift : TIX.V and U is a type, then tU : V[U/X].

This system was rediscovered by Reynolds [54], who called it second-order
lambda calculus. Girard came to System F from proof theory; Reynolds came
to it from programming language theory. This shows what a central position it
occupies.

Observe that Martin-Lof’s type theory extends the Curry-Howard isomor-
phism to systems including first-order predicate calculus and Peano’s arithmetic,



while Girard’s System F corresponds to second-order propositional calculus but
does not include the dependent-sum and dependent-product type formation op-
erations. System F, with its impredicative second-order type-formation rule, can
be used to interpret second-order Peano arithmetic, so it is proof-theoretically
quite strong; Martin-Lo6f’s theories are much weaker. Still there doesn’t seem
to be a natural embedding of Martin-Lo6f’s theories in System F-at least I don’t
know one.

System F has been extended to system F'“, which corresponds on the logical
side to the theory H A, that is, the theory of the first w levels of the cumulative
hierarchy of sets. This theory is further extended by the Coquand-Huet theory
of constructions [18§].

Feferman has introduced another variety of type theory, beginning in 1975
[22]. The type theories of Girard and Coquand-Huet are far from first-order
logic. Feferman’s theories, in essence, reduce type theory to first-order logic
again by introducing a predicate “is a type”, regarding the relation z : A as a
binary predicate, and stating type formation rules simply as ordinary axioms
of a first-order theory. The intuitive motivation is that the variables range over
“objects”, including data objects, algorithms, and representations of types as
data objects (names of the types). One can equivalently use a two-sorted pred-
icate logic, with capital letters for types, lower-case letters for objects, and a
binary relation F(a, A) to mean a is a name of A. One obtains different variants
of the theory according to which type-formation axioms are allowed. One inter-
esting type-formation principle is the elementary comprehension aziom, which
allows the formation of the type cy = {z : ¢(z)} where ¢ is elementary, which
means in essence that only free type variables are allowed on the right of the
colon in ¢, and the name relation £ does not occur in ¢. Another principle,
join, allows the formation of dependent types, and consequently the embedding
of Martin-Lof style type theories in Feferman’s theories. Details can be found
in [4].

Bringing this subject at last into the nineties, Feferman showed that adding
a second-order comprehension axiom to his theories allows him to embed Gi-
rard’s System F [24], [23]. The model constructions Feferman used to prove the
consistency of these theories are unrelated to those previously used to prove the
consistency of System F, and hence cast new light on this result. Moreover, it
is helpful to have a single system that unifies the type theories of Martin-Lof
and Girard. Further developments of Feferman’s type theories may be found in
[25], [26], [27].

From the point of view of applying type theory to the actual formalization of
constructive mathematics, one problematic point is the notion of subtype. This
notion is supported only indirectly by Martin-Lof’s theories and by System F,
via explicit embeddings. Feferman’s theories offer a more natural treatment
of subtypes. Other researchers, for example Curien [16] and Cardelli [15], are
working on ways of adding subtyping to System F.



4 Semantics of Constructive Systems

Work on the semantics of constructive systems goes back to Beth and Kripke,
who introduced certain kinds of models for Heyting’s predicate calculus in the
1930’s (see [63] for an introduction), and to Kleene, who introduced the realiz-
ability semantics in the 1940’s.

Half a century later, there are dozens or maybe even hundreds of people
working on the semantics of various constructive theories. Many different kinds
of semantics have been discovered, and at the same time, the various kinds of
semantics have been related and unified using the tools of category theory. This
explosion began with Scott’s construction of models of the untyped A-calculus
in 1969 (see [3] for the details of this construction).

Scott’s construction and category theory. In the 1970’s an important con-
nection was made between the A-calculus and category theory. It was realized
(by Lambek) that there is a one-one correspondence between models of typed
A-calculus and Cartesian closed categories. (A Cartesian closed category is a
category in which one can form from two objects a new object AZ behaving like
the space of arrows from A to B.) Previously, models of typed A-calculus had
been constructed by starting with models of untyped A-calculus, and selecting
out the typed elements. Now, thanks to Scott and Lambek, one could reverse
the process. Scott constructed Cartesian closed categories in which a certain
object U satisied UY isomorphic to U, so models of untyped A-calculus could
be constructed from typed models.

Topos theory as semantics. The seventies also saw the development of topos-
theoretic semantics of intuitionistic systems. A topos is a Cartesian closed
category with an object € to play the role of the type of propositions, and a
“subobject classifier”, which essentially means that arrows into Q behave like
characteristic functions, that is, there is an object in the category behaving like
{z € A: ¢(z) = t}, when ¢ is an arrow from A to Q. For an introduction
to topos theory, one should read [34]. The connection between topos theory
(which was independently developed) and intuitionistic systems grew out of the
realization that if a complete Heyting algebra H (the intuitionistic analogue of
a Boolean algebra) is given, then the H-sets (defined inductively as functions
from H-sets to H) form a topos.

In connection with category theory, it is natural to consider “intuitionistic
type theory” HAY, which differs from the type theories considered above in
that there is a “power type” operation constructing the power type P(A) of
a type A. This type theory is more like the simple type theory of traditional
set theory. The term model of HAY is the “free topos”. Category-theoretic
techniques due to Peter Freyd were used to show that the free topos T satisfies
the existence and disjunction properties: if p V ¢ holds in T', then p holds in T
or g holds in T, and if (3z : A)B holds in T then there is an arrow a : 1 — A
such that Bla/z] holds in T. These techniques turned out to be equivalent to
known variants of realizability on the proof-theoretic side, but the connection



to topos theory helped to systematize these constructions, and give what had
been purely syntactic translations a semantic appearance. For the details of
these concepts and results, one should read [46].

Realizability Topos. Martin Hyland [40] invented the “realizability topos”,
which gave realizability a semantic appearance similar to H-sets, and made
it easier to extend realizability to complicated formal theories. This is well-
explained in [64], p. 724 ff., as well as in Hyland’s paper. Even though the
realizability topos is now more than ten years old, there are still open questions
about it, for example, whether internal realizability is the same as external
realizability.?

Recent work of Phoa [52] represents the latest word from this direction of
research: Phoa constructs an “effective topos” over a term model of the A-
calculus in which closed terms are identified if they have the same Béhm tree.

Metric Semantics. Scott’s model construction was based the category of
complete partial orders. A natural question is whether there are other interest-
ing categories that permit the construction of models of type theory in which
“domain equations” such as A — A = A can be solved. One interesting an-
swer is metric semantics, invented by de Bakker and Zucker (in connection
with a study of “process algebras” in computer science). In metric semantics,
types are metric spaces with diameter at most 1. A — B gets the sup met-
ric. Morphisms in this category are maps that do not increase distance, that is
d(fz, fy) <d(z,y). Direct limits in this category C' generally don’t exist, but as
America and Rutten [1] showed, the sequences arising in Scott’s construction do
have direct limits, provided we insert contractions by some ¢ < 1 at each stage,
so Scott’s construction can be transposed to this category, almost! The result
is that if we consider equivalence classes of metric spaces (two being equivalent
if they have the same shape but possibly different size) then in this category we
can solve domain equations.

Wagner [65] noticed that the category C is not Cartesian closed, because the
evaluation map can increase distances, and so is not a morphism in the category.?
A metric space is called ultra-metric if d(z,y) < max{d(z, 2),d(z,y)}. Wagner
proved that the subcategory W of C formed by ultra-metric spaces is Cartesian
closed. Moreover, if a sequence of ultra-metric spaces has a direct limit in C,
that direct limit is in W too.

Up to this point the ultrametric semantics looks like a formal footnote to
metric semantics, but Wagner showed that it is very natural. Every ultrametric
space in category C' can be associated with an (2-set based on the complete
Heyting algebra [0,1]. (Let [z = y] = d(z,y), so distance zero means true,
distance 1 means false.) Now the condition that morphisms be distance-non-
increasing becomes the internal version of an equality axiom z =y — fz = fy.

2In arithmetic, Je(erA) is equivalent to its realizability interpretation, because the formula
erA belongs to the syntactic class of almost-negative formulae. This argument doesn’t extend
immediately to higher types.

3d(f2,gy) can be greater than d((f,), (9,)) = sup {d(z, ), d(f,9)}



Transitivity of equality is directly verified using the strong triangle inequality.
The internal equality between elements of the power set of an (-set turns out
to be the Hausdorff distance between subsets of a metric space, which has long
been an important mathematical tool.*

Fractal models of lambda-calculus. Fractals are direct limits of subsets of a
metric space (usually the plane) in the Hausdorfl metric, so their complements
are inverse limits. In adapting Scott’s construction of a model of lambda calculus
to the metric semantics, we use inverse limits of metric spaces A4,, (defined by
Ao = N and A,,41 = A, — A,) to construct a model D which has copies of
each A, as subsets and is equal to the union of these copies. D can thus be
considered a generalized fractal. Generalized, because we don’t see how to give
these models a geometrical form; they involve objects of higher type which don’t
lend themselves to computer graphics.

Coherence-space semantics. In 1989, Girard’s book [33] introduced the
coherence-space semantics, the study of which led to linear logic. The effort
to understand and apply linear logic is nowadays absorbing the efforts of many
researchers around the world. Still the coherence-space semantics is of indepen-
dent interest for intuitionistic systems.

PER semantics. Moggi and Hyland [41] showed how to use partial equiva-
lence relations (PER) to define a semantics. The definition of PER is inspired
by realizability: what kinds of binary relations can interpret equality? This
semantics led to the construction of models for polymorphic types, in particular
Girard’s System F. Prior to the PER semantics, only term models constructed
by Tait’s method were known for polymorphic systems.

5 Actual implementation of constructive formal
systems

One of the most exciting strands of constructivity in the nineties is the use of
constructive formal systems in the “computerization of mathematics”. People
around the world are trying to construct systems in which mathematics can be
done on a computer. That is, a proof will be represented by an explicit internal
data object. Such proofs may be constructed interactively by a human user,
or automatically by a theorem-prover, or, in the future, interactlvely by a user
with some assistance from the computer. I will describe some of the projects
that are working in this direction.®

The most extensive implementation of a constructive system is Nuprl, de-
veloped under the direction of R. Constable at Cornell [17] Nuprl is based on

4The Hausdorff distance is a measure of the size of the set-theoretic difference of two sets
A and B, namely the supremum over z € A of the infimum over y € B of d(z, y).

51 have already mentioned the pioneering effort AUTOMATH. I was able to experiment
with AUTOMATH in 1983, but I believe AUTOMATH is history now, in the sense that it is

no longer running on any computer.



a constructive type theory similar to those of Martin-Lof, but including some
facilities for subtyping. The PRL stands for Proof Refinement Logic. This
essentially means that proofs are constructed from the goal backwards. In the
traditional way of writing proofs, that would be from the bottom up. (In Nuprl,
goals are written at the top and the derivations on which they depend are writ-
ten below and indented.) Nuprl includes an interactive proof editor. This means
that the user constructs a proof interactively, getting one line at a time accepted
by Nuprl. The user can define new rules of inference in the ML programming
language; these are called “tactics”.

Nuprl has been used by many graduate students and researchers at Cornell,
and is now installed at several other sites around the world. Numerous case
studies have been made of formalizing proofs in Nuprl. One may point to D.
Howe’s formalization of the proof of Girard’s paradox (the fact that you can’t
have a type of all types in Martin-Lof’s theories).

A few years ago I wrote a review of Nuprl in the JSL [9], in which I wrote
that the acid test of such systems is whether they are used by people other
than the creators and their students. Nuprl is passing this test nowadays: it is
being used for practical purposes, in hardware verification. Electrical engineers
both in Cornell and in Leeds are using Nuprl to construct formal proofs of the
correctness of circuit designs for chips.

Feferman’s systems formed the basis for Hayashi’s program PX [36]. PX,
which stands for proof extraction, permits one to construct a formal proof, and
then automatically extract an algorithm from it, by realizability. The algorithm
comes out in LISP and can be executed. To make the algorithms come out in
LISP, Hayashi modified Feferman’s theories so that they are based directly on
LISP, rather than on A-calculus. The main example given in [36] is a decision
procedure for propositional calculus.

In Sendai, Japan, M. Sato has developed a system called RP'T [56], which is
based on Aczel’s idea of Frege structures, or more precisely on a formal theory of
Frege structures similar to that set out in the last chapter of [4]. The advantage
of this approach is that proofs are “first class objects” which can be directly
manipulated within the theory. With the help of Kameyama, RPT has been
implemented on the computer, and Kameyama has used the implementation to
check a proof of the Church-Rosser theorem for RPT’s reduction rules.

ICOT developed a theorem-prover MGTP, and associated with it a proof-
extractor Papyrus. In September, 1991, I saw a demonstration in which MGTP
checked a constructive proof of the Chinese remainder theorem, and Papyrus
extracted an executable algorithm from the proof.

Rod Burstall and Randy Pollack have built a proof-checker they call Lego,
at Edinburgh. In Lego, they have defined real numbers via Cauchy sequences,
and they have proved that metric spaces have a completion, thus making a good
start on the computerization of the first chapters of Bishop’s book.

Isabelle [51] is a program which allows its user to specify a type theory, and
then to check proofs in it.



Dale Miller [49] has designed a programming language called A-Prolog, which
is based on intuitionistic type theory. Just as Prolog works with the Horn frag-
ment of first-order logic, A-Prolog works with the Horn fragment (actually a
somewhat more general fragment) of higher-order logic. The key to this en-
terprise is the use of Huet’s A-unification algorithm [39] in place of Robinson’s
first-order unification. A-Prolog has been used by Amy Felty [29] as a means of
implementing theorem-provers and proof-checkers for other constructive logics.

6 Computer Algebra as Constructive Mathemat-
ics

Since about 1970, the subject of Computer Algebra, which includes computer
calculus, has grown by leaps and bounds. One wishing an introduction to the
subject should begin with [42] and [19]. The project being undertaken is nothing
less than the constructivization of algebra. Algorithms were provided for the
fundamental operations such as polynomial greatest common divisor, factoring
polynomials, and integrating elementary functions. Algorithms for dealing with
algebraic numbers have also been studied. Berlekamp’s factoring algorithm for
polynomials introduced the use of p-adic methods based on Hensel’s lemma,
which were soon applied to other algebraic problems, for example fast polyno-
mial ged computations.

The simplification of expressions involving radicals led to difficult problems,
which were solved recently (in theory at least) by S. Landau [47]. Landau’s
methods have have not yet been implemented, so it is still easy to find expres-
sions with radicals that are not properly simplified by popular symbolic compu-
tation programs. Similarly, the implementation of the Risch integration algo-
rithm led to difficult algebraic questions. I believe the full Risch algorithm has
been implemented for the first time in Mathematica version 2.0. The Grébner
basis algorithm discovered by Buchberger [12], [13] has been fundamental for
dealing with polynomials of several variables. Under the direction of Buch-
berger, the group at RISC-Linz has been studying other algorithms for solving
several polynomial equations as well, notably the method of characteristic sets
and the method of polynomial remainder sequences.

It is interesting and important to compare the concerns of the computer
algebraists with those of the followers of Bishop. There is a great deal of over-
lap: both want theorems to have computational meaning. But the focus of
the computer algebraists is on the algorithms themselves. The Bishop school’s
focus is on the theorems and proofs. The algorithms are left implicit in the
proofs. The Bishop school is not concerned with the efficiency of the algo-
rithms. Kronecker’s factorization algorithm for polynomials is good enough for
them, because it shows that in principle polynomials can be factored. At about
the same time as Davenport’s book on computer algebra appeared, Richman,

10



Ray, and Mines published a Bishop-style treatment of algebra. The main ef-
forts of this book are to deal with the dependence of the algebraic structure
on parameters; there are many counterexamples of the form R(a), where a is a
number (parameter) which may or may not have zero imaginary part; if it does,
the field is C, if not it is R. Computer algebra, so far, deals only with specific
(concrete) algebraic structures; in that respect it is not yet “modern algebra”.
Richman, Ray, and Mines, on the other hand, face and solve the difficulties
of a constructive formulation of modern algebra, but without concern for the
implementability or usability of the algorithms.

The computer algebra systems, such as Mathematica, Maple, and MAC-
SYMA, are so far calculators only, rather than implementations of coherent
formal systems for mathematics. Indeed, it is easy to derive contradictions in
these systems. For example, in MACSYMA, if we set ¢« = 0, and then divide
both sides of the equation by a, using the command %/a, we will get 1 = 0,
because MACSYMA thinks a/a = 1 and 0/a = 0. Further examples are given
in [5] and [62]. These are not simply “bugs” that could be easily removed. The
underlying difficulty is that symbolic operations often have pre-conditions, or
side conditions, that must be met before they can be applied. Keeping track of
these side conditions requires a full-blown logical apparatus. In essence each line
of computation is the succedent of a Gentzen sequent, and the antecedent lists
the conditions or assumptions on which it depends. Present-day symbolic com-
putation systems track only the succedent, leaving the logic and the judgement
of the correctness of the result to the user.

The next step is the construction of computerized systems incorporating
serious mathematical algorithms, like MACSYMA, but built on a solid logical
foundation, like Nuprl. This is one of the tasks of the next decade. I have
made a start in this direction by building a system adequate for instruction
in algebra, trigonometry, and calculus [5], [6], [7]. It is limited in both its
logical and computational features to what is required in those courses, but
still, in integrating computational and logical features, it goes beyond any other
system.

7 Spread of influence of computational view-
point in mathematics

Everywhere today one can see the influence of the computer on mathematics.
From the computer-assisted proof of the four-color theorem, to the ubiquituous
graphic images of fractals, one can see that the feeling is becoming more and
more widespread that a problem isn’t solved until you can compute the answer.
The shift in philosophy that Bishop hoped his book would bring about, is oc-
curring today due to the influence of the computer. The proceedings of the
Computers and Mathematics conferences show that the computer is being used
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in all branches of mathematics. There is, for example, a program SnapPea that
is used by topologists to help them understand 3-manifolds. Some mathemati-
cians are turning their attention to issues of constructivity and computability.
For example, Smale, Blum and Shub have worked on definitions of computabil-
ity of real and complex functions [59], and Smale has also taken up complexity
issues in linear programming [60], and the speed and domain of convergence of
Newton’s method [61]. Many, perhaps most, mathematics departments have at
least one person conversant with some computer algebra system. Perhaps it is
safe to say that nobody today publishes an existence theorem without at least
thinking about how to compute the solution.

We still have a long way to go, though. I asked quite a few mathematicians,
including a couple of algebraic geometers, for a good algorithm to graph a
polynomial relation f(z,y) = 0 over a specified plane rectangle. Apparently the
accumulated knowledge of the centuries does not offer us one bit of help with
this problem.%

8 Constructivity and the Sciences

A recurrent question is the relationship of constructivity to science, or philoso-
phy of science. I put forward the view that the interesting questions in this area
have thus far not been answered. For example, one of the most fundamental
questions was first formulated by Kreisel more than thirty years ago. Given the
initial positions z and velocities v of three Newtonian bodies of unit mass (say
spheres of radius 1, or idealized point particles if you prefer; and for simplicity
suppose the initial conditions to be given by rational numbers). Define f(z,v)
to be 1 if the bodies eventually collide, and 0 if not, when the system evolves
under the laws of Newtonian gravity and mechanics. Is f computable?

Pour-El and Richards [53] have shown that the wave equation has non-
computable solutions for some computable initial data. This result depends on
the fact that the wave equation converts wiggles in the initial data’s derivative
to wiggles in the function itself at a later time. To get noncomputable data
at time 1, you must start with noncomputable derivatives at time 0. (See [4],
pp- 80-81 for details; see also Kreisel’s review of Pour-El and Richards in [45].
Those who would attach philosophical signifance to the results must then argue
that computable data with non-computable derivatives are physically realizable,
but non-computable data are not physically realizable. Contemplation of the
issues raised by this question, particularly the question of what it means for a
function to be physically realizable, leads on the one hand to the philosophical
morass of discreteness versus continuity, and on the other hand to the mysteries
of quantum mechanics and measurement.

6The difficulty is that we do not know how many connected components the graph will
have. Although we can find a zero and trace out the curve containing that zero, how do we
know whether or when we have found all the connected components?
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There does seem to be an open technical question in this area: do the
Maxwell equations behave similarly to the wave equation in this respect?

In the foundations of quantum mechanics, there is a formal theory of oper-
ators on Hilbert spaces. Some of the fundamental theorems of this theory are
non-constructive on the face of the matter, although they do have constructive
versions. Again, it is difficult to decide the philosophical significance of these
observations.

9 A Philosophical Thesis

The mathematician Truesdell predicted that the computer will influence math-
ematics as much as the telescope influenced astronomy or the microscope influ-
ence biology. I believe that the philosophy of constructive mathematics must
also respond. A philosophy resting on the concept of computational mean-
ing cannot ignore the changes in our ability to perform computations. If these
changes were not so dramatic, one could argue that the concept of computational
meaning is not affected by them. But the changes in our ability to compute have
been dramatic, so much so that our concepts about computation have also been
affected.

Brouwer, Heyting, and Bishop were united in their feeling that the efficiency
of computation wasn’t the point. What mattered was whether a solution could
be computed in principle. That may have been an appropriate viewpoint, when
we were limited to pencil-and-paper computations. Now that we have com-
puters, it has to be rethought. It does matter, when we want to prove that
polynomials can be factored, whether we take Kronecker’s proof with its un-
usably inefficient algorithm, or Berlekamp’s proof that actually enables us to
factor polynomials of interest. Now, one may say that this is a matter of prac-
tical, but not philosophical, interest. But I will make the matter of efficiency
into a philosophical point. I put forward the following thesis:

Constructivity is an attribute of proofs, like elegance or beauty, that can be
possessed in greater or lesser degree—it is mot an all-or-nothing quantity like
correctness.

For example, Berlekamp’s proof is more constructive than Kronecker’s, because
the algorithm involved is more efficient. Even between two proofs, neither one
of which is constructive in the traditional sense, one may be able to say that
one is “more constructive” than the other. For example, Konig’'s lemma for
binary trees is more constructive than Zermelo’s proof that the reals can be
well-ordered.

In more technical terms, one can classify proofs according to the complexity
of the algorithms which implicit in the proofs. (Various technical notions such
as realizability could be used to make this precise.) Traditionally, constructivity
has drawn the line at Turing computability, considering everything on one side
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constructive and everything on the other side beyond the pale. Until the advent
of the computer, only a handful of specialists cared about this distinction. Now,
practicing mathematicians are interested, but they are drawing the line lower:
they are interested in proofs that can be programmed and run.

Feferman has long proposed a technical study on these lines: one should go
through Bishop’s book and see how much of it can be done “feasibly”, e.g. with
polynomial-time algorithms. Steps in this direction were already taken by Ko
and Friedman [43], [30], [44]. There is still more work to be done.

I will now make a direct argument for the thesis. “Constructivity” as used
in the title of this paper refers to this: when one has solved a problem con-
structively, one can exhibit the solution; or if it depends on some data, one
can show how to compute the solution from the data. The traditional notion
of constructivity arose by identifying computability with Turing computability.
But everybody who has played with computers knows this is unrealistic; many
Turing computable functions can’t actually be run. Morever, we are able to un-
derstand notions of relative computability, ordinal computability, etc., that go
beyond Turing computability. Once we admit that these distinctions are possi-
ble and meaningful, the general principle that meaningful distinctions should be
made implies that the notion of constructivity must fragment into many related
notions.

Support for the above philosophical thesis can be drawn indirectly from
technical research in proof theory conducted over the last forty years. Proof-
theorists have constructed a hierarchy of formal systems, corresponding more
or less to increasing non-constructivity. In the sixties Feferman [20], [21] formu-
lated systems corresponding to the philosophical idea of predicativity, in which
(roughly speaking) sets defined using quantifiers over power sets not considered
legitimate. The main results of Feferman’s research imply that this restric-
tion on set definition principles translates to a restriction on the complexity of
functions definable; that is, if you can solve a problem predicatively, you can
“exhibit” the solution as a function of the data, where the function is defined
by ordinal recursion up to a certain ordinal I'g. This program of research quite
possibly inspired Friedman to develop his idea of “reverse mathematics”, which
was further developed by Simpson. (See [57], or, when it becomes available,
[58]). In reverse mathematics, basic theorems such as Bolzano-Weierstrass are
shown to be equivalent to axiom schemata considered in proof theory. Thus
mathematics as a whole is classified into strata according to the degree of con-
structivity involved. In the last decade, these ideas have been extended in the
other direction, to create a sub-constructive hierarchy of subtheories of Heyting’s
arithmetic. These theories have been defined and studied by Buss and Takeuchi,
and shown to have natural connections with the hierarchies of functions con-
sidered in complexity theory. Thus Heyting’s arithmetic HA, and with it the
traditional notion of constructivity, is just one point on a spectrum. Of course,
one may take the view that the other points have only technical significance;
but the view advanced here is rather the opposite, that while HA is certainly an
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interesting point on this spectrum, the others also have philosophical meaning.

10  Postscript

At the moment, there is too little communication between the different groups
discussed in this paper. The computer algebraists have not read Bishop. The
Bishop followers have not read Davenport. Neither one knows much about
Nuprl. Systems like Nuprl do not incorporate algorithms from computer alge-
bra, which would greatly increase their power to formalize real mathematics.
Computer algebra systems work entirely without any logical formalism, which
means that they are subject to error, as they can’t check the preconditions of
algebraic operations. If this paper helps some of these people to get interested
in what some of the others are doing, I will have achieved my aim in writing it.
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