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In this paper we focused on automatically classifying 
product reviews as either helpful or unhelpful using 
machine learning techniques, namely, SVM classifiers. 
Using LIBSVM and a set of Amazon product reviews 
from 25 product categories, we train models for each 
product type to determine if a review will be helpful or 
unhelpful. Previous work has focused on training one 
classifier for all reviews in the data set, but we 
hypothesize that a distinct model for each of the 25 
product types will improve the accuracy of 
classification. Furthermore, we developed a framework 
to inform authors on the fly if their review is predicted 
to be of great use (helpful) to other readers, with the 
hypothesis that authors are more likely to rethink their 
review post and amend it to be of maximum utility to 
other readers when given guidance. 

Building upon past successes with analyzing the utility 
of product reviews using support vector machines, we 
employ LIBSVM and a bag of words approach to 
building many, rather than one, classifiers for each 
category of products on Amazon.com. 
Constructing a cache of classifiers from randomized 
training sets for each of the product categories, we test 
these classifiers’ accuracy, marking the best performing 
in each product category. 
Using a stricter criteria for marking reviews as eligible 
for training, our models are specialized to perform 
strongly against reviews of products residing in their 
category.  
Overall motivation is to maximize the utility of reviews 
for online shoppers. Specialized classifiers built-in to 
review submission form might identify unhelpful 
reviews and influence the author to augment and 
improve their review of a product. 

Using the following principles, 
previously unexamined by other 
research in this area, our 
implementation yielded better 
accuracy and a new framework for 
predicting product review helpfulness 

More stringent requirements for 
review training and testing eligibility 
Specialized classification models 
for each of 25 different product 
categories 
On-the-fly helpfulness predictions 
for new review authoring 

Specialized stopword lists 
Further specialization, down to the 
individual products 
Consider other review attributes as 
features for training 
Bigrams, trigrams, quadgrams, etc. 
N-fold cross verification 
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http://doi.acm.org/10.1145/2348283.2348351
http://dx.doi.org/10.1016/j.cad.2012.07.008
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Abstract 

In this paper we focused on automatically classifying product 

reviews as either helpful or unhelpful using machine learning 

techniques, namely, SVM classifiers. Using LIBSVM and a set of 

Amazon product reviews from 25 product categories, we train 

models for each product type to determine if a review will be helpful 

or unhelpful. Previous work has focused on training one classifier for 

all reviews in the data set, but we hypothesize that a distinct model 

for each of the 25 product types will improve the accuracy of 

classification. Furthermore, we developed a framework to inform 

authors on the fly if their review is predicted to be of great use 

(helpful) to other readers, with the hypothesis that authors are more 

likely to rethink their review post and amend it to be of maximum 

utility to other readers when given guidance. 

Keywords: review helpfulness; machine learning; product review 

classification; support vector machine; amazon reviews; svm 

specialization; bag of words. 

1. Introduction 

As e-commerce continues to account for increasingly large 
portions of the consumer economy, online product reviews are 
of greater importance to shoppers. Indeed, to the irritation and 
detriment of traditional “brick and mortar” stores, web sites 
such as Amazon.com have turned these businesses into what 
many have termed “product showrooms”. Customers can visit 
these traditional stores simply to handle and view products in 
person that they later intend to purchase from an online vendor. 
Tech-savvy companies such as Amazon.com have even 
released mobile applications that consumers can install on their 
cell phones, turning them into bar code scanners with quick 
access to the product page on Amazon.com, complete with 
price, shipping details, and product reviews. 

Whether the traditional location-based businesses like it or 
not, online shopping seems to be growing in popularity. 
Consumers rely heavily on product reviews, ratings, and 
testimonials to influence their shopping decisions. For this 
reason, it is desirable to have quick and easy access to the most 
informative, accurate, and overall helpful reviews. 

Web sites such as Amazon.com have taken to providing 
features where users can supply feedback about product 
reviews. While this can come in the form of comments and 
questions posted to the review author, the most simple and 
straightforward feature is a simple click of an answer (“yes” or 
“no”) to the question, “Was this review helpful to you?” This 
information is stored and presented to the customer with the 
metrics of the review (how many people found the review 

helpful), as well as the option to sort the reviews by helpfulness 
or recency. 

While this is a good start to providing customers with the 
means to find the most helpful reviews, the obvious limitation 
is the reliance on users to manually flag whether or not any 
given review is or is not helpful in their evaluation of a 
product. This is why it is necessary to develop a mechanism for 
automatically marking reviews as helpful or unhelpful. This 
paper aims to do just that through the use of machine learning. 
By taking sets of reviews we know to be either helpful or 
unhelpful, we can train an SVM (Support Vector Machine) 
model to classify reviews that have no previous votes from 
other customers as helpful or unhelpful . 

We further present a framework for applying these models 
on-the-fly to newly authored reviews. We hypothesize that 
when given some guidance about what their review might be 
lacking and informing users before they submit their product 
reviews of their predicted helpfulness, overall product review 
quality will improve. 

The paper is organized as follows: Section 2 covers related 
work in this area. Section 3 outlines the data we used for the 
research. Section 4 presents the algorithms for training and 
testing our models. Section 5 presents the results of our 
findings. Section 6 describes the framework for classifying 
newly authored reviews, and Section 7 presents conclusions 
and areas for future work. 

2. Related Work 

As the prevalence of online shopping and product reviews 
have increased, so too has the interest in generating the best set 
of reviews to interested parties: customers, vendors, and 
producers of the goods being sold. Customers rely on this data 
to make purchasing decisions. Vendors recognize that the more 
robust their collection of product reviews, the more traffic will 
filter through their site, thus yielding a beneficial cycle of more 
customers leaving more product reviews. Finally, producers of 
the goods being sold can use these product reviews to make 
design decisions and decide future product direction to 
ultimately appeal to more customers, essentially using the 
reviews to continue doing what customers favored, and altering 
areas where the products were reviewed poorly. 

Blitzer et al [3] procured a dataset of Amazon.com product 
reviews from 25 different product categories. It has been used 
by several other studies and is used in this research. Their 
original research focused on detecting the sentiment, or general 
emotions, of the review to classify positive versus negative 
experiences with the product. This mirrors the aim of our 
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research as they used features of the review other than the 
actual product rating given by the reviewer to detect a positive 
(high) or negative (low) rating. Here, we use features other 
than the helpful or unhelpful votes that a review receives to 
ultimately determine if it would be found as helpful or not to 
other readers. 

Kim et al [8] presented research in which SVM regression 
was employed to determine which features of the reviews from 
an Amazon.com dataset yielded themselves to helpfulness 
predictions. These features included the review length, 
unigrams (each word of the review text taken as a distinct 
feature, as we have done in this research), and the product 
ratings. 

While the most commonly known form of spam is 
unwanted electronic mail, product review spam is also 
prevalent amongst online shopping review forums. This can 
take the form of unrelated links, advertising mixed into product 
review text, or false reviews, perhaps used to artificially 
increase the rating of a product. Lau et al [9] employed text 
mining and probabilistic language modeling to detect spam 
amongst review sets.  

Liu et al [10] conducted research on detecting low-quality 
reviews using different types of biases. They suggested 
methods to simply strip these reviews from the available set, 
yielding a ground-truth opinion of the specific product being 
reviewed. 

Hong et al [6] developed an Automatic Helpfulness Voting 
system, coined “AHV”, by building a ranking SVM classifier 
to assign a score to each of the reviews being tested and then 
ranking them in order of helpfulness. They built upon earlier 
successes with SVM classification by attempting to learn user 
preferences within their models. These included information 
needs fulfilled by product reviews, the credibility of reviews, 
and each reviews’ consistency with the mainstream opinion of 
the product. They found that when including these aspects, 
AHV performance was improved. 

Here, we attempt to further the successes of SVM 
classification by using trained models for detecting helpful 
versus unhelpful reviews. By training multiple classifiers for 
the multiple product categories, we aim to improve accuracy 
predictions and believe that, intuitively, many models that have 
increased specificity should yield more accurate results. By 
developing an application to efficiently train, test, and store 
these classifiers, we gain the benefit of model multiplicity, 
effectively drilling down from a high-level model for a set 
“product reviews” to a more refined model for reviews of a 
specific product type such as “camera and photo”. 

3. The Data 

Our dataset was obtained from the research done by Blitzer 
et al [3]. These authors made it available for download at 
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/. The data 
is entitled “Multi-Domain Sentiment Dataset” and this research 
makes use of version 2.0. It is a collection of Amazon.com 
product reviews pulled from multiple product categories 
(domains). Some product types, such as books and DVDs, have 
hundreds of thousands of product reviews while others, such as 
musical instruments may have only a few hundred. 

Each product category is represented in this dataset in an 
XML file containing all reviews for that category. Each review 
in the file is represented between <review> and </review> 
tags. All reviews have the attributes listed in Table 1 below. 

Table 1. Review Attributes 

 

Attribute Name 

product_name 

product_type 

helpful 

rating 

title 

date 

reviewer 

review_text 

 

All XML files were parsed and the data was entered into a 
MySQL database. Parsing was done using Nokogiri 
(http://nokogiri.org/), a plugin, or “gem”, for the Ruby 
programming language. It has excellent support for parsing 
both HTML and XML using XPATH and CSS3 Selector. The 
MySQL database is connected to a Ruby on Rails web 
application, handling the interface, computation, and data 
presentation. The application is called Review Helpfulness 
Predictor, or RHP. 

4. Template Usage  

While past research has focused on constructing a classifier 
that could handle all product reviews in the dataset, we aimed 
to specialize the classification models, training many Support 
Vector Machines for each of the product categories. Like past 
efforts, we also employed a unigram (each word of the review 
text treated as a feature) approach and we also similarly used 
LIBSVM as an implementation for SVM classifiers. The 
following areas outline the differences in our implementation: 

4.1 Review Eligibility 

We added some utility columns to the core data in the 
reviews table. In the research done by both Kim et al [8] and 
Hong et al [6] the authors set a “voting rate” of 0.6 to draw a 
boundary between helpful and unhelpful reviews, labeling the 
reviews that had been voted on beforehand, and then testing 
their classifiers on the entire dataset. We took a somewhat 
different approach and introduced the idea of review eligibility 
when compiling our training and testing sets. Eligibility was 
determined by the use_for_train column which is flagged as 
true if the total votes are greater than three and over 70% of 
voters agree that it is either helpful or not, and false otherwise. 

This algorithm was run as a preprocessor step prior to 
training the classifiers. It was initiated with the click of a 
button located on the page where reviews are indexed 
according to product type. Once this button was clicked and 
this algorithm completed, we were left with a new partitioning 
of the product type’s reviews. Where previously there were 
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helpful, unhelpful, and reviews that had no votes, the review 
set was now organized as reviews with no votes, reviews with 
votes but without the required degree of agreement on their 
utility (helpful or unhelpful votes were too low or without a 
clear winner), and lastly, with a subset of reviews that were 
candidates for training and testing the classifiers. Note that we 
stipulated that the degree of agreement on a review’s utility (as 
voted by actual Amazon.com users) must be above 70 percent. 
This meant that a review where 3 of 5 people found it to be 
helpful would be discarded as ineligible for classifier training 
because 40 percent of the users that took the time to vote found 
the review to be unhelpful. We also imposed a minimum on the 
number of votes the review received. This criterion differed 
from past research as the above example review would simply 
have been counted as helpful and used in the model. The 
reason being that reviews with a stronger degree of agreement, 
be it on the review’s helpfulness or uselessness, would better 
inform our model during training and increase classification 
accuracy. 

4.2 Selecting Training and Testing Sets 

When using supervised learning to train models, it is 
important to select an appropriate training set. Ideally, this 
subset of data should be representative of the whole dataset to 
maximize the accuracy of the model. Initially, our algorithm 
was very naive, selecting the training data from the database in 
the order that it was stored. For example, a request for 100 
reviews in the training set and 50 reviews in the testing set 
would return the first 100 reviews that were eligible (as 
ordered by the id field of the reviews table, the unique, primary 
key) as the training set and then the next 50 eligible reviews as 
the testing set. This made the model dependent on how the 
reviews were loaded into the database, as the reviews with 
lower primary key identifiers were favored in the training and 
testing of the model, which introduced problems. For example, 
if the first 99 eligible reviews happened to be helpful and the 
next 51 were unhelpful, our model would be plagued with 
overfitting and the results would be unreliable. To mitigate 
this, we tried to shape the query based on the product type’s 
overall ratio of helpful to unhelpful reviews. For example, if 
there were 4,000 unhelpful reviews and 6,000 helpful reviews 
of grocery items, a request for the training set of size 100 
reviews would return the first 40 unhelpful reviews and the 
first 60 helpful reviews. This approach was still problematic as 
it continued to favor one sector of the dataset. The final 
implementation employed randomization to select training and 
test sets.  

Here we employed the Boolean flag use_for_train that was 
set earlier to obtain an entire set of all reviews of this product 
type that can be used for training and testing. Next, we made 
use of Ruby’s sample method, applicable to any collection of 
objects. This afforded us the ability to pull an object, a review 
in our case, from the array using randomly generated indices. 
By deleting this review from the set of eligible reviews, we 
shrank this array each time we built up our training and testing 
sets, ensuring that we avoided duplicate entries in these 
collections. Note that this randomization yielded the added 
benefit of a built-in adherence to the ratio of helpful to 
unhelpful reviews in the original dataset. Since we randomly 
selected each review for the training and testing sets, the 

probability that this selection was either helpful or unhelpful 
mirrored the entire dataset’s overall statistics of helpful and 
unhelpful reviews. 

4.3 Building a Classifier 

The training of a model in machine learning can be 
simplified into three entities: input (training data), learning 
process, and output (a model ready to accept data for 
classification). The previous section explained how we derive 
the first entity. 

Using a bag of words approach with LIBSVM, we 
constructed  models ready to accept and classify reviews from 
the test sets. This algorithm relied heavily on an 
implementation of LIBSVM installed as a Ruby plugin. 
LIBSVM is an effective and efficient implementation of SVM 
classification. It was developed by Chih-Chung Chang and 
Chih-Jen Lin [7]. The web page, 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/, offers extensive 
information about this software and links to other language 
plugins. The Ruby plugin used, rb-lisvm, available at 
https://github.com/febeling/rb-libsvm, is a Ruby binding to this 
LIBSVM software. In addition to LIBSVM, we also employed 
a word stemming plugin from Roman Shterenzon, fast-
stemmer. It is available at https://github.com/romanbsd/fast-
stemmer. This allowed us to efficiently stem words in our 
global dictionary and each training document. 

After organizing our documents into a set of training 
vectors mapped against each feature (word) in our global 
dictionary, we used the LIBSVM class to train the model. The 
training function accepts the vectors and a parameter object as 
input. The parameter object stipulates important details about 
the SVM classifier. These details are explained in depth by 
Chang et al [7] and this algorithm adopted the parameters that 
have been proven to work well in similar classification 
problems. It is worth mentioning that the LIBSVM model 
contains a method to save its data to a file. This, coupled with 
our implementation to save the global dictionary used to train 
the model, allows the application to easily persist and reload 
any trained classifier for future testing. 

4.4 Testing a Classifier 

With the models trained and saved as outlined above, we 
can load and feed in a test set to observe the classifier’s 
accuracy. In machine learning, to predict the accuracy of a 
model, the test set must be comprised of data with known 
classes. That is, our reviews in the test set are reviews that have 
already been voted to be either helpful or unhelpful. Recall that 
we employed the same flag used for marking training reviews 
as eligible to create a pool of eligible test reviews. 

Applying the models to test sets is fairly straightforward, 
with the main point being the comparison of the model’s 
prediction of the review against the known class (helpful or 
unhelpful) of the review. Also of note is the responsibility of a 
classifier to keep track of its accuracy. This allowed us to 
create competing classifiers for the same product category to 
track which is the best performing. Tracking the classifier with 
the highest accuracy affords the application the ability to 
choose which classifier is to be used to predict the utility of a 
review that is entered on-the-fly by a user, explained in the 
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next section. Lastly we returned the results of testing to the 
application’s classifier controller, to render a view with the 
results presented on a web page. 

5. Results 

Both Kim et al [8] and Hong et al [6] also used the Multi-
Domain Sentiment Dataset from Blitzer et al [3] for results 
testing, but as the latter research outperformed the former, we 
used the results of Hong et al as a baseline for our comparison. 
Table 2 presents the results of past research.  

Table 2. Past Research Classifier Accuracy  

 

Table Column Head Accuracy (%) 

Kim 62.29 

Liu 62.85 

Hong 69.62 

 

While each evolution of this research has improved 

classification accuracy, all research thus far has, to our 

knowledge, focused on lumped-together product type reviews. 

As shown in Table 3, specializing the models for specific 

partitions of the review dataset significantly increases the 

resulting accuracies. 

 
Table 3. Specialized Review Helpfulness Predictor Results 

 

Product Category Best Accuracy (%) 

Apparel 90.82 

Automotive 81.82 

Baby 92.0 

Beauty 93.55 

Books 81.91 

Camera & Photo 89.09 

Computer & Video Games 90.55 

DVD 79.18 

Electronics 86.73 

Gourmet Food 90.73 

Grocery 88.36 

Health & Personal Care 90.55 

Jewelry & Watches 89.0 

Kitchen & Housewares 93.45 

Magazines 85.82 

Music 77.0 

Musical Instruments 93.82 

Office Products 95.0 

Outdoor Living 90.82 

Software 85.91 

Sports & Outdoors 89.36 

Tools & Hardware N/A 

Toys & Games 90.18 

Video 80.64 

 

For each product type, we trained three classifiers with 
training set sizes of 100, 300, and 600 product reviews 
wherever possible. As the table shows, our accuracies for the 
Amazon.com product reviews are considerably higher than 
previous work, with some caveats. In the “tools & hardware” 
category, for example, only 40 reviews met our criteria for 
training and testing eligibility. Among these, only a small 
number were voted unhelpful. Whereas most product types had 
classifiers with a minimum training size of 100 reviews, here 
we were only able to train the model with 20 reviews, leaving 
20 for testing. This resulted in overfitting our model and 
without a wide array of test reviews available, the accuracy 
was artificially high, and therefore omitted in the table. While 
this anomaly is present in a few other product types that are 
less popular with consumers on Amazon.com, this artificially 
high accuracy seems to be the exception. Even the most 
popular categories such as books, DVDs, and music, all have 
classifiers that performed quite well in comparison to past 
research. It is also clear that the most specific product 
categories tended to have the higher accuracies. For example, 
while the camera and photo product type could actually be 
considered “electronics” and lumped into this product type, the 
fact that it is separate and houses distinct, more specific 
reviews, lent itself to RHP’s specialized models. This is what 
one would expect as the dictionary for electronics is far broader 
than any sub-category of electronic products might be, thus 
increasing the challenge of accurate classification. 

6. Classifying a Single New Review 

While the testing algorithm encompasses predicting a 
single review as well (executed with a user-entered review as 
the sole member of the test set), we explain this framework 
explicitly as, to our knowledge, it has yet to be suggested in 
previous work. The screen shot in Figure 1 shows what an 
indexing of classifiers page looks like for the “camera and 
photo” product type. 

 

Figure 1. Classifier View 

 



 

 

The bottom table holds information about only one of three 
classifiers that was trained for this product category. Indeed, 
there are two others below that are not shown, one of which is 
the most accurate, with an accuracy of 89.09%. Although we 
built in links to use each of the classifiers to predict a single, 
user-entered review, the link at the top automatically used the 
classifier with the highest accuracy. The process is shown in 
Figure 2 below. 

 

 

Figure 2. Predicting a Single New Review 

 

As this review is concerned only with the vendor and the 
shipping satisfaction of the author, we suspected it would have 
little utility to other readers looking for information about the 
product itself. Our classifier’s prediction agreed, marking this 
review as unhelpful. While simple in nature, we believe that 
this framework could be implemented in online shopping 
websites and would help users to author higher quality reviews. 

7. Conclusions and Future Work 

While limited in novelty, this project confirms an 
admittedly intuitive suspicion, that specialized machine 
learners perform better than general models. We incorporated a 
dataset from XML into a more manageable and efficient format 
in a MySQL database. Using queues from past research, we 
pursued Support Vector Machines as an avenue for machine 
learning to automatically predict review helpfulness. Using 
Ruby on Rails, employing a Model-View-Controller 
architecture, and an implementation of LIBSVM, we built the 
Review Helpfulness Predictor (RHP) web application with 
functionality to train and test models, and predict single 
product reviews as either helpful or unhelpful. As proven by 
our results, our hypothesis of creating specialized machine 
learners to increase performance on a partitioned dataset is an 
effective way to classify product reviews. Aside from these 
improved results, we also offered a framework for selecting 
and employing a classifier to perform on-the-fly classification 
of product reviews entered by customers, with the end goal of 
improving review quality to the benefit of customers, online 
vendors, and manufacturers. 

As our hypothesis appears valid, we see no reason why 
machine learners should not be even further specialized by 
partitioning the product types further. Given adequate numbers 
of reviews for single products, it is not inconceivable to have a 
classifier trained specifically for one popular product sold. We 
also suspect that incorporating more words into a single feature 
(using bigrams, trigrams, quadgrams, etc.) during training, 
rather than treating each word as a distinct feature might have a 
positive effect on performance. For example, we treated the 
presence of “focal length” as one feature in a ‘camera and 
photo’ review rather than “focal” and “length” as distinct 
features. 

As part of a further analysis of the relationship between 
kinds of product reviews used for training versus the kind of 
product review we are predicting as helpful or unhelpful, we 
have created an additional model type, the MAKifier (Many 
Applicable Kinds) classifier. As opposed to the classifier 
model, a MAKifier can have many kinds of product reviews 
used for the training set, and is used to predict the helpfulness 
of reviews from one kind of product. This affords us a sliding 
scale from a highly specialized machine learner to the type of 
classifier used by previous research (one classifier for all kinds 
of product reviews). Our preliminary testing included using all 
25 product types to train a model and then test it against only 
‘camera and photo’ reviews. Not surprisingly, this yielded an 
accuracy close to, but slightly less, than previous research, 
60.7%. We also tested ‘camera and photo’ reviews against 
classifiers that were trained with fairly unrelated kinds of 
products, ‘baby’, ‘dvd’, ‘office products’, ‘beauty’, 
‘magazines’, and ‘health and personal care’. These tests 
yielded accuracies of 52% and 55%, only slightly higher than 
simple chance. One interesting observation from early 
MAKifier testing was the improved accuracy when training 
reviews are used from a kind of product that is similar to the 
one used for testing. For example, when a learner was trained 
with ‘dvd’ and ‘video’ reviews and was tested against ‘book’ 
reviews, the accuracy was significantly higher at 68% as 
opposed to testing ‘book’ reviews against ‘apparel’, 
‘automotive’, and ‘kitchen and housewares’ reviews, where 
accuracy was only 51%. We suspect this is due to the common 
elements of reviews from ‘dvd’, ‘video’, and ‘books’ such as 
story, emotion evocation, and prose commentary. This 
warrants further research to extrapolate indicators of 
similarities between different kinds of products, as well as the 
relationship between the number of product types used for 
training a model versus the number of product types used for 
testing. To further explore and verify the improved accuracy, 
further research warrants a more extensive 10-fold or even n-
fold cross verification.  

Lastly, we believe that the interface for predicting a single 

review and reporting the predicted helpfulness to the author 

could benefit from added details. For example, rather than 

simply stating whether their review looks to be either helpful 

or unhelpful to other readers, enhancing the feedback to 

include specific content that could be added or improved upon 

would ultimately guide the author toward creating a review of 

higher quality and helpfulness. 
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