Supplement to Lambda Logic

MIcHAEL BEESON *

San José State University, San Jose, CA, USA

Abstract
This document contains some explanations and proofs that had to be

omitted from (4) to meet the length limitation. It is meant to be read
only as a supplement to (4).

KEYWORDS: automated deduction, computer proofs, unification, second
order, Otter

1. Predicate Abstraction

Should we allow the formation of new predicates by A-abstraction, such as
Ay. P(z,y)? This is used in Otter2 (5). It is, however, not necessary to build
this into the syntax of lambda logic. Indeed, omitting it offers greater flexibility:
we can then selectively allow predicate abstraction over certain predicates, while
not allowing it over others. To allow predicate abstraction over P, include a func-
tion symbol yp and an axiom expressing that yp is the characteristic function
of P.

5. Proof of Theorem 5.3

We repeat the statement of the theorem and then give a complete proof; (4)
gives only a sketch.

THEOREM 5.3 (AXIOMATIZATION OF FIRST-ORDER THEOREMS): Let T' be a
first order theory, and let A be a first order sentence. Then T proves A in
lambda logic if and only if for some positive integer n, T plus “there exist n
distinct things” proves A in first order logic.

Proof. First suppose A is provable from 7' plus “there exist n distinct things”.
We show A is provable in lambda logic, by induction on the length of the proof
of A. Since lambda logic includes first order logic, the induction step is rivial.

*Research supported by NSF grant number CCR-0204362.



Lambda Logic

For the basis case we must show that lambda logic proves “there exist n distinct
things” for each positive integer n. The classical constructions of numerals in
lambda calculus produce infinitely many distinct things. However, it must be
checked that their distinctness is provable in lambda logic. Defining numerals
as on p. 130 of (1) we verify by induction on n that for all m < n, [m] # [n]
is provable in lambda logic. If m < n 4 1 then either m = n, in which case we
are done by the induction hypothesis, or m = n. So what has to be proved is
that for each n, lambda logic proves [n]| # [n+ 1]. This in turn is verifiable by
induction on n.

Conversely, suppose that A is not provable in T plus “there exist n distinct
things” for any n. Then by the completeness theorem for first order logic, there
is an infinite model M of —A; indeed we may assume that M has infinitely
many elements not denoted by closed terms of 7. We will show that M can
be expanded to a lambda model M satisfying the same first order formulas, by
defining arbitrarily the required operation A* on M-terms, and then inductively
defining relations F(z,y) and Apys to serve as the interpretations of equality
and Ap in M.

To do this we define the relation Apy; and a binary relation £ on M by simul-
taneous induction. Apy; will serve as the interpretation of Ap and E will serve as
the interpretation of equality.” Since M is infinite we can define an element 0 and
a pairing function (a, b) on M in such a way that the interpretations of the losed
terms of T" are never pairs, and 0 is not a pair. Define < a,b,c >=< a,< b,¢c >>,
etc. Define the successor of = to be s(z) =< 0,z >, and define the “numeral” m
inductively by 0 = 0 and m + 1 = s(/m). Henceforth we drop the bars, writing
for example (1,k) instead of (1,k). An element of the form < 1,7,k > will be
used as an “index” of the k-th function symbol of arity j in T, which we denote

by fi.
Tuples are defined from pairs by (z1,...,Zp1) = ((x1,...,%n), Tpy1). The
members of a tuple (z1,...,z, are the x; for : = 1,...,n. When y and w are two

tuples of length at least m we write E,,(y, w) for the conjunction of the formulas
E(y;, w;) for 1 < m.

To produce a A-model we must define an operation A*, which takes a variable
and an M-term. An M-term (as explained in (1), p. 86 ff.), is a term with
“parameters from M”; more precisely, a closed term in a language containing a
constant ¢, for each element a of M. A convenient notation for M-terms is ¢[y],
where y is a tuple of elements of M whose length is the number of free variables
of ¢t. This means the following: if x4, ..., x, are the free variables of ¢, in order
of their occurrence, then t[y] is t[x; := ¢,,]. We also need the following notation:
t[y, ] where x is a variable, and y is a tuple of elements of M whose length is the
number of free variables of ¢ different from x, means the following: if x4, ..., x,

TIf one insists on interpreting equality as identity instead of by an equivalence relation, one
may use the equivalence classes of E as the elements of the model.



M. J. Beeson

are the free variables of ¢ different from z, in order of their occurrence, then t[y]
is t[x; := ¢,,]. Note that x may or may not occur free in ¢.
The operation A* is given by

Nz, tly, 2]) =< 2,5, 1ty >

where y is a tuple whose length is the number of free variables of Az.t, and =
is the j-th variable, and ¢! is the (numeral for the) Gédel number of the closed
term t. The definitions of Ap, F, and the interpretation t[y]as of each M-term
t[y] are given in one simultaneous inductive definition. The inductive conditions
are as follows. In (iii) and (iv), m is the number of free variables of t.

() B(r,y) itz =y,

(i) B (2, 1y, 2]), X(2, = 2][]).

(if) Apar(\ (2, Hy, 2]), rar) = tz 1= 7][g]ar

(iv) B (z, tly, 1), A"z, s[w, a]) i E(t[e := allylas, slo == a][war), and B (y, w)
where a is a the first constant not occurring in ¢ or s.

(v) E(App(a,b), Apy(c,d)) if E(a,c) and E(b,d).

(vi) Ap(a,b)nm = Apa(an, bar).

(vii) E(f(tly])a, f(s[w])ar) if E(t[y]ar, slw]ar), and similarly for several vari-
ables z.

(viti) (Az- tly, 2])ar = X (g, 2]).

(ix) f(z)m = fu(xar) and similarly for several variables .

(x) (¢q)m = a where ¢, is the constant for a.

(xi) E(a,c) if E(a,b) and E(b,c).

Since F and Ap occur only positively in these clauses, this is a legitimate
inductive definition. We interpret equality in M as the relation E. For each
predicate P of arity n in the language of T', we define a relation P on M by

~

P($17"'7$n) =M |: P(y1>>yn)AEn($>y)

and we define M |= P(zy,...,2,) if and only if P(x1,. .., x,).

We start with the following lemma: if E(r, q) then E(t[x := r],t[z := ¢]) for
terms t, ¢, and r. This is proved by induction on the complexity of the M-term
t. When t begins with A or Ap, the corresponding induction step follows from
(iv) and (v). When t begins with a function symbol f, we use (vii). When ¢t is
atomic, either it is a constant ¢, for an element a = y; of M, in which case there
is nothing to prove, or else it is a variable, in which case we have to prove that
E(r,q) from the assumption E(r,q), which is immediate.

We next verify the substitutivity of equality, namely: if E(r,s) and M |=
Alz := r] then M = Alz := s], where A is a formula of lambda logic with
constants for elements of M. We prove this by induction on the complexity of A.
Since substitution for free variables commutes with the logical connectives and
quantifiers, only the case of atomic A needs a proof. If A is an equality ¢ = ¢,
then Alx :=r]is tfr :=r] = q[zv :=r| and Alx := s] is t[z := s] = ¢[z := s]. By



Lambda Logic

the lemma we have t[z := r] = t[x := s] in M, and ¢[z := 7] = ¢[r := s]. Assume
M = A[z :=r]. Then by (xi) we have M = t[z := s] = g[z := s]. The remaining
case is when A is an atomic formula P(z) (x can be several variables.) This is
taken care of by the definition of P above.

Because of (ii) and (iii), axioms («) and ([3) are satisfied. Now to verify axioms
(€). Let t[y] be an M-term, i.e. a term with constants for elements y of M
substituted for its free variables. Suppose M |= Va(t[y]z = s[y]z). Then let ¢ be
the first constant not occurring in t or s; we have M = t[z := ¢] = s[z := .
Then by (iv), we have M = Az. t[y] = Az. s[y]. Hence (£) holds in M.

We have now proved that M is a model of lambda logic. We still must prove
it satisfies the theory 7' in first order logic. This follows from the following
lemma: For each M-formula A(zy,...,z,) with n parameters from M, we have
M |= A(z) if and only if there exists y with E,(z,y) and M = A(y). To prove
the lemma: The case when A is an atomic formula P(x) is true by definition of
P. The case of an atomic formula ¢ = q follows from what has been proved above.
The proof is completed by induction on the complexity of A; the quantifiers do
not offer any difficulty since the carrier sets of M and M are the same. That
completes the proof of the theorem.

9. Lambda Completeness for LPT

Completeness of first-order LPT was proved in (3), by reduction of LPT to ordi-
nary first order logic. Incidentally, completeness was also proved for intuitionistic
LPT, which does not concern us here.

Here we provide the proof of theorem 9.1 of (4).

THEOREM 9.1 (LAMBDA COMPLETENESS THEOREM FOR LPT): Let T' be a
consistent theory in partial lambda logic. Then T has a partial lambda model.

Proof. Again we imitate the Henkin proof of completeness for first order logic. If
T does not contain infinitely many constant symbols, we begin by adding them;
this does not destroy the consistency of 1" since in any proof of contradiction,
we could replace the new constants by variables not occurring elswhere in the
proof. We construct the “canonical structure” M for a theory 7. The elements
of M are equivalence classes of closed terms of 7" under the equivalence relation
of provable equality: t ~ r iff T+t = r. But now, we take only those closed
terms t for which T proves t |; that ensures the validity of the axiom x = z, and
of the axioms x | for variables x and of the axioms ¢ | for constants c. Let [t] be
the equivalence class of t. We define the interpretations of constants, function
symbols, and predicate symbols in M as follows:

Moo= [
fM([t1]>"'>[tn]) = [f(t1>"'>tn)]
PM([t1],...,[ta)] = [P(t1,...,tn)]



M. J. Beeson

In this definition, the right sides depend only on the equivalence classes [t;] (as
shown in (6), p. 44). The atomic formula ¢ | is satisfied in M if and only if
T proves t |. It follows by induction on the complexity of the closed first-order
term ¢ that if T proves t | then the interpretation t of ¢ in M is the equivalence
class [t] of t. The strictness axiom for first order function symbols is used in the
induction step, so this does not apply to terms containing Ap unless we have
strictness for Ap.

Exactly as in (6) one then verifies that M is a first order model of 7" in the sense
of LPT. Thus the completeness theorem for first order LPT (with strictness) is
proved (again).

To turn M into a A-model, we must define A*(x, t), where ¢ is an M-term, i.e. a
closed term with parameters from M. The “parameters from M” are constants
ciq), where [q] is the equivalence class of a closed term ¢ of T'. If [t] is the
equivalence class of an M-term t, let [t]° be a closed term of T" obtained from ¢
by replacing each constant cjq] by some closed term ¢ in the equivalence class [g].
Which closed term we select does not affect the equivalence class [¢]°. In other
words, [t]° is a well-defined operation on equivalence classes.

We define A*(z,t) = [A\z.[t]°]. Because of the axiom Az.t |, A*(z,t) is in-
deed defined for M-terms t. We must show that the value depends only on the
equivalence class [t]. Suppose T proves t = s. Then by axiom (i), T' proves
Az. [t] = Az. [s].

We verify that the axioms of partial lambda logic hold in M. First, the beta
axiom: Ap(Az.t,r) = t[x := r|. It suffices to consider the case when ¢ has only
x free. Suppose that the left hand side is defined in M. Its interpretation is the
equivalence class of Ap(Azx.t,r). By axiom (3), the right side is provably equal to
the left side, so it is defined in M, and its interpretation is the class of t[x :=7r].
On the other hand if the right hand side is defined in M, then it is provably
equal to the left side and so both are defined and equal in M. This verifies axiom
(8)-

Now for axiom (§). Suppose t and s are closed terms defined in M, and
Ap(t,z) = Ap(s,z) is valid in M. Then for each closed term r such that T
proves r |, we have tr provably equal to sr. Since T contains infinitely many
constant symbols, we can select a constant ¢ that does not occur in t or s, so
tc = scis provable. Replacing the constant ¢ by a variable in the proof, tx = sz is
provable. Hence by axiom (§), Ax.t = Ax. s is probable, and hence that equation
holds in M. In verifying axiom (§), it suffices to consider the case when s and t
are closed terms. The axiom («) holds in M since it simply asserts the equality
of pairs of provably equal terms. The axiom T # F' holds since T" does not prove
T =F, because T is consistent. That completes the proof.

References

1. Barendregt, H., The Lambda Calculus: Its Syntax and Semantics, Studies in
Logic and the Foundations of Mathematics 103, Elsevier Science Ltd. Revised



Lambda Logic
edition (October 1984).

. Beeson, M., Foundations of Constructive Mathematics, Springer-Verlag,
Berlin Heidelberg New York (1985).

. Beeson, M., Proving programs and programming proofs, in: Barcan, Mar-
cus, Dorn, and Weingartner (eds.), Logic, Methodology, and Philosophy of
Science VII, proceedings of the International Congress, Salzburg, 1983, pp.
51-81, North-Holland, Amsterdam (1986).

. Beeson, M., Lambda Logic, submitted to IJCAR2004
. Beeson, M., Otter Two System Description, submitted to IJCAR 2004.

. Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading, Mass.
(1967).



