
Using Specialized Support Vector Machines to Detect Helpful and Unhelpful
Product Reviews

 Scott Bolter, Teng-Sheng Moh

 Department of Computer Science, San Jose State University

SYSTEM MODELING AND RESULTS ABSTRACT

FUTURE WORK

CONCLUSIONS

REFERENCES

RESEARCH DESIGN AND METHODOLOGY

1. John Blitzer, Mark Dredze, Fernando Pereira. Biographies, Bollywood,
Boom-boxes and Blenders: Domain Adaptation for Sentiment
Classification. Association of Computational Linguistics (ACL), 2007

2. Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1--27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

3. Yu Hong, Jun Lu, Jianmin Yao, Qiaoming Zhu, and Guodong Zhou.
2012. What reviews are satisfactory: novel features for automatic
helpfulness voting. In Proceedings of the 35th international ACM
SIGIR conference on Research and development in information
retrieval (SIGIR'12). ACM, New York, NY, USA, 495-504.
DOI=10.1145/2348283.2348351
http://doi.acm.org/10.1145/2348283.2348351

4. Soo-Min Kim, Patrick Pantel, Tim Chklovski, and Marco
Pennacchiotti. 2006. Automatically assessing review helpfulness. In
Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing (EMNLP '06). Association for
Computational Linguistics, Stroudsburg, PA, USA, 423-430.

5. Ying Liu, Jian Jin, Ping Ji, Jenny A. Harding,and Richard Y. K. Fung.
2013. Identifying helpful online reviews: A product designer's
perspective. Comput. Aided Des. 45, 2 (February 2013), 180-194.
DOI=10.1016/j.cad.2012.07.008 http://dx.doi.org/10.1016
j.cad.2012.07.008

6. www.statista.com/topics/871/online-shopping/

In this paper we focused on automatically classifying
product reviews as either helpful or unhelpful using
machine learning techniques, namely, SVM classifiers.
Using LIBSVM and a set of Amazon product reviews
from 25 product categories, we train models for each
product type to determine if a review will be helpful or
unhelpful. Previous work has focused on training one
classifier for all reviews in the data set, but we
hypothesize that a distinct model for each of the 25
product types will improve the accuracy of
classification. Furthermore, we developed a framework
to inform authors on the fly if their review is predicted
to be of great use (helpful) to other readers, with the
hypothesis that authors are more likely to rethink their
review post and amend it to be of maximum utility to
other readers when given guidance.

Building upon past successes with analyzing the utility
of product reviews using support vector machines, we
employ LIBSVM and a bag of words approach to
building many, rather than one, classifiers for each
category of products on Amazon.com.
Constructing a cache of classifiers from randomized
training sets for each of the product categories, we test
these classifiers’ accuracy, marking the best performing
in each product category.
Using a stricter criteria for marking reviews as eligible
for training, our models are specialized to perform
strongly against reviews of products residing in their
category.
Overall motivation is to maximize the utility of reviews
for online shoppers. Specialized classifiers built-in to
review submission form might identify unhelpful
reviews and influence the author to augment and
improve their review of a product.

Using the following principles,
previously unexamined by other
research in this area, our
implementation yielded better
accuracy and a new framework for
predicting product review helpfulness

More stringent requirements for
review training and testing eligibility
Specialized classification models
for each of 25 different product
categories
On-the-fly helpfulness predictions
for new review authoring

Specialized stopword lists
Further specialization, down to the
individual products
Consider other review attributes as
features for training
Bigrams, trigrams, quadgrams, etc.
N-fold cross verification

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://doi.acm.org/10.1145/2348283.2348351
http://dx.doi.org/10.1016/j.cad.2012.07.008
http://dx.doi.org/10.1016 j.cad.2012.07.008
http://dx.doi.org/10.1016 j.cad.2012.07.008

Using Specialized Support Vector Machines to Detect Helpful and

Unhelpful Product Reviews

Scott Bolter and Teng-Sheng Moh
Department of Computer Science

San Jose State University, San Jose, US

scott.bolter@sjsu.edu and teng.moh@sjsu.edu

Abstract

In this paper we focused on automatically classifying product

reviews as either helpful or unhelpful using machine learning

techniques, namely, SVM classifiers. Using LIBSVM and a set of

Amazon product reviews from 25 product categories, we train

models for each product type to determine if a review will be helpful

or unhelpful. Previous work has focused on training one classifier for

all reviews in the data set, but we hypothesize that a distinct model

for each of the 25 product types will improve the accuracy of

classification. Furthermore, we developed a framework to inform

authors on the fly if their review is predicted to be of great use

(helpful) to other readers, with the hypothesis that authors are more

likely to rethink their review post and amend it to be of maximum

utility to other readers when given guidance.

Keywords: review helpfulness; machine learning; product review

classification; support vector machine; amazon reviews; svm

specialization; bag of words.

1. Introduction

As e-commerce continues to account for increasingly large
portions of the consumer economy, online product reviews are
of greater importance to shoppers. Indeed, to the irritation and
detriment of traditional “brick and mortar” stores, web sites
such as Amazon.com have turned these businesses into what
many have termed “product showrooms”. Customers can visit
these traditional stores simply to handle and view products in
person that they later intend to purchase from an online vendor.
Tech-savvy companies such as Amazon.com have even
released mobile applications that consumers can install on their
cell phones, turning them into bar code scanners with quick
access to the product page on Amazon.com, complete with
price, shipping details, and product reviews.

Whether the traditional location-based businesses like it or
not, online shopping seems to be growing in popularity.
Consumers rely heavily on product reviews, ratings, and
testimonials to influence their shopping decisions. For this
reason, it is desirable to have quick and easy access to the most
informative, accurate, and overall helpful reviews.

Web sites such as Amazon.com have taken to providing
features where users can supply feedback about product
reviews. While this can come in the form of comments and
questions posted to the review author, the most simple and
straightforward feature is a simple click of an answer (“yes” or
“no”) to the question, “Was this review helpful to you?” This
information is stored and presented to the customer with the
metrics of the review (how many people found the review

helpful), as well as the option to sort the reviews by helpfulness
or recency.

While this is a good start to providing customers with the
means to find the most helpful reviews, the obvious limitation
is the reliance on users to manually flag whether or not any
given review is or is not helpful in their evaluation of a
product. This is why it is necessary to develop a mechanism for
automatically marking reviews as helpful or unhelpful. This
paper aims to do just that through the use of machine learning.
By taking sets of reviews we know to be either helpful or
unhelpful, we can train an SVM (Support Vector Machine)
model to classify reviews that have no previous votes from
other customers as helpful or unhelpful .

We further present a framework for applying these models
on-the-fly to newly authored reviews. We hypothesize that
when given some guidance about what their review might be
lacking and informing users before they submit their product
reviews of their predicted helpfulness, overall product review
quality will improve.

The paper is organized as follows: Section 2 covers related
work in this area. Section 3 outlines the data we used for the
research. Section 4 presents the algorithms for training and
testing our models. Section 5 presents the results of our
findings. Section 6 describes the framework for classifying
newly authored reviews, and Section 7 presents conclusions
and areas for future work.

2. Related Work

As the prevalence of online shopping and product reviews
have increased, so too has the interest in generating the best set
of reviews to interested parties: customers, vendors, and
producers of the goods being sold. Customers rely on this data
to make purchasing decisions. Vendors recognize that the more
robust their collection of product reviews, the more traffic will
filter through their site, thus yielding a beneficial cycle of more
customers leaving more product reviews. Finally, producers of
the goods being sold can use these product reviews to make
design decisions and decide future product direction to
ultimately appeal to more customers, essentially using the
reviews to continue doing what customers favored, and altering
areas where the products were reviewed poorly.

Blitzer et al [3] procured a dataset of Amazon.com product
reviews from 25 different product categories. It has been used
by several other studies and is used in this research. Their
original research focused on detecting the sentiment, or general
emotions, of the review to classify positive versus negative
experiences with the product. This mirrors the aim of our

mailto:scott.bolter@sjsu.edu
mailto:teng.moh@sjsu.edu

research as they used features of the review other than the
actual product rating given by the reviewer to detect a positive
(high) or negative (low) rating. Here, we use features other
than the helpful or unhelpful votes that a review receives to
ultimately determine if it would be found as helpful or not to
other readers.

Kim et al [8] presented research in which SVM regression
was employed to determine which features of the reviews from
an Amazon.com dataset yielded themselves to helpfulness
predictions. These features included the review length,
unigrams (each word of the review text taken as a distinct
feature, as we have done in this research), and the product
ratings.

While the most commonly known form of spam is
unwanted electronic mail, product review spam is also
prevalent amongst online shopping review forums. This can
take the form of unrelated links, advertising mixed into product
review text, or false reviews, perhaps used to artificially
increase the rating of a product. Lau et al [9] employed text
mining and probabilistic language modeling to detect spam
amongst review sets.

Liu et al [10] conducted research on detecting low-quality
reviews using different types of biases. They suggested
methods to simply strip these reviews from the available set,
yielding a ground-truth opinion of the specific product being
reviewed.

Hong et al [6] developed an Automatic Helpfulness Voting
system, coined “AHV”, by building a ranking SVM classifier
to assign a score to each of the reviews being tested and then
ranking them in order of helpfulness. They built upon earlier
successes with SVM classification by attempting to learn user
preferences within their models. These included information
needs fulfilled by product reviews, the credibility of reviews,
and each reviews’ consistency with the mainstream opinion of
the product. They found that when including these aspects,
AHV performance was improved.

Here, we attempt to further the successes of SVM
classification by using trained models for detecting helpful
versus unhelpful reviews. By training multiple classifiers for
the multiple product categories, we aim to improve accuracy
predictions and believe that, intuitively, many models that have
increased specificity should yield more accurate results. By
developing an application to efficiently train, test, and store
these classifiers, we gain the benefit of model multiplicity,
effectively drilling down from a high-level model for a set
“product reviews” to a more refined model for reviews of a
specific product type such as “camera and photo”.

3. The Data

Our dataset was obtained from the research done by Blitzer
et al [3]. These authors made it available for download at
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/. The data
is entitled “Multi-Domain Sentiment Dataset” and this research
makes use of version 2.0. It is a collection of Amazon.com
product reviews pulled from multiple product categories
(domains). Some product types, such as books and DVDs, have
hundreds of thousands of product reviews while others, such as
musical instruments may have only a few hundred.

Each product category is represented in this dataset in an
XML file containing all reviews for that category. Each review
in the file is represented between <review> and </review>
tags. All reviews have the attributes listed in Table 1 below.

Table 1. Review Attributes

Attribute Name

product_name

product_type

helpful

rating

title

date

reviewer

review_text

All XML files were parsed and the data was entered into a
MySQL database. Parsing was done using Nokogiri
(http://nokogiri.org/), a plugin, or “gem”, for the Ruby
programming language. It has excellent support for parsing
both HTML and XML using XPATH and CSS3 Selector. The
MySQL database is connected to a Ruby on Rails web
application, handling the interface, computation, and data
presentation. The application is called Review Helpfulness
Predictor, or RHP.

4. Template Usage

While past research has focused on constructing a classifier
that could handle all product reviews in the dataset, we aimed
to specialize the classification models, training many Support
Vector Machines for each of the product categories. Like past
efforts, we also employed a unigram (each word of the review
text treated as a feature) approach and we also similarly used
LIBSVM as an implementation for SVM classifiers. The
following areas outline the differences in our implementation:

4.1 Review Eligibility

We added some utility columns to the core data in the
reviews table. In the research done by both Kim et al [8] and
Hong et al [6] the authors set a “voting rate” of 0.6 to draw a
boundary between helpful and unhelpful reviews, labeling the
reviews that had been voted on beforehand, and then testing
their classifiers on the entire dataset. We took a somewhat
different approach and introduced the idea of review eligibility
when compiling our training and testing sets. Eligibility was
determined by the use_for_train column which is flagged as
true if the total votes are greater than three and over 70% of
voters agree that it is either helpful or not, and false otherwise.

This algorithm was run as a preprocessor step prior to
training the classifiers. It was initiated with the click of a
button located on the page where reviews are indexed
according to product type. Once this button was clicked and
this algorithm completed, we were left with a new partitioning
of the product type’s reviews. Where previously there were

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://nokogiri.org/

helpful, unhelpful, and reviews that had no votes, the review
set was now organized as reviews with no votes, reviews with
votes but without the required degree of agreement on their
utility (helpful or unhelpful votes were too low or without a
clear winner), and lastly, with a subset of reviews that were
candidates for training and testing the classifiers. Note that we
stipulated that the degree of agreement on a review’s utility (as
voted by actual Amazon.com users) must be above 70 percent.
This meant that a review where 3 of 5 people found it to be
helpful would be discarded as ineligible for classifier training
because 40 percent of the users that took the time to vote found
the review to be unhelpful. We also imposed a minimum on the
number of votes the review received. This criterion differed
from past research as the above example review would simply
have been counted as helpful and used in the model. The
reason being that reviews with a stronger degree of agreement,
be it on the review’s helpfulness or uselessness, would better
inform our model during training and increase classification
accuracy.

4.2 Selecting Training and Testing Sets

When using supervised learning to train models, it is
important to select an appropriate training set. Ideally, this
subset of data should be representative of the whole dataset to
maximize the accuracy of the model. Initially, our algorithm
was very naive, selecting the training data from the database in
the order that it was stored. For example, a request for 100
reviews in the training set and 50 reviews in the testing set
would return the first 100 reviews that were eligible (as
ordered by the id field of the reviews table, the unique, primary
key) as the training set and then the next 50 eligible reviews as
the testing set. This made the model dependent on how the
reviews were loaded into the database, as the reviews with
lower primary key identifiers were favored in the training and
testing of the model, which introduced problems. For example,
if the first 99 eligible reviews happened to be helpful and the
next 51 were unhelpful, our model would be plagued with
overfitting and the results would be unreliable. To mitigate
this, we tried to shape the query based on the product type’s
overall ratio of helpful to unhelpful reviews. For example, if
there were 4,000 unhelpful reviews and 6,000 helpful reviews
of grocery items, a request for the training set of size 100
reviews would return the first 40 unhelpful reviews and the
first 60 helpful reviews. This approach was still problematic as
it continued to favor one sector of the dataset. The final
implementation employed randomization to select training and
test sets.

Here we employed the Boolean flag use_for_train that was
set earlier to obtain an entire set of all reviews of this product
type that can be used for training and testing. Next, we made
use of Ruby’s sample method, applicable to any collection of
objects. This afforded us the ability to pull an object, a review
in our case, from the array using randomly generated indices.
By deleting this review from the set of eligible reviews, we
shrank this array each time we built up our training and testing
sets, ensuring that we avoided duplicate entries in these
collections. Note that this randomization yielded the added
benefit of a built-in adherence to the ratio of helpful to
unhelpful reviews in the original dataset. Since we randomly
selected each review for the training and testing sets, the

probability that this selection was either helpful or unhelpful
mirrored the entire dataset’s overall statistics of helpful and
unhelpful reviews.

4.3 Building a Classifier

The training of a model in machine learning can be
simplified into three entities: input (training data), learning
process, and output (a model ready to accept data for
classification). The previous section explained how we derive
the first entity.

Using a bag of words approach with LIBSVM, we
constructed models ready to accept and classify reviews from
the test sets. This algorithm relied heavily on an
implementation of LIBSVM installed as a Ruby plugin.
LIBSVM is an effective and efficient implementation of SVM
classification. It was developed by Chih-Chung Chang and
Chih-Jen Lin [7]. The web page,
http://www.csie.ntu.edu.tw/~cjlin/libsvm/, offers extensive
information about this software and links to other language
plugins. The Ruby plugin used, rb-lisvm, available at
https://github.com/febeling/rb-libsvm, is a Ruby binding to this
LIBSVM software. In addition to LIBSVM, we also employed
a word stemming plugin from Roman Shterenzon, fast-
stemmer. It is available at https://github.com/romanbsd/fast-
stemmer. This allowed us to efficiently stem words in our
global dictionary and each training document.

After organizing our documents into a set of training
vectors mapped against each feature (word) in our global
dictionary, we used the LIBSVM class to train the model. The
training function accepts the vectors and a parameter object as
input. The parameter object stipulates important details about
the SVM classifier. These details are explained in depth by
Chang et al [7] and this algorithm adopted the parameters that
have been proven to work well in similar classification
problems. It is worth mentioning that the LIBSVM model
contains a method to save its data to a file. This, coupled with
our implementation to save the global dictionary used to train
the model, allows the application to easily persist and reload
any trained classifier for future testing.

4.4 Testing a Classifier

With the models trained and saved as outlined above, we
can load and feed in a test set to observe the classifier’s
accuracy. In machine learning, to predict the accuracy of a
model, the test set must be comprised of data with known
classes. That is, our reviews in the test set are reviews that have
already been voted to be either helpful or unhelpful. Recall that
we employed the same flag used for marking training reviews
as eligible to create a pool of eligible test reviews.

Applying the models to test sets is fairly straightforward,
with the main point being the comparison of the model’s
prediction of the review against the known class (helpful or
unhelpful) of the review. Also of note is the responsibility of a
classifier to keep track of its accuracy. This allowed us to
create competing classifiers for the same product category to
track which is the best performing. Tracking the classifier with
the highest accuracy affords the application the ability to
choose which classifier is to be used to predict the utility of a
review that is entered on-the-fly by a user, explained in the

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/febeling/rb-libsvm
https://github.com/romanbsd/fast-stemmer
https://github.com/romanbsd/fast-stemmer

next section. Lastly we returned the results of testing to the
application’s classifier controller, to render a view with the
results presented on a web page.

5. Results

Both Kim et al [8] and Hong et al [6] also used the Multi-
Domain Sentiment Dataset from Blitzer et al [3] for results
testing, but as the latter research outperformed the former, we
used the results of Hong et al as a baseline for our comparison.
Table 2 presents the results of past research.

Table 2. Past Research Classifier Accuracy

Table Column Head Accuracy (%)

Kim 62.29

Liu 62.85

Hong 69.62

While each evolution of this research has improved

classification accuracy, all research thus far has, to our

knowledge, focused on lumped-together product type reviews.

As shown in Table 3, specializing the models for specific

partitions of the review dataset significantly increases the

resulting accuracies.

Table 3. Specialized Review Helpfulness Predictor Results

Product Category Best Accuracy (%)

Apparel 90.82

Automotive 81.82

Baby 92.0

Beauty 93.55

Books 81.91

Camera & Photo 89.09

Computer & Video Games 90.55

DVD 79.18

Electronics 86.73

Gourmet Food 90.73

Grocery 88.36

Health & Personal Care 90.55

Jewelry & Watches 89.0

Kitchen & Housewares 93.45

Magazines 85.82

Music 77.0

Musical Instruments 93.82

Office Products 95.0

Outdoor Living 90.82

Software 85.91

Sports & Outdoors 89.36

Tools & Hardware N/A

Toys & Games 90.18

Video 80.64

For each product type, we trained three classifiers with
training set sizes of 100, 300, and 600 product reviews
wherever possible. As the table shows, our accuracies for the
Amazon.com product reviews are considerably higher than
previous work, with some caveats. In the “tools & hardware”
category, for example, only 40 reviews met our criteria for
training and testing eligibility. Among these, only a small
number were voted unhelpful. Whereas most product types had
classifiers with a minimum training size of 100 reviews, here
we were only able to train the model with 20 reviews, leaving
20 for testing. This resulted in overfitting our model and
without a wide array of test reviews available, the accuracy
was artificially high, and therefore omitted in the table. While
this anomaly is present in a few other product types that are
less popular with consumers on Amazon.com, this artificially
high accuracy seems to be the exception. Even the most
popular categories such as books, DVDs, and music, all have
classifiers that performed quite well in comparison to past
research. It is also clear that the most specific product
categories tended to have the higher accuracies. For example,
while the camera and photo product type could actually be
considered “electronics” and lumped into this product type, the
fact that it is separate and houses distinct, more specific
reviews, lent itself to RHP’s specialized models. This is what
one would expect as the dictionary for electronics is far broader
than any sub-category of electronic products might be, thus
increasing the challenge of accurate classification.

6. Classifying a Single New Review

While the testing algorithm encompasses predicting a
single review as well (executed with a user-entered review as
the sole member of the test set), we explain this framework
explicitly as, to our knowledge, it has yet to be suggested in
previous work. The screen shot in Figure 1 shows what an
indexing of classifiers page looks like for the “camera and
photo” product type.

Figure 1. Classifier View

The bottom table holds information about only one of three
classifiers that was trained for this product category. Indeed,
there are two others below that are not shown, one of which is
the most accurate, with an accuracy of 89.09%. Although we
built in links to use each of the classifiers to predict a single,
user-entered review, the link at the top automatically used the
classifier with the highest accuracy. The process is shown in
Figure 2 below.

Figure 2. Predicting a Single New Review

As this review is concerned only with the vendor and the
shipping satisfaction of the author, we suspected it would have
little utility to other readers looking for information about the
product itself. Our classifier’s prediction agreed, marking this
review as unhelpful. While simple in nature, we believe that
this framework could be implemented in online shopping
websites and would help users to author higher quality reviews.

7. Conclusions and Future Work

While limited in novelty, this project confirms an
admittedly intuitive suspicion, that specialized machine
learners perform better than general models. We incorporated a
dataset from XML into a more manageable and efficient format
in a MySQL database. Using queues from past research, we
pursued Support Vector Machines as an avenue for machine
learning to automatically predict review helpfulness. Using
Ruby on Rails, employing a Model-View-Controller
architecture, and an implementation of LIBSVM, we built the
Review Helpfulness Predictor (RHP) web application with
functionality to train and test models, and predict single
product reviews as either helpful or unhelpful. As proven by
our results, our hypothesis of creating specialized machine
learners to increase performance on a partitioned dataset is an
effective way to classify product reviews. Aside from these
improved results, we also offered a framework for selecting
and employing a classifier to perform on-the-fly classification
of product reviews entered by customers, with the end goal of
improving review quality to the benefit of customers, online
vendors, and manufacturers.

As our hypothesis appears valid, we see no reason why
machine learners should not be even further specialized by
partitioning the product types further. Given adequate numbers
of reviews for single products, it is not inconceivable to have a
classifier trained specifically for one popular product sold. We
also suspect that incorporating more words into a single feature
(using bigrams, trigrams, quadgrams, etc.) during training,
rather than treating each word as a distinct feature might have a
positive effect on performance. For example, we treated the
presence of “focal length” as one feature in a ‘camera and
photo’ review rather than “focal” and “length” as distinct
features.

As part of a further analysis of the relationship between
kinds of product reviews used for training versus the kind of
product review we are predicting as helpful or unhelpful, we
have created an additional model type, the MAKifier (Many
Applicable Kinds) classifier. As opposed to the classifier
model, a MAKifier can have many kinds of product reviews
used for the training set, and is used to predict the helpfulness
of reviews from one kind of product. This affords us a sliding
scale from a highly specialized machine learner to the type of
classifier used by previous research (one classifier for all kinds
of product reviews). Our preliminary testing included using all
25 product types to train a model and then test it against only
‘camera and photo’ reviews. Not surprisingly, this yielded an
accuracy close to, but slightly less, than previous research,
60.7%. We also tested ‘camera and photo’ reviews against
classifiers that were trained with fairly unrelated kinds of
products, ‘baby’, ‘dvd’, ‘office products’, ‘beauty’,
‘magazines’, and ‘health and personal care’. These tests
yielded accuracies of 52% and 55%, only slightly higher than
simple chance. One interesting observation from early
MAKifier testing was the improved accuracy when training
reviews are used from a kind of product that is similar to the
one used for testing. For example, when a learner was trained
with ‘dvd’ and ‘video’ reviews and was tested against ‘book’
reviews, the accuracy was significantly higher at 68% as
opposed to testing ‘book’ reviews against ‘apparel’,
‘automotive’, and ‘kitchen and housewares’ reviews, where
accuracy was only 51%. We suspect this is due to the common
elements of reviews from ‘dvd’, ‘video’, and ‘books’ such as
story, emotion evocation, and prose commentary. This
warrants further research to extrapolate indicators of
similarities between different kinds of products, as well as the
relationship between the number of product types used for
training a model versus the number of product types used for
testing. To further explore and verify the improved accuracy,
further research warrants a more extensive 10-fold or even n-
fold cross verification.

Lastly, we believe that the interface for predicting a single

review and reporting the predicted helpfulness to the author

could benefit from added details. For example, rather than

simply stating whether their review looks to be either helpful

or unhelpful to other readers, enhancing the feedback to

include specific content that could be added or improved upon

would ultimately guide the author toward creating a review of

higher quality and helpfulness.

References

[1] Mumtaz M. Al-Mukhtar and Yasmine M. Tabra. 2012. An effective
spam filter based on a combined support vector machine approach. Int.
J. Internet Technol. Secur. Syst. 4, 1 (January 2012), 42-54.
DOI=10.1504/IJITST.2012.045149
http://dx.doi.org/10.1504/IJITST.2012.045149

[2] Izzat Alsmadi, Mohammed Al-Kabi, Abdullah Wahbeh, Qasem Al-
Radaideh, and Emad Al-Shawakfa. 2011. The Effect of Stemming on
Arabic Text Classification: An Empirical Study. Int. J. Inf. Retr. Res. 1,
3 (July 2011), 54-70. DOI=10.4018/IJIRR.2011070104
http://dx.doi.org/10.4018/IJIRR.2011070104

[3] John Blitzer, Mark Dredze, Fernando Pereira. Biographies, Bollywood,
Boom-boxes and Blenders: Domain Adaptation for Sentiment
Classification. Association of Computational Linguistics (ACL), 2007

[4] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. 2005. Working Set
Selection Using Second Order Information for Training Support Vector
Machines. J. Mach. Learn. Res. 6 (December 2005), 1889-1918.

[5] Anindya Ghose and Panagiotis G. Ipeirotis. 2007. Designing novel
review ranking systems: predicting the usefulness and impact of
reviews. In Proceedings of the ninth international conference on
Electronic commerce (ICEC '07). ACM, New York, NY, USA, 303-310.
DOI=10.1145/1282100.1282158
http://doi.acm.org/10.1145/1282100.1282158

[6] Yu Hong, Jun Lu, Jianmin Yao, Qiaoming Zhu, and Guodong Zhou.
2012. What reviews are satisfactory: novel features for automatic
helpfulness voting. In Proceedings of the 35th international ACM SIGIR
conference on Research and development in information retrieval
(SIGIR'12). ACM, New York, NY, USA, 495-504.
DOI=10.1145/2348283.2348351
http://doi.acm.org/10.1145/2348283.2348351

[7] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support
vector machines. ACM Transactions on Intelligent Systems and

Technology, 2:27:1--27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[8] Soo-Min Kim, Patrick Pantel, Tim Chklovski, and Marco Pennacchiotti.
2006. Automatically assessing review helpfulness. In Proceedings of the
2006 Conference on Empirical Methods in Natural Language Processing
(EMNLP '06). Association for Computational Linguistics, Stroudsburg,
PA, USA, 423-430.

[9] Raymond Y. K. Lau, S. Y. Liao, Ron Chi-Wai Kwok, Kaiquan Xu,
Yunqing Xia, and Yuefeng Li. 2012. Text mining and probabilistic
language modeling for online review spam detection. ACM Trans.
Manage. Inf. Syst. 2, 4, Article 25 (January 2012), 30 pages.
DOI=10.1145/2070710.2070716
http://doi.acm.org/10.1145/2070710.2070716

[10] Ying Liu, Jian Jin, Ping Ji, Jenny A. Harding,and Richard Y. K. Fung.
2013. Identifying helpful online reviews: A product designer's
perspective. Comput. Aided Des. 45, 2 (February 2013), 180-194.
DOI=10.1016/j.cad.2012.07.008

[11] Thomas L. Ngo-Ye and Atish P. Sinha. 2012. Analyzing Online Review
Helpfulness Using a Regressional ReliefF-Enhanced Text Mining
Method. ACM Trans. Manage. Inf. Syst. 3, 2, Article 10 (July 2012), 20
pages. DOI=10.1145/2229156.2229158
http://doi.acm.org/10.1145/2229156.2229158

[12] Michael P. O'Mahony and Barry Smyth. 2010. Using readability tests to
predict helpful product reviews. In Adaptivity, Personalization and
Fusion of Heterogeneous Information (RIAO '10). LE CENTRE DE
HAUTES ETUDES INTERNATIONALES D'INFORMATIQUE
DOCUMENTAIRE, Paris, France, France, 164-167

[13] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005.
Introduction to Data Mining, (First Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

http://dx.doi.org/10.1504/IJITST.2012.045149
http://dx.doi.org/10.4018/IJIRR.2011070104
http://doi.acm.org/10.1145/1282100.1282158
http://doi.acm.org/10.1145/2348283.2348351
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://doi.acm.org/10.1145/2070710.2070716
http://doi.acm.org/10.1145/2229156.2229158
http://doi.acm.org/10.1145/2229156.2229158

