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Abstract

As part of a project on automatic generation of proofs involving both
logic and computation, we have automatically generated a proof of the ir-
rationality of e. The proof involves inequalities, bounds on infinite series,
type distinctions (between real numbers and natural numbers), a subproof
by mathematical induction, and significant mathematical steps, includ-
ing correct simplification of expressions involving factorials and summing
an infinite geometrical series. Metavariables are instantiated by inference
rules embodying mathematical knowledge, rather than only by unifica-
tion. The proof is generated completely automatically, without any inter-
active component.

1. Introduction

The irrationality of e can be stated as ¢ > 0 — |p/q — ¢| > 0, where p and
g are variables over natural numbers. This theorem was first proved by Euler
in 1737. It has now been proved by a machine (or perhaps I should say, by a
program). To prove this theorem automatically, the program must start with
a slightly different form of the goal: ¢ > 0 — 3C(|p/q —¢| > C/q! > 0).
Without the existential variable C, the program cannot get started. Without
the denominator ¢! it also cannot succeed. But given this form of the theorem, it
does proceed completely automatically to find a proof. (The denominator ¢! gives
it the “hint” to multipy by ¢!.) The proof it finds is similar to the usual proof (see
for example (13), Chapter I) but employs a slightly different estimate to bound
a certain infinite series. A certain inequality involving factorials is needed in the
course of the proof; the program finds a proof of this inequality by mathematical
induction. The inductive proof requires some not-quite-straightforward algebraic
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manipulations to make use of the induction hypothesis; the program also finds
these steps automatically. The heart of the proof involves expressing a certain
quantity (in this case expressed by an infinite series) as a sum of two parts, one
of which is an an integer and the other of which can be shown to be between 0
and 1. It follows that the quantity is not zero, and indeed can be estimated from
below. This principle is a variation on the basic principle that an integer known
to be positive must be at least 1.

The instantiation that the program finds for the variable C involves the denom-
inator ¢. A human mathematician can “refine the estimates” to find a constant
B independent of p and ¢ (B = 1/2 will do) such that |p/q —¢e| > B/(q+ 1)!.
This is beyond the present capacity of the program. (It also is not presented in
books that present the proof of the irrationality of e.)

This paper explains the rules of inference used by the prover, and then ex-
plain how the prover constructs this particular proof. An appendix contains the
actual printout of the proof as produced by the program. The reader wishing
more information about the program can consult (1), where the first results with
this theorem-proving program are described. Those results were automatically-
generated epsilon-delta proofs of continuity of specific functions. It was because
of the application to epsilon-delta proofs that the program was named Weier-
strass, after one of the pioneers of the epsilon-delta method. However, the name
seems less appropriate now, as an expanded version of the prover demonstrates
its capabilities in number theory as well as analysis.

2. Context of this Research

Mathematics consists of logic and computation, interwoven in tapestries of proofs.
“Logic” is represented by the manipulation of phrases (or symbols) such as for
all x, there exists an x, implies, etc. “Computation” refers to chains of formulas
progressing towards an “answer”, such as one makes when evaluating an integral
or solving an equation. Typically computational steps move “forwards” (from the
known facts further facts are derived) and logical steps move “backwards” (from
the goal towards the hypothesis, as in it would suffice to prove. The mixture
of logic and computation gives mathematics a rich structure that has not yet
been captured, either in the formal systems of logic, or in computer programs.
The computer program that produced the proof reported on here demonstrates
an approach to this problem. The general features of this approach have been
described in (1). The research involves two computer programs, Mathpert and
Weierstrass. The former has been reported on elsewhere in detail (3; 4; 5): it con-
tains implementations of over two thousand mathematical operations, together
with logical apparatus to keep track of assumptions that may be required or
generated by those operations. Mathpert (as in “Math Expert”) uses these oper-
ations to provide a computerized environment for learning algebra, trigonometry,
and calculus.

The second program, Weierstrass, is built upon a simple backwards-Gentzen
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theorem prover, described in (6) (but re-implemented in C). To this logical back-
bone has been added a set of control structures, or if you like, implementations
of special inference rules, to facilitate the proper control of logical and compu-
tational steps. These control structures operate at the top level of Weierstrass,
but the computational steps themselves can use, in principle, anything that has
been implemented in Mathpert, which is all of high-school algebra, trigonometry,
and one-variable calculus including limits, differentiation, and (textbook-style)
integration, as well as a good many techniques for rewriting inequalities, and a
few advanced algorithms, such as the Coste-Roy algorithm (9), based on Sturm’s
theorem, for determining whether polynomials have roots in given intervals. The
implementations of these operations in Mathpert are logically correct, so that
they can be used in Weterstrass without the risk of inconsistency that would
accompany the similar use of Mathematica, Maple, or Macsyma.? Simplification
in Mathpert interacts with the list of current assumptions; assumptions can be
used in simplification, and simplification can generate new assumptions. A more
detailed description of Weierstrass can be found in (1).

The driving idea of this research program is that finding mathematical proofs
requires expert knowledge of hundreds of special inference rules. An inference rule
typically encapsulates knowledge of how to prove theorems of a certain form or in
a certain context. For example, in (1) we gave special inference rules that are used
for bounding given quantities in terms of other quantities. These rules enabled
Weierstrass to automatically generate epsilon-delta proofs of the continuity of
certain specific functions, but they are not special-purpose rules—bounding or
“estimating” expressions is a fundamental activity in analysis. Now, in this paper
we offer further evidence for this view of the nature of mathematics: we add to
Weierstrass a few simple inference rules concerning estimates for infinite series,
and the principle that a positive quantity which is an integer must be at least
one. The underlying logic already possessed the ability to distinguish variables
of type integer and real. We also add mathematical induction and another new
inference rule to aid in controlling the transitivity law for inequalities. These
few inference rules, together with the elementary mathematics available from
Mathpert, enable the general logical mechanism of Weierstrass to find a proof
of the irrationality of e, which is a non-trivial theorem, usually presented in an
upper-division number theory course.

There are at present some fifteen mathematical inference rules in Wezerstrass,
in addition to the logical (Gentzen) rules and mathematical induction. It is note-
worthy that all mathematical knowledge needed for the proof of the irrationality
of ¢ is embedded in these rules and in the simplification laws implemented in
Mathpert. That is, the input file for this proof contains only the goal; no axioms
special to this proof need to be provided. This strategy of embodying math-

"To assert that the implementations are logically correct is not to say that this logical
correctness has been proved. What we mean is simply that any failure of logical correctness
would be a programming error, which could be fixed without altering the program design.
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ematical knowledge in inference rules is the key to our success: the inference
rules can use mathematical knowledge to instantiate metavariables, rather than
relying on unification. Unification (even the more sophisticated versions of it) is
a very primitive way to instantiate a metavariable. It is hopelessly inadequate
for dealing with inequalities: try proving 3z(0 < z < 1) by a unification-based
algorithm.

Related work includes Analytica (8), which is a theorem-prover linked to
the computational facilities of Mathematica, but deals only with quantifier-free
proofs. This means also metavariable-free proofs; even though most of the work
on the irrationality of ¢ is quantifier-free, the use of metavariables and control
mechanisms for instantiating them is crucial, so it will not be possible to repro-
duce this work in Analytica. The prover Nqthm (7) has proved some impressive
theorems of number theory, including the law of quadratic reciprocity, but like
Analytica, works best with free-variable proofs, and in particular, lacks the rules
of inference introduced here, so it cannot prove the irrationality of €.}

Some work on the verification in HOL of proofs involving computation is
presented in (11), but this does not involve proof generation. Otter (12) can do
some kinds of computation using rewrite rules and AC unification, but these are
nowhere near adequate for the kinds of simplification needed in this proof. The
strength of Otter lies in its proof-search capabilities. The rules of inference used
here are sophisticated enough that there is almost no searching involved in the
proof. Each step is either simplification (forward reasoning) or is an inference
step dictated by the form of the goal, which turns out to succeed.

A scheme for regarding computation as defining an equivalence relation on
formulas and defining deduction on the equivalence classes is set forth in (10).
The prover discussed in this paper does not fit into this framework, since com-
putations can both use the assumptions and generate new ones.

3. Nature of the Proofs Produced by Weierstrass

To avoid confusion, some discussion of nature and purpose of the proofs gen-
erated by Weierstrass is necessary. Weierstrass produces (internally) a proof-
object, which can be displayed or saved in more than one form. The intention
is to produce a proof that can be read and checked for correctness by a human
mathematician; the standard to be met is “peer review”, just as for journal pub-
lication. The proof object produced does not represent a completely formal proof
in a specified formal system of the type traditionally studied by logicians. It fails
to meet this standard because some of the steps are calculations carried out by
algorithms, for example, factoring polynomials or “simplifying”. One could, of
course, easily specify a formal system allowing such steps, and this is in essence
what the code for Weierstrass does. But the steps labeled “simplify” are hard to

TPresumably one could add these rules to Nqthm. We are not speaking here of some limi-
tation on all possible extensions of Nqthm.
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translate into traditional logical systems, because what seems to a human math-
ematician a very simple “simplification” can be hard to prove in a traditional
logical system. This is part of the reason that no previous computer program
has produced such proofs: most such programs insist on producing formal proofs.
If a machine to produce humanly-readable proofs, simplification steps must be
allowed. Then one has three choices: (1) Settle for computer-generated proofs
whose correctness is judged by human beings, as in Weierstrass. (2) Supply, once
and for all, a formal proof of the result of each of the (1800 or so) possible sim-
plification steps, e.g. a proof that z%+ 2zy +y* = (r +y)?, and instantiate these
proofs for each simplification actually used. This would turn Weierstrass’ proofs
into formal ones. (3) Demand in addition that all algorithms involved have their
correctness proved within the system. This is a higher standard, which Weier-
strass cannot meet, and would not be met even by (2). Human mathematicians
do not meet standards (2) and (3) either, so it seems reasonable to demand of
a machine intended as a prototype “mathematician’s assistant” that it should
meet the standards required for journal publication, instead of a higher standard.

4. Inference rules used in Wezerstrass

In this section we describe the new rules, and some variations on old rules, that
have been added to Weierstrass since the publication of (1). The discussion will
make it apparent that these rules are general in nature, rather than ad hoc,
and that they embody mathematical ideas and techniques that are intuitive
and can be applied to mathematical arguments in different areas. That is, they
are not special to the example of the irrationality of e. Of course, there are
probably several hundred such rules encapsulating the mathematical knowledge
of a beginning graduate student, and the selection of these particular rules was
motivated by the experiment of seeing what was required for the irrationality of
€.

4.1. Types

Weierstrass accepts typed variables, as in Vz : N(z > 0). It also accepts type
“judgements” such as = : N as atomic formulae. The latter is necessary to
support the “variable type” of Feferman’s applicative theories (which are not
used in the present example), and the former is very useful for eflicient theorem-
proving. The two are connected by means of an inference rule that permits the
inference of n : A (from no premises) when n is a variable of type A. Type
information for the atomic types (in this case, just N, Z, and R) is immediately
accessible in the (implemented) variable itself. Type information for compound
types (such as N — N or the types of Feferman’s theories) is kept in a separate
table.

An important feature of this prover is that simplification is applied to proposi-
tions as well as to mathematical expressions. Propositions expressing type judge-
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ments are no exception. For example, the type expression ¢!/n! : Z (which ex-
presses that ¢!/n! is an integer) reduces to n < g. Another example of a type
expression that occurs in the proof of irrationality of e is p(¢ — 1)! : Z. This will
reduce to true if p: Z and (¢—1)! : Z reduce to true. The former will reduce to
true since p is a variable of type N. The latter will reduce to trueif (¢—1)!: Z
does, but this reduces to 1 < q. However, since the assumptions can also be used
in simplification, if 0 < g is in the assumption list, Weierstrass is able to use the
type information that ¢ is of type Z to reduce 1 < g to true. Thus p(¢—1)! : Z
can be reduced to true by simplification alone. No logical inference is required.
When debugging this proof, this simplification failed at first, because until then,
I had forgotten to put the hypothesis ¢ > 0 in the statement of the theorem.

Reducing type expressions involving series: » ¢ g!/n!is an integer, and this also
can be deduced without inference rules, by simplification alone. To deduce this,
we simplify the expression ¢!/n! : Z; but to simplify this to true, we need the
assumption n < ¢. In previous publications the technique has been described by
which Mathpert makes temporary assumptions while simplifying an expression
such as an indexed sum or definite integral, so that such assumptions are indeed
available when required. This technique is called the “binders” technique, since
it applies when expressions involving variable-binding operators are simplified.

Subtypes (type embedding) are supported by Weierstrass. For example, one
can infer a : Z from a : N. The system of atomic types includes N, Z, R, Q,
and C, although only N, Z, and R are involved in the irrationality of e. More
complicated types, such as function types or comprehension types, are not used
in this example.

4.2, Simplification of factorials and infinite series

Certain simplifications needed in the proof were not provided by calls to Mathpert
code, and new simplification rules were introduced in Weierstrass to meet these
needs. For example, the laws of the factorial function are not considered elemen-
tary enough that Mathpert should use them when a student chooses “simplify”.
[ have in mind here such laws as (n+1)! = (n+ 1)n! and the corresponding “fac-
torial cancellation laws”, such as (n+ 1)!/(n+1) =nland (n+ 1)!/n! = (n+41).
These laws need to be applied to fractions that contain other factors in numer-
ator and denominator, in an arbitrary order (as with many simpler rules used
in Mathpert). But for pedagogical considerations they could just as well have
been included with other more “algebraic” laws. An example of their use is in
verifying the inequality 2n! < (n + 1)!, which simplifies to 2 < n + 1 and then
tol <n.

Another “simplification” needed in the proof is “recognizing” and summing
an infinite geometric series. Again, there are only pedagogical reasons why this
step is not performed by the “simplify” command of Mathpert, and so had to be
added specially to Weierstrass.

On the other hand, it is essential in this example that e be expanded into an
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infinite series. Clearly we do not want to expand e into a series every time we
see e in a problem; it is done only as a last resort when we cannot get anywhere
by other means.

4.3. Lower bounds on infinite series

The only rule of this kind presently implemented in Weierstrass is this: To prove
a series is positive, prove its general term is positive. Specifically, this rule takes
the following form:

c<kI'=0<a

F:>O<§:ak
k=c

There is a similar rule for finite series, and a similar rule for < in place of strict
inequality. Of course one could also formulate a version of the rule in which the
hypothesis requires only that the general term be nonnegative and at least one

term is positive, but this is not required in the example of the irrationality of e.
This rule could have been implemented just as well as a simplification rule
(applying to the inequality in the conclusion) as an inference rule. For that mat-
ter, it could have been included as an axiom and treated as special to this proof;
in that case the logical mechanisms would have handled this type of inference.

4.4. Upper bounds on infinite series

To bound a series from above, use the comparison test to estimate the series from
above by a series whose sum is known. The simplest form of this rule would take
the following form:

(?S k,f‘=>|ak|§§bk

I'= ﬁf:a% S;if:bk
k=c k=c

However, this simple form of the rule would be useless. We want to use this
principle, for example, to prove that ) )~ a, < 1, by finding a suitable com-
parison series whose sum is less than 1. Therefore this rule must be used in
combination with the transitivity of equality. Control of transitivity is a recur-
ring theme in automated deduction, and here is one contribution to it:

c<kT=la <b, T=)> b<d

k=c

I'= ﬁi:a% <d
k=c

This rule is much more interesting, since the question arises as to how, when
trying to apply this rule in reverse, the comparison series by is to be determined.
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There is an even more basic question: how can this rule be properly expressed?
In the first version of the rule, a; and by are just some terms of the language
containing the variable k. In the second form, however, if b is to be determined,
we would appear to need a variable b, and that variable would have to be of
type N — R. The language of Weierstrass would support such a formulation,
but that would leave it to unification to find a series with a known upper bound.
Even if higher-order unification were implemented in Weierstrass it would not be
helpful unless there were a list of axioms giving upper bounds on known series.

Instead, this rule is included specifically for geometric series » ;- bx. A geo-
metric series is constructed with ratio 1/2 and first term b, = a.. In the future,
this can be extended to other types of known-summable series. This seems to
correspond fairly well to our intuitive idea of a mathematician’s “bag of tricks”
for bounding a series from above.

A difficulty arises when we want to prove a strict inequality. Of course the rule
works if we replace < by < in both premise and conclusion; but since in the cases
of interest, we are using a comparison series with the same first term, we will
not be able to establish a strict inequality in the premise. The rule is of course
not correct with < in the conclusion and < in the premise, but it is correct if we
add the additional premise that the second term of the series satisfies a strict
inequality. This form of the rule has been put into the program.

4.5. Controlling transitivity

It is a constant struggle in automated deduction to permit all desired uses of
transitivity (of equality or inequality) while preventing infinite regress or com-
binatorial explosion. Here is another rule along these lines. We call it the “tran-
sitivecancel” rule. (In this rule, Av means A multiplied by v.)

NNMA<B=CC=Av v:N INNA<B=Bv<D

NNA<B=C<D

In the implementation of this rule, unification is not sufficient to find v. In-
stead, algebraic cancellation is applied to C'/A for the various A occurring in
inequalities in the antecedent, until a cancellation is found producing a term
v = O /A which is “obviously” a nonnegative integer (for example, a variable of
type N, or a number, or a product of integers). Without the restriction that v

should be an integer, the rule is of course still valid (if v is nonnegative), but it
led to fruitless lines of attack. As implemented, then, only one new subgoal is
generated, since the first two hypotheses will be verified by simplification.

This rule is very useful in proofs by induction, where A < B is the induction
hypothesis ¢(n), and C' < D is the induction goal ¢(n + 1). If the induction
variable n occurs linearly in an exponent, then C//A may cancel, producing a
quotient without n in the exponent, so Bv < DD may be simple to prove. Such a
situation occurs in the proof of the irrationality of ¢, when proving an estimate
on the terms of an infinite series by induction. A simple example of its use
would be in the proof by induction of 2" < (n + 1)l. Here we try to derive
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2" < (n+ 1) = 2" < (n+ 1+ 1) Cancelling 2" /2" we find v = 2, so the
new goal is 2(n + 1)! < (n + 1+ 1)!. Using factorial simplification as discussed
above this reduces to 2 < (n-+1+ 1), which is easily verified. Indeed Weierstrass
can prove 2" < (n + 1)! by induction in just this way.

4.6. Mathematical induction

The principle of mathematical induction is easily added to almost any theorem-
prover. The delicate issues are the selection of an induction variable and the
decision to try mathematical induction. Weierstrass has rather crude rules for
both of these, but they are sufficient for the estimates needed in the course of the
proof of the irrationality of e. The rule of induction in Weierstrass is as follows:

I'=9¢(), c<n¢m),I'=¢pn+tl)
c<n,['= ¢(n)

where n does not occur in I' or in ¢. That is, the basis case is n = ¢ since ¢ < n

is in the assumption list. Here n is a variable of type N or Z.

This formulation of the rule implies an answer to the “delicate issues” men-
tioned above. Namely, induction on n will not be tried unless there is an inequal-
ity of the form ¢ < n in the assumption list, with n of type N or Z, and in that
case, the first such n will be selected as the induction variable.

The usual formulation without ¢ < n, namely

' = ¢(0) op(n), ' = ¢(n + 1)
I'= ¢(n)

is used in Weierstrass when there is exactly one variable of type N or Z in ¢.

However, this plays no role in the proof of irrationality of e.

4.7. The Zbound rule

The logical, as opposed to mathematical, heart of the proof is the interplay
between the type Z and the type R. The simplest principle connecting these two
types is the principle that if n : Z and 0 < n then 1 < n. That is, there are no

integers between 0 and 1. A more quantitative formulation of this principle is

the following rule, = Z 0<a o< 1Which we call the “Zbound rule”.
min(a, 1 — ) < |m -+ «f

We have omitted to write the antecedent 1" since it is the same in both the
hypotheses and conclusion.

This rule is only useful once the quantity we are trying to bound below has
been written in the form m + « with m : Z. For this purpose there is a special
simplification rule which tries to write its input in that form. In particular, this
rule will break an infinite series into a finite sum and an infinite “tail” if it can be
calculated (by simplification) that the terms up to a certain point are integers.
In the application to the irrationality of e, the series has the form > °  g!/nl,
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so the natural place to break the series is at n = ¢, since for n < ¢, we have
q'/n!: Z.

Of interest for the future are various refinements of this rule. If one wants the
program to be able to “refine the estimates” as mentioned in the introduction,
one may wish to consider rules such as

m: 7 0<A<a a<B<l

min(A, 1 — B) < |m + ¢

Here, in the application of the rule, A and B would usually be new metavari-

ables, with certain variables “forbidden” to their values, so that we would be

searching e.g. for bounds independent of ¢. This rule has been implemented, but
there are difficulties to be overcome before such a rule can be made to work
properly, and no such rule is currently used.

5. Points of interest in the proof of irrationality of e

In this section we go through the proof step-by-step, bringing out the points
about the proof that are of special interest for automated deduction, and showing
how the inference rules given above are used to find the proof.

The starting point is

Vp:NVq:N(¢>0—3C(le—p/q| > C/g' N C > 0).

The logical apparatus strips off the quantifiers and assumes g > 0 (puts it
in the antecedent). The existential variable C' becomes a metavariable which
must eventually be instantiated. Putting the clause C' > 0 last saves us from a
fruitless attempt to prove the inequality with C' = g, since C' > 0 will unify with
the hypothesis ¢ > 0. We then start to verify |e — p/q| > C/q!. Here is where
the “hint” given by the ¢! term is used: the inequality simplifies by clearing the
denominator. The prover is able to deduce the side condition that ¢! > 0 since
this inequality reduces to true. The ¢! is then multiplied into the absolute value
(for reasons discussed below), yielding the goal

lqte — pg!/q| = C.

Factorial simplification is then used to reduce ¢!/q to (¢ — 1)!. This is not as
trivial as it seems, since this simplification requires ¢ > 0, so the assumptions
must be used. Next the prover expands ¢ in an infinite series—but only after trying
everything else! (Since, as discussed above, expanding e in a series should be a
last resort.) The form of this expression, however, is such that nothing else in the
repertoire generates a noticeable false start. (One has to wonder, though, if that
would still be true if Weierstrass contained a couple of hundred widely-varied
mathematical inference rules.) This leads to

[e o]

gty 1/nl = plg =1l > C.

n=0
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Now it is a problem to get the ¢! multiplied into the series, since generally
simplification will pull constants out of series, rather than push them in. This
is therefore not performed by the “simplify” operation of Mathpert. Perhaps it
should be, on the grounds that it is a good idea to multiply constants involving
factorial into series whose general term contains factorial; but at present, it is not
done. The same applies to the step mentioned above, of multiplying the ¢! term
into the absolute value. Both these steps are performed under the direct control of
Weierstrass rather than by Mathpert’s simplification. The general principle here
seems to be that if you cannot get your theorem proved by simplifying as usual,
you probably should expand things that were contracted, multiply in things
that were factored out, etc. At any rate that is what Weierstrass does; there is
no fine-tuning about “multiply factorials into series that contain factorials”. It
is simply, if nothing else works, push constants into absolute values and series
instead of factoring them out. We arrive at

1> ql/nl—plg— 1) > C.
n=0

Now the prover starts to prepare for the eventual use of the Zbound rule, by
breaking the sum into two parts, separating off the initial terms that it can see
are integers:

q [o'e]
1> al/ml+ Y gnt—plg— 1)1 > C.
n=0

n=g+1

Since simplification is able to simplify the type expression that says the finite
sum is of type Z to true, the Zbound rule is now applied, writing this inequality
in the form [m+al > C, wherem = > 77 q!/nl—p(g—1)and a = > q!/nl.
This unifies the metavariable C' with min(a, 1 — «). (Of course, the prover does
not introduce a new letter & and a definition as we do here for convenience and
legibility.) It remains to verify 0 < o and o < 1. 0 < « is easily verified, since
the general term of the series is positive. The hard part is o < 1.

The prover attacks @ < 1 using the comparison test. The proof presented in
(13) does not use a geometric series, but rather the series for e. Weierstrass uses
a geometric series as discussed above. This seems to be an improvement over the
original proof! Namely, using the series for e causes two problems: First, it is
necessary to factor out the first term ¢!/(¢+ 1)! = 1/(¢+ 1), and nothing in the
program will cause that to happen; and it seems that only an ad hoc rule could
force it to happen. Second, and more important, the estimate that comes out is
e/(g+ 1), and it is not even true that this is bounded by 1 for all ¢. Instead, one
has to separately prove e < 3 and introduce a case split, treating the cases ¢ = 1
and g = 2 separately. All this is left implicit in (13), but nothing in Weierstrass
would be able to make this case split. In other words, if we added the series for ¢
to the comparison test inference rule to be tried before the geometric series, and
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also forced it to factor out the first term following (13), it would fail to prove
e/(q+ 1) < 1 and hence fail to find the estimate in (13).

Not to worry: the geometric series estimate does succeed. The geometric com-
parison series with ratio 2 and first term (when n = ¢ + 1) matching that of «
has general term 2-""4"1 /(g + 1). This generates the subgoal

q] 27n+q+1
g+1<n=>L <2
n! qg+1

After simplification this inequality becomes

27 g+ 1) < n!

The prover then proves this by induction. Since the assumption ¢ + 1 < n is
in the antecedent, the induction variable is selected as n, and the basis case is
n = ¢ + 1. The basis case then simplifies to true. The induction step yields to
the “transitivecancel” rule discussed above. Namely, the induction step’s goal is

M g I < (0 1)!

Regarding this as the C' < D in the conclusion of the transitivecancel rule, and
the induction hypothesis as the A < B term in that rule, we have C'/A = v = 2.
The new goal (generated by the transitivecancel rule) is 2n! < (n + 1)!, which
reduces using factorial simplification to 2 < n -+ 1, hence to 1 < n, which follows
immediately from ¢ + 1 < n.

Since we want to use the comparison test to establish a strict inequality, we
must also verify that strict inequality holds in the comparison for at least one
term; Wezerstrass chooses the second term, where n = g+ 2, and the inequality
to be proved is

q! _ 92— (g+2)+g+1
(g +2)! g+1

which simplifies to true, completing the comparison test. Note that factorial
simplication, not just polynomial algebra, is needed here.

This completes the verification of the hypotheses of the Zbound rule. At this
point the metavariable C' is unified with min(a, 1 — «), and the prover moves on
to the last goal, namely 0 < C'. Originally I had added the inference rule

X <A X <B
X < min(A, B)
But this turned out to be superfluous since Mathpert already simplifies X <

min(A, B) to X < AA X < B. Here is another case where the line between
calculation and inference is blurred.

The final interesting point is that we have already verified both of these goals.
Yet originally, there was nothing in Weierstrass to enable it to re-use those
deductions. It would simply repeat them! The general problem here is, how do
we recognize a lemma when we see one? What subproofs should be accorded the
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status of lemmas, and recorded, and referred to when the same goal comes up
again later? For the present, Weierstrass accords that status to the hypotheses
of the Zbound rule, on the grounds that almost always we will be wanting to

prove that the bound produced is positive. The prover keeps a list of lemmas;
it records sequents in this list on command, and the first thing it does when
trying to prove a goal is to compare the goal to the list of lemmas. At present,
only the subgoals generated by the Zbound rule are recorded as lemmas. This

mechanism permits the proof to complete in a few lines after the Zbound rule

inference completes, rather than nearly doubling its length.
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A. Appendix: Verbatim copy of the output

Weierstrass produces an internal proof object, which can be viewed and saved in

either “trace view” or “proof tree view”. There is an option to save the trace view

as a TEX file. Here is the trace-view file, as produced and typeset by Weierstrass:
The goal is

Vp: N,VYq:N,3C, <0<q—>

C
6—]—)‘2—,0<C>
gl — ¢!

Trying
P C
Vq:N,ElC,<0<q—> e——‘z—,0<0>
gl — ¢!
Trying
C
30,<0<qﬁ e—f—"z—,0<0>
gl — g
Trying
min( Y o 1=> q—!> e . 4l
P < k=q+1 kb’ k=q+1 k! . q: q:
0<qg— 6—5‘2 o ,O<m1n<z /.?1_2@

k=q+1 k=q+1

)
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Assuming 0 < ¢
Trying

. fe’s)
DJH1<§:k:q+1 1 E:k q+1kﬂ> i 0 ql>

) q! !
‘Z o ,0<m1n<z E,l—zm
k=qg+1 k=qg+1
Trying
Pl min(ZZO:qH % — D g1 k'>
e—=|=
q q!

Simplifying, it would suffice to prove

Since 0 < ¢!
it would suffice to prove

= q! p
min( Y 8- Y ) <|(e- )l
k=g+1 k=g+1

By the distributive law
it would suffice to prove

! o ¢! ;g
min( 3 1= X 55) < Jea =]
k=qg+1 k=qg+1
Using
pg!
— =plg—1)!
q

it would suffice to prove
min( 3 L 1- 3 LY < legt— pla— 1)
k=q+1 k=q+1

Using the series definition of e
it would suffice to prove

oo oo oo 1

min( 3 f1= 2 ) < |(X e rte- v
k=q+1 k=q+1 k=0

Simplifying, it would suffice to prove

oo ' oo
mm(Z AR Z %) S‘Q‘Z%—p(q—l)!‘

k=q+1 k=q+1 k=0
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Pushing a constant into the infinite series,
it would suffice to prove

mm(i o l- 3 Z—i) é\iq—‘!—p@—l)!

k=q+1 E=q+1 k=0

Since '
q

we can separate the initial integer-valued terms;
it would suffice to prove

m1n< Z k‘" — k"> = ‘Z —plg—1)! ‘

k=g+1 k=q+1 k= q+

Simplifying, it would suffice to prove

fe’e] o0 q
q! q! q!
mm(Z i > )< |pa—nre Y L3 L
k=g+1 k=g+1 k=g+1 k=0
Since

q

—p(q—1)1+zq—!

k!
k=0
is an integer
it suffices to prove
0 < }E: Zﬁ
k=g+1
and -
q!
2{: Zﬁ <1
k=g+1
Trying
0 < }E: Zﬁ
k=g+1
It would suffice to prove the general term is positive.
Trying
ql
Vi, <q+1</<:—>0< /<:'>
Trying

|
q+1<k—>0<%
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Assuming g +1 < k
Trying
q!
0< 7l
Hey, that simplifies to true!
Success
Discharging
Success
Success
Success

Success: that completes the proof of

Recording this result as Lemma 1
Trying

Try comparison with an easier series.
Trying

Yk Z Lo |9 < ab Lyt
SAGERE H‘H‘_(q+1)!<§> )

Trying

q! q! 1\ ka1
1<k ‘_‘< <_>
R T N PR TR

Assuming g +1 < k
Trying

! ! k—g—1
= aimG)
K= (g4 1)1\2

Simplifying, it would suffice to prove

2 g+ 1) < k!

Trying mathematical induction on k
The basis case is when k=g + 1
Hey, that simplifies to true!

That completes the basis case.
Now for the induction step.

17
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Assume the induction hypothesis
2 g+ 1) < k!
We must prove
R g 1) < (k + 1)
Simplifying, it would suffice to prove
g+ ) < (k+ 1)
In view of
250 (g 1 1) =28 T Mg+ 1)12
and the assumption
2 g+ 1) < k!

it would suffice to prove 2k! < (k + 1)!
Hey, that simplifies to true!
Success
That completes the induction step.
Induction completed successfully.
Success
Discharging
Success
Success
Trying

> q 1!1)! G)k“ =1

k=g+1

Summing the geometric series,
it would suffice to prove

4 1 g+l—g-1
(q+1)! <§> <1

1 —
=3

Hey, that simplifies to true!
Success

We must prove strict inequality for at least one term.

We try the term with k = ¢+ 1+1
Trying

‘ q! ‘ q! 1\ g+1+1-g—1
<Gl
(g+1+1)H " (g+1)!\2

18
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Hey, that simplifies to true!
Success of comparison test
Success: that completes the proof of

Recording this result as Lemma 2
Success
Success
Trying

O<min<§: Z—!!,l— i Z—:)

k=g+1 k=g+1

Simplifying, it would suffice to prove

0< Z H’O<1_ Z 7l
k=qg+1 k=qg+1
Trying
0< > o
k=g+1

This has been proved in Lemma 1

Success
Trying
0<1-— Z 7l
k=qg+1

This has been proved in Lemma 2
Success
Success
Success
Discharging
Success
Success
Success
Success. That completes the proof.
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