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Abstract

Substitution ciphers are among the earliest methods of encryption. Examples of
classic substitution ciphers include the well-known simple substitution and the less
well-known homophonic substitution. Simple substitution ciphers are indeed simple—
both in terms of their use and their cryptanalysis. Homophonic substitutions are also
easy to use, but far more challenging to break. Even with modern computing tech-
nology, homophonic substitutions can present a significant cryptanalytic challenge.

This paper focuses on the design and implementation of an efficient algorithm
to break homophonic substitution ciphers. We employ a nested hill climb approach
that generalizes the fastest known attack on simple substitution ciphers. We test our
algorithm on a wide variety of homophonic substitutions and provide success rates
as a function of both the ciphertext alphabet size and ciphertext length. Finally, we
apply our technique to the “Zodiac 340” cipher, which is an unsolved message created
by the infamous Zodiac killer.

Keywords: homophonic substitution cipher, simple substitution cipher, hill climb,
heuristic search, Zodiac 340 cipher

1 Introduction

Substitution ciphers are among the oldest encryption methods—they are simple, in-
tuitive, and widely studied [21]. Many variants of the substitution cipher have been
developed, including monoalphabetic systems, which employ a fixed substitution,
and polyalphabetic systems, where the substitution varies. Example of monoalpha-
betic substitutions include the simple substitution and homophonic substitution ci-
phers. Examples of polyalphabetic substitutions include the Vigenére cipher and
World War II era rotor cipher machines, such as the Enigma. Here, we are concerned
with monoalphabetic substitutions.
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For the simple substitution cipher, the plaintext to ciphertext mapping is one-to-
one. In contrast, homophonic substitution ciphers are many-to-one, that is, multiple
ciphertext symbols can map to one plaintext symbol.

The simple substitution cipher is indeed simple in terms of its use, but it is
vulnerable to elementary statistical analysis. For example, the most common cipher-
text symbol corresponds to the most common plaintext symbol, which for English
plaintext is most likely the letter E. For a homophonic substitution, the plaintext
statistics tend to be flattened, since multiple ciphertext symbols can correspond to
a single plaintext symbol. For example, if the plaintext is English and the letter E

corresponds to multiple symbols, none of those symbols may stand out as having an
unusually high frequency. There are several fast and effective attacks on the simple
substitution, but homophonic substitutions are inherently more challenging.

Our motivation for considering homophonic substitution ciphers is the unsolved
“Zodiac 340,” which was created by the infamous Zodiac killer in 1969 [5]. Another
Zodiac cipher, the “Zodiac 408,” was a homophonic substitution and it was broken
within days of its publication [5]. In contrast, the Zodiac 340 has so far proved
resistant to cryptanalysis. We have more to say about these ciphers in Section 6.

In this paper, we discuss the design and implementation of an efficient, general
attack on homophonic substitution ciphers. We also provide extensive test results.
The attack proposed here can be viewed as a generalization of the fastest known
algorithm for breaking simple substitutions [7]. However, a direct generalization of
the algorithm in [7] is not sufficient to solve a homophonic substitution. Therefore, we
combine our generalized simple substitution algorithm with an additional hill climb
layer. As with the simple substitution algorithm, only digram frequencies are used
for scoring.

This paper is organized as follows. Section 2 briefly covers relevant background
information. Section 3 describes a fast algorithm for solving simple substitutions [7],
which we generalize to homophonic substitutions in Section 4. Then in Section 5,
we present results for some of the many tests we have conducted. Section 6 covers
the Zodiac ciphers and a related challenge problem, and we give the results of our
attack when applied to these ciphers. Finally, Section 7 contains our conclusion and
suggestions for future work.

2 Background

In this section, we consider simple substitution and homophonic substitution ciphers.
We also discuss letter frequencies and the role they can play in the cryptanalysis of
these substitution ciphers. Finally, we conclude this section with a discussion of hill
climbing in the context of substitution cipher cryptanalysis.
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2.1 Simple Substitution

Substitution ciphers can be defined as ciphers in which every plaintext symbol has a
ciphertext symbol substituted for it, and the original position of the plaintext symbol
is retained in the ciphertext [10]. There are various ways in which the substitutions
can be done. In this section we discuss the simplest of the substitution ciphers which,
appropriately, is known as a simple substitution.

A simple substitution is a one-to-one mapping, in the sense that each plaintext
symbol corresponds to one ciphertext symbol. This makes encryption and decryption
straightforward, but it is well-known that the simple substitution is vulnerable to
elementary statistical analysis [21]. In particular, frequency analysis can be used to
attack the simple substitution.

An example of a simple substitution key is given in Table 1. In this particular
example, each plaintext letter is replaced with the letter that is 13 positions ahead
in the alphabet but, in general, any permutation of the alphabet can serve as a key.

Table 1: Simple Substitution Key

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

Using the key in Table 1, the plaintext HELLO encrypts to ciphertext URYYB. For a
simple substitution, any given plaintext letter always encrypts to the same ciphertext
letter and, consequently, each ciphertext letter has the same frequency in ciphertext
as its corresponding plaintext letter has in the plaintext. So, given the five-letter
ciphertext URYYB, a cryptanalyst knows that the third and fourth plaintext letters
are identical.

Suppose that the plaintext is English and only the 26 letters appear, i.e., there
is no word-space, punctuation, case, etc. Then the simple substitution key space
consists of the 26! ≈ 288 possible permutations of the alphabet. Consequently, the
expected work for an exhaustive search is about 287. Supposing that we can test one
million keys per second, an exhaustive search will take about 287/106 = 1.55 × 1020

seconds, or about 4.9× 1012 years. Therefore, under any reasonable assumptions, an
exhaustive key search is infeasible.

In spite of the enormous work factor for an exhaustive search, breaking a simple
substitution cipher is an elementary textbook exercise in cryptanalysis. Assuming
English plaintext and a message of reasonable length, the highest-frequency ciphertext
letter most likely corresponds to plaintext E, since E is the most common letter in
English. This trivial observation can be extended to an effective attack by comparing
English letter frequencies to ciphertext letter frequencies. Once we have determined
a few of the high-frequency letters, common letter patterns become apparent and the
key can then be completely recovered.
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The following is a general outline for a systematic approach to attacking a simple
substitution.

1. Let score =∞
2. Construct an initial putativeKey

3. Parse the ciphertext using putativeKey

4. Compute newScore based on the resulting putative plaintext

5. If newScore < score then let key = putativeKey and score = newScore

6. Modify key to obtain a new putativeKey

7. Goto 3

Here, we are assuming that score ≥ 0, with score = 0 representing a perfect match,
and the bigger the score, the worse the result. Also, a suitable stopping criteria is
needed, such as the score falling below a given threshold or a maximum number of
iterations exceeded. Note that to implement an attack based on this outline, we must
have practical answers to the following questions.

• How can we determine an initial putative key?

• How can we systematically modify the key?

• Given a putative key, how can we compute a score?

A reasonable guess for the initial putative key can be obtained by sorting the
ciphertext letters by frequency and matching the letters with the corresponding letter
frequencies of English. That is, the most frequent ciphertext letter would be mapped
to plaintext E, the second most frequent would be mapped to T, and so on.

To modify the key, we can simply swap pairs of letters in the putative key. Since
any permutation can be obtained from another permutation by repeated swapping,
this elementary approach enables us to, in principle, obtain any key.

To compute a score, we could look for dictionary words [12], but given a sufficiently
long ciphertext, an alternative approach is to use English digram frequencies (and,
possibly, trigrams and higher-order-grams). We discuss English letter frequencies and
English digram statistics in more detail below.

The major drawback to a straightforward attack on the simple substitution is that
the ciphertext must be re-parsed at every iteration. That is, for each modification
to the putative key we must recompute the putative plaintext. Consequently, the
work can become prohibitively expensive as the length of the ciphertext increases.
We discuss a more efficient approach in Section 3. This fast algorithm virtually
eliminates any dependence on the length of the ciphertext, and it provides an efficient
letter-swapping scheme.

Next, we discuss homophonic substitution ciphers. In general, homophonic substi-
tutions are much more resistant to attacks based on frequency analysis as compared
to simple substitutions.

4



2.2 Homophonic Substitution

Instead of using a one-to-one mapping as in a simple substitution, a homophonic
substitution employs a one-to-many mapping. Consequently, there may be more
than one possible substitution for a given plaintext letter. However, each ciphertext
symbol can represent only one plaintext letter, so the decryption is unique. Such
a mapping tends to flatten the frequency statistics in the resulting ciphertext and
consequently makes attacks based on frequency analysis more difficult.

An example of a homophonic substitution cipher is given in Table 2, where we
have used some non-alphabetic symbols, since we require more than 26 ciphertext
symbols. For the key in Table 2, any of the symbols R, 3, or 9 can be substituted
for a plaintext E, and either Y or 6 can be substituted for plaintext L. So, using this
key, plaintext HELLO can be encrypted as U96YB. In this case, a cryptanalyst has no
indication that ciphertext 6 and Y both represent the same plaintext letter.

Table 2: Homophonic Substitution Key

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

8 9 1 6 4

3 5

Suppose that a given homophonic substitution cipher has n distinct ciphertext
symbols and the plaintext is English. Assuming that each of the 26 plaintext letters
maps to at least one ciphertext symbol, the theoretical key space is of size(

n

26

)
26! 26n−26 < 26n ≈ 24.7n.

Recall that for the simple substitution, the key space is of size 26! ≈ 288, with an
exhaustive search having a work factor of 287, on average.

Using the upper bound of 24.7n, and assuming that we can test a million keys per
second, an exhaustive search on a homphonic substitution with n = 100 ciphertext
symbols will require about 2470/220 = 2450 seconds, or 9.2× 10127 years. For a cipher
with 62 symbols—such as the Zodiac 340 cipher—the same assumptions give an
exhaustive key search time of “only” 1.59× 1074 years. As discussed in the previous
section, under the same assumptions, an exhaustive search on a simple substitution
requires a paltry 4.9× 1012 years.

The point here is that an exhaustive search is out of the question. In Sections 3
and 4 we consider efficient attacks on simple substitutions and homophonic substitu-
tions, respectively. These attacks rely on statistical information that leaks from the
plaintext into the ciphertext.
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2.3 Digram Frequencies

Expected English letter frequencies are given in Figure 1. The most frequent letter
in English is E, accounting for nearly 13% of all letters. The least frequent English
letters are Q and J, each of which has an expected frequency that is much less than 1%.
In contrast, for a random collection of letters, each of the 26 letters would have an
expected frequency of 1/26 ≈ 3.85%.

Figure 1: English Letter Frequencies

Digrams are consecutive pairs of symbol. For English, there are 262 digrams
and their expected frequencies vary widely. For example, the most common English
digram is TH, which accounts for about 1.5% of all digrams, while there are many
digrams that never occur, such as QJ. For a random collection of letters, the expected
frequency of each digram would be 1/262 ≈ 0.15%.

Table 3 contains English digram frequencies, where the cells are color-coded to
indicate the frequency—red represents higher frequencies while blue represents lower
frequencies [4]. Note that Table 3 includes the symbols “ˆ” and “$” which indicate
the beginning and ending of words, respectively. If we include word boundaries, the
most common digram is S$, that is, the letter S at the end of a word.

Jakobsen [7] gives a fast algorithm for breaking a simple substitution, using only
English digram frequencies. By searching for dictionary words (or trigrams and,
possibly, higher order “grams”), we may be able to reduce the ciphertext length
requirements. However, by focusing our attention on digram frequencies, it is possible
to design an extremely efficient attack on the simple substitution. Specifically, we are
able to avoid re-parsing the ciphertext for each change in the putative key.

We discuss Jakobsen’s simple substitution algorithm in Section 3. Our general-
ization of this attack to the homophonic substitution is covered in Section 4. But
first, we briefly discuss heuristic methods, with an emphasis on hill climbing.

2.4 Hill Climbing

As noted above, the homophonic substitution cipher has a keyspace that is far too
large for an exhaustive search. Therefore, we consider heuristic search techniques.
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Table 3: English Digram Frequencies [4]

According to [8] (italics appear in the original),

The term heuristic algorithm is used to describe an algorithm (usually a
randomized algorithm) that tries to find a certain combinatorial structure
or solve an optimization problem by the use of heuristics. The Oxford
Reference Dictionary defines heuristic as “serving or helping to find out
or discover; proceeding by trial and error”. In the context of a heuristic
algorithm, a heuristic will be a method of performing a minor modification,
or a sequence of modifications, of a given solution or partial solution in
order to obtain a different solution or partial solution.

In other words, a heuristic is an “educated guess” and a heuristic search uses a series
of such guesses in an attempt to find a reasonable solution to a given combinatorial
problem.

The obvious advantage of a heuristic search is that it can be much faster than
a brute force approach. However, there is no guarantee that a heuristic algorithm
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will find an optimal solution, or even a reasonable approximation [15]. But for most
substitution ciphers, an exhaustive search is out of the question, so it is natural to
consider heuristic techniques.

Hill climbing is an an iterative technique that can be viewed as a type of heuristic
search. During each iteration of the hill climb, a small modification is made to the
putative solution, which is then evaluated to determine whether it is an improvement
over the previous solution. If the modified solution is better, then the modified
solution becomes the new putative solution; otherwise we make no change to the
putative solution. Thus, with every iteration, the solution either improves or stays
the same. That is, the algorithm can only climb “up” towards a better solution—it
can never produce a worse solution.

To design any hill climb algorithm, two issues need to be addressed. First, we
need a way to incrementally modify a given solution during each iteration. Second,
we need a scoring function to quantify the “goodness” of a given putative solution.

A hill climb algorithm can find locally optimal solutions but, as with any heuristic
technique, there is no assurance that it will find a globally optimal solution. Hill climb
algorithms tend to be very sensitive to the initial guess, as illustrated in Figure 2.
If the initial guess is sufficiently close to a globally optimal solution, then we will
climb to that optimal solution. In general, the hill climb will find a nearby local
maximum which, depending on the geometry of the parameter space, might not be
a useful solution to the problem. Many heuristic search techniques try to overcome
this limitation by occasionally choosing inferior solutions, which makes it possible
to jump from one “hill” to another. For example, in genetic algorithms, a mutation
factor is used for this purpose. With a straightforward hill climb algorithm, multiple
initial guesses will increase our chance of finding a satisfactory solution, since we can
then choose the best of the resulting local maxima.

Figure 2: Hill Climbing [9]

Hill climbing works well on many substitution ciphers, including some polyalpha-
betic cipher machines, such as the World War II-era Japanese Purple cipher [20].
For substitution ciphers, the closer a putative key is to the actual key, the closer
the corresponding putative plaintext is to the actual plaintext. This is the crucial
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feature that enables a hill climb (or other heuristic search) to succeed. In contrast,
for a modern cipher, any putative key that differs from the actual key should yield
putative plaintext that is uncorrelated to the actual plaintext. In other words, if just
one bit differs from the actual key, the resulting putative plaintext is no closer to the
actual plaintext than for a random key.

Figure 3 shows the results of an experiment conducted on the Advanced Encryp-
tion Standard (AES), a modern block cipher [2]. In the graph, the x axis represents
the closeness of the putative key to the actual key, ranging from 55% to 100%. The y
axis in Figure 3 represents the percentage of similarity between the putative plaintext
and the actual plaintext. The graph shows that as the putative key gets closer to
the actual key, the similarity between the putative plaintext and the actual plaintext
remains essentially random (at random, we expect about half of the bits to match).
Only when the putative key is exactly equal to the actual key does the putative plain-
text match the actual plaintext to a degree that is significantly better than random.
In other words, the search space is essentially flat, with the exception of a spike at
the correct key value (i.e., a delta function), so there are no meaningful hills to climb.

Figure 3: AES Block Cipher Success Rate

3 Fast Attack on Simple Substitution

In this section, we discuss Jakobsen’s fast algorithm for breaking a simple substitution
cipher [7]. Throughout this section we assume that the plaintext language is English,
and the 26 letters of the alphabet are also used as the ciphertext symbols. However,
the same principles apply to other languages and, of course, we can use arbitrary
symbols to represent the ciphertext.

Jakobsen’s algorithm uses English digram statistics for scoring and the ciphertext
is only parsed once to construct an initial digram distribution matrix. All subsequent
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scoring is done by directly manipulating the plaintext digram distribution matrix and
then comparing the result to the expected English digram distribution matrix.

As mentioned in Section 2.1, to fully specify a simple substitution attack, we need
to answer the following questions:

• How can we determine an initial putative key?

• How can we systematically modify the key?

• Given a putative key, how can we compute a score? That is, we need a way to
quantify the “goodness” of a putative key.

For this fast attack, we choose the initial key that best matches with English mono-
graph statistics. That is, we assume the most frequent ciphertext letter maps to
plaintext E, the second most frequent maps to T, and so on.

We modify the putative key by swapping elements, as follows. First, denote the
putative key as K = (k1, k2, . . . , k26), where K is a permutation of the 26 English
letters. The swapping will be done systematically through a series of rounds. In the
first round, all adjacent elements are selected for swapping, that is, k1 is swapped
with k2, then k2 is swapped with k3, then k3 with k4, and so on. In the second round,
the elements in K at distance two are swapped, while in the third round, elements at
a distance of three are swapped, and so on. Let “|” represent the swapping operation.
Then the following series of swaps are performed:

round 1: k1|k2 k2|k3 k3|k4 . . . k23|k24 k24|k25 k25|k26
round 2: k1|k3 k2|k4 k3|k5 . . . k23|k25 k24|k26
round 3: k1|k4 k2|k5 k3|k6 . . . k23|k26

...
... . .

.

round 24: k1|k24 k2|k25 k3|k26
round 25: k1|k25 k2|k26
round 26: k1|k26

(1)

Note that all
(
26
2

)
pairs of putative key elements are swapped once.

The third crucial point is that we must have an efficient method for scoring a
putative key. This is accomplished by computing a score that measures the closeness
of the putative plaintext digram matrix to the expected English language digram
matrix. For two matrices X = {xij} and Y = {yij} with the same dimensions, let

d(X,Y ) =
∑
i,j

|xij − yij |.

We use this distance function to define a score as follows. Let D = {dij} be the digram
frequency matrix for the putative plaintext corresponding to a putative key K and
let E = {eij} be the expected digram frequency matrix for English. Then the score
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for the putative key K is defined as

score(K) = d(D,E) =
∑
i,j

|dij − eij |. (2)

Note that score ≥ 0, with score = 0 being a perfect match, and the smaller the
score, the better the key K.

The efficiency of Jakobsen’s algorithm derives from the fact that when we alter
the putative key by swapping elements, we can simply modify the D matrix, without
re-parsing the ciphertext. When key elements are swapped, we only need to modify
digram frequencies that begin or end with the swapped elements—all other digrams
are unaffected. It is easy to show that swapping elements of the putative key has the
effect of swapping the corresponding rows and columns of the D matrix, leaving the
remainder of the D matrix unchanged.

To illustrate Jakobsen’s algorithm, we consider a simple substitution example on
the restricted 8-letter alphabet

E, T, I, S, H, R, L, and K.

Note that these letters are listed in descending order of their expected frequencies in
English. Based on this limited alphabet, suppose we are given the simple substitution
ciphertext

RIHILKHIERSKILEKKLKTRSKHRIHILKHLREIRTRSKLKTRSKHHLEKRS. (3)

For the ciphertext in (3), the frequency counts are

E T I S H R L K

4 3 7 5 7 9 7 11

Consequently, our initial guess for the key is

Plaintext: E T I S H R L K

Ciphertext: K R I L H S E T
(4)

Using this initial putative key, we find the initial putative plaintext corresponding to
the ciphertext in (3) is

TIHISEHILTREISLEESEKTREHTIHISEHSTLITKTRESEKTREHHSLETR
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For this initial plaintext, the digram frequency matrix is

E T I S H R L K

E 1 1 1 2 4 0 0 2

T 0 0 2 0 0 5 1 1

I 0 1 0 3 2 0 1 0

S 4 1 0 0 0 0 2 0

H 0 1 3 2 1 0 0 0

R 4 0 0 0 0 0 0 0

L 2 1 1 0 0 0 0 0

K 0 3 0 0 0 0 0 0

(5)

The first step in Jakobsen’s hill climb attack is to swap the first two elements of
the key. Swapping the first two elements in (4) yields a new putative key, which in
this case is given by

Plaintext: E T I S H R L K

Ciphertext: R K I L H S E T

Applying this key to the ciphertext in (3), we find that the corresponding putative
plaintext is given by

EIHISTHILERTISLTTSTKERTHEIHISTHSELIEKERTSTKERTHHSLTER

and the digram frequency matrix is given by

E T I S H R L K

E 0 0 2 0 0 5 1 1

T 1 1 1 2 4 0 0 2

I 1 0 0 3 2 0 1 0

S 1 4 0 0 0 0 2 0

H 1 0 3 2 1 0 0 0

R 0 4 0 0 0 0 0 0

L 1 2 1 0 0 0 0 0

K 3 0 0 0 0 0 0 0

(6)

Comparing the matrices in (5) and (6) we see that (6) can be obtained from (5) by
simply swapping the first two rows and columns—the boxed rows and columns in (6).
That is, swapping letters in the putative key, recomputing the putative plaintext, and
recomputing the digram matrix is equivalent to simply swapping the corresponding
rows and columns of the digram matrix. This is the crucial observation that enables
the fast attack to be fast. In particular, there is no need to re-parse the ciphertext
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using the new key. Regardless of the length of the ciphertext, only a swap of rows
and columns is required.

As another example, consider the key

Plaintext: E T I S H R L K

Ciphertext: K R S L H I E T

which can be obtained from (4) by swapping the third and sixth elements. In this
case, the resulting digram frequencies are given by the matrix

E T I S H R L K

E 1 1 0 2 4 1 0 2

T 0 0 5 0 0 2 1 1

I 4 0 0 0 0 0 0 0

S 4 1 0 0 0 0 2 0

H 0 1 0 2 1 3 0 0

R 0 1 0 3 2 0 1 0

L 2 1 0 0 0 1 0 0

K 0 3 0 0 0 0 0 0

which is obtained by simply swapping the third and sixth rows and columns of (5).
As discussed above, we compare the digram matrix D to a matrix E that contains

expected digram values for English. That is, for each putative key, we obtain the
corresponding digram matrix D by swapping the appropriate rows and columns, and
compute the score d(D,E), using the distance function given in (2). If the swap
improves the score (i.e., the distance between D and E decreases), then we retain the
swap; otherwise we do not. In either case, we continue with the next swap, following
the swapping pattern in (1).

Pseudo-code for Jakobsen’s fast algorithm appears in Table 4. Note that only a
single decryption of the ciphertext C is performed.

How fast is the fast algorithm in Table 4? Figure 4 gives an empirical comparison
between the fast algorithm and the näıve approach, where the ciphertext is re-parsed
after each modification of the putative key. This particular implementation of the
näıve algorithm mimics the fast algorithm, in the sense that we swap pairs of letters
following the same pattern as in Jakobsen’s algorithm.

The work for the näıve algorithm in Figure 4 is on the order of N
(
26
2

)
, where N

is the length of the ciphertext. In contrast, the work for Jakobsen’s algorithm is
N +

(
26
2

)
≈
(
26
2

)
. That is, the work required for the fast algorithm is essentially

independent of the ciphertext length, unless N is large. However, if N is large, we
might not need to use all of the ciphertext to recover the key.

The algorithm in Figure 4 is a hill climbing attack, since we ignore any modifi-
cation to the key that does not improve the score. However, the result can depend
on the order in which the swaps occur. Therefore, additional swaps beyond the

(
26
2

)
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Table 4: Fast Simple Substitution Attack [7]

////////////////////////////////////////
// Solve simple substitution cipher:
// E matrix of expected plaintext digram frequencies,
// C is the ciphertext
// K = (k1, k2, . . . , kn) is initial putative key
// (listed from high to low expected frequency)
// d(X, Y ) =

∑
i,j |xij − yij|

////////////////////////////////////////
P = putative plaintext from C using K
D = digram distribution matrix for P
score = d(D,E)
for i = 1 to n− 1

for j = 1 to n− i
D′ = D
swap rows j and j + i of D′

swap columns j and j + i of D′

if d(D′, E) < score then
D = D′

swap(kj, kj+i)
score = d(D′, E)

end if
next j

next i
return K

required by the algorithm could yield improved results. We return to this issue in
Section 6 where we discuss attacks on the Zodiac ciphers.

In the next section, we present our fast algorithm for attacking homophonic substi-
tution ciphers. Part of our algorithm can be considered a generalization of Jakobsen’s
algorithm. However, the homophonic substitution presents some unique challenges.

4 Fast Attack on Homophonic Substitution

As in the previous section, we assume that the plaintext in English. However, for a
homophonic substitution, multiple ciphertext symbols can represent a single plaintext
letter and, consequently, we need more than 26 ciphertext symbols. For a given
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Figure 4: Näıve versus Fast Simple Substitution Attacks

homophonic substitution cipher, let n be the number of ciphertext symbols. Then
we have n ≥ 26 and the special case where n = 26 is a simple substitution. In this
section, we denote the n ciphertext symbols as 1, 2, 3, . . . , n. Furthermore, let na

be the number of ciphertext symbols that correspond to plaintext A, let nb be the
number of symbols that correspond to B, and so on. Then

na + nb + nc + · · ·+ nz = n.

Our algorithm consists of following three “layers:”

• Inner hill climb layer

• Random key layer

• Outer hill climb layer

In the outer hill climb, we determine values na, nb, . . . , nz subject to the constraint
that na + nb + · · · + nz = n. Then in the random key layer, we generate multiple
random initial keys, subject to the constraint from the outer hill climb layer, namely,
that the distribution of ciphertext symbols satisfy na, nb, . . . , nz. Finally, for the
inner hill climb we employ a generalization of Jakobsen’s algorithm to hill climb to
a putative key, beginning with an initial key from the random key layer. That is, in
the random key layer we determine a specific subset of na ciphertext symbols that
map to A, a disjoint subset of nb ciphertext symbols that map to B, and so on. Then
in the inner hill climb layer, we improve on this solution, without altering any of
the numeric values na, nb, . . . , nz. The outer hill climb is the only layer where the
numbers na, nb, . . . , nz change.
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These layers are nested—for each iteration of the outer hill climb, we choose
multiple initial keys, and for each of these initial keys we conduct the inner hill
climb. A high-level view of the connection between the layers is given in Figure 5.
Next, we discuss each of the layers in more detail.

?

?

Outer Hill Climb Layer

Random Initial Key Layer

Inner Hill Climb Layer

Figure 5: High Level Design

First, we discuss the inner hill climb, which can be viewed as a generalization of
Jakobsen’s algorithm. Here, we emphasize the similarities to (and differences from)
the simple substitution case. After covering the inner hill climb in detail, we then
discuss the random key layer and, finally, the outer hill climb. Both of these outer
two layers are relatively simple.

4.1 Inner Hill Climb Layer

In this section, we assume that there are n distinct ciphertext symbols and we are
given the number of these symbols that map to each plaintext letter. That is, we are
given na, nb, . . . , nz with na + nb + · · · + nz = n. Our goal is to develop a hill climb
technique, analogous to Jakobsen’s algorithm, that will yield a relatively high-scoring
solution to the homophonic substitution. Note that any solution at this phase is
subject to the constraint that na ciphertext symbols map to A, nb symbols map to B,
and so on. That is, the values of na, nb, nc, . . . , nz do not change at this layer. Below,
we discuss the outer hill climb, where na, nb, . . . , nz are specified.

As with the simple substitution attack in the previous section, we need to consider
the following questions:

• How to choose the initial putative key (or keys)?

• How to modify a putative key?

• How to compute a score for a putative key?
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We consider each of these questions in turn, comparing and contrasting our approach
to the simple substitution attack discussed in the previous section.

Choose the initial key: In the outer hill climb layer, we determine na, nb, . . . , nz

with na+nb+ · · ·+nz = n. Note that this does not completely specify a putative key,
since we still need to determine which (disjoint) subsets of na, nb, . . . , nz ciphertext
symbols map to A, B, . . . , Z, respectively. Determining such a mapping is the function
of the random initial key layer, so we put off a discussion of the details of this process
to Section 4.2, below.

Modify the putative key: Recall that for the simple substitution, we order the
letters, then swap consecutive pairs, followed by pairs at distance two, and so on, as
summarized in (1). In this way, all

(
26
2

)
pairs of letters are swapped exactly once.

For the homophonic substitution, we follow an analogous process. However, letters
can appear multiple times in the key and we must avoid swapping a letter with itself—
swapping a letter with itself would not change the putative plaintext. Consider the
example in Table 5, where the ciphertext symbols are 0, 1, . . . , 9 and the initial key
maps E and T to two ciphertext symbols each, with all remaining letters mapped to a
single ciphertext symbol. In Table 5, the boxed elements in each row are swapped. For
simplicity, we assume that the score does not increase for any of the swaps considered,
that is, the swaps do not affect the putative key.

Table 5: Modification of Putative Key

Ciphertext 0 1 2 3 4 5 6 7 8 9

Initial key S H I E E T T K R L

1st swap S H I E E T T K R L

2nd swap S H I E E T T K R L

3rd swap S H I E E T T K R L

4th swap S H I E E T T K R L

5th swap S H I E E T T K R L

6th swap S H I E E T T K R L

7th swap S H I E E T T K R L

8th swap S H I E E T T K R L
...

...
...

...
...

...
...

...
...

...
...

Consider the “3rd swap” and “4th swap” rows in Table 5. Note that we swap the I
in column 2 with the E in column 3 and with the E in column 4. That is, we must
swap I with both E columns, since they correspond to different (in fact, disjoint) sets
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of symbols. However, we do not swap the E in column 4 with the E in column 5. The
score is based on English letters, so replacing E with E would not change the score.

The number of swaps required depends on n and the values of na, nb, . . . , nz.
Let mi, for i = 1, 2, . . . , 26 be the values of na, nb, . . . , nz, respectively. Then each
of m1 identical letters is swapped with all n−m1 other letters, each of the m2 identical
letters is swapped with all remaining n−m1 −m2 letters and so on. Thus, the total
number of swaps is given by

26∑
i=1

mi

(
n−

i∑
j=1

mj

)
= n2 −

26∑
i=1

mi

i∑
j=1

mj =
25∑
i=1

26∑
j=i+1

mimj . (7)

In practice, we consider all
(
n
2

)
pairs of ciphertext symbols, following a scheme

analogous to that given in (1), and we simply skip any pairs that currently map to
the same plaintext letter. The number of these

(
n
2

)
pairs that will require a swap and

score computation is given by (7). Consequently, a crude upper bound on (7) is given
by
(
n
2

)
.

Compute the score: Recall that for the fast attack on a simple substitution, we
have two matrices D and E, both of which are 26 × 26. The E matrix contains
expected digram frequencies for English, while the D matrix contains digram fre-
quencies corresponding to the putative plaintext. The algorithm is fast, since a swap
of elements in the putative key only requires a swap of the corresponding rows and
columns of the D matrix. For the simple substitution attack, we compute the score
by measuring the distance between matrices D and E using the formula in (2).

The same principle can be applied to the homophonic substitution, but the situa-
tion is complicated by the fact that there are more ciphertext symbols than plaintext
symbols. That is, for a homophonic substitution, in general, we have n > 26.

For the homophonic substitution, we still use a fixed E matrix containing the
expected English digram frequencies. But, instead of a single D matrix, we employ
two matrices to represent the digram frequencies. Let DC be an n×n matrix contain-
ing ciphertext digram frequencies. This matrix is constructed only once, and never
changes.

The second digram distribution matrix, which we denote as DP , is of size 26× 26
and contains the letter digram frequencies corresponding to the current putative
plaintext. This matrix corresponds to the D matrix in the simple substitution attack.

As in simple substitution attack, the DP matrix is modified with each swap of
elements in the putative key. However, it is not sufficient to simply swap rows and
columns of DP . Instead, we use the ciphertext digram frequencies in DC to help
determine the correct elements for the affected rows and columns of DP . Once we
have determined DP , the score computation is the same as in the simple substitution
case, that is, we compute score = d(DP , E).

To illustrate the process used to update the DP matrix, we consider a simplified
example. As in the examples in Section 3, suppose that our plaintext alphabet is
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restricted to the eight letters

E, T, I, S, H, R, L, and K.

Consider a homophonic substitution, where the plaintext is restricted to these eight
letters, and where there are 10 ciphertext symbols, denoted 0, 1, . . . , 9.

Suppose that we are given the ciphertext

09498249507298522861072309398248059010768610764485207. (8)

Then we construct the 10× 10 ciphertext digram matrix DC ,

0 1 2 3 4 5 6 7 8 9

0 0 1 0 0 0 1 0 5 0 2
1 3 0 0 0 0 0 0 0 0 0
2 1 0 1 1 2 0 0 0 1 1
3 1 0 0 0 0 0 0 0 0 1
4 0 0 0 0 1 0 0 0 2 2
5 1 0 2 0 0 0 0 0 0 1
6 0 2 0 0 1 0 0 0 1 0
7 0 0 2 0 0 0 2 0 0 0
8 1 0 2 0 0 2 2 0 0 0
9 1 0 0 1 1 1 0 0 3 0

(9)

Next, suppose that from the outer hill climb (discussed below), we are given the
constraint that two ciphertext symbols map to E and two symbols map to T, with
one symbol mapping to each of the remaining six characters. With this constraint,
suppose that we construct the following initial putative key:

ciphertext 0 1 2 3 4 5 6 7 8 9

plaintext I L E K T E R T H S
(10)

Note that the encryption version of this key can be written as

plaintext E T I S H R L K

ciphertext 2 4 0 9 8 6 1 3

5 7

That is, there are two ciphertext symbols that can be substituted for E (either 2 or
5) and two choices for T (either 4 or 7), while the remaining plaintext letters each
have a single corresponding ciphertext value. For the attack, we use the decryption
key which, for this example, we denote as ILEKTERTHS.

Applying the putative key ILEKTERTHS to the ciphertext in (8), we obtain the
following putative plaintext:

ISTSHETSEITESHEEEHRLITEKISKSHETHIESILITRHRLITRTTHEEIT.
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We can use this putative plaintext to generate the digram frequency matrix DP which,
in this case, is given by

E T I S H R L K

E 3 2 2 2 1 0 0 1

T 2 1 0 2 2 2 0 0

I 1 5 0 2 0 0 1 0

S 1 1 1 0 3 0 0 1

H 4 0 1 0 0 2 0 0

R 0 1 0 0 1 0 2 0

L 0 0 3 0 0 0 0 0

K 0 0 1 1 0 0 0 0

(11)

In (11) we have listed the letters in order from highest expected frequency to lowest.
As with the simple substitution attack, at this point, we modify the putative

key by swapping elements, and after each swap, we update the putative plaintext
digram matrix, DP and compute the score by comparing the updated matrix with
the expected English digram matrix E. If the score improves, we update the putative
key; if not, we leave the key unchanged.

For the simple substitution, updating the plaintext digram matrix D was accom-
plished by swapping the relevant rows and columns. For the homophonic substitution,
updating DP is slightly more involved, and we will need to make use of the matrix DC .

Next, we illustrate the process used to update DP by considering two examples.
For the first case, suppose that in the decryption key ILEKTERTHS, we swap L and K,
that is

ILEKTERTHS→ IKELTERTHS.

Since neither K nor L corresponds to multiple ciphertext symbols, this case is identical
to swapping letters in the simple substitution. Therefore, we simply swap the K and L

rows and columns of DP , that is, we follow the same procedure as in the simple
substitution attack.

The difficulty arises when one (or both) of the swapped letters correspond to more
than one ciphertext symbol. For example, suppose we swap S with the first E in the
putative key, that is,

ILEKTERTHS→ ILSKTERTHE. (12)

Then we cannot simply swap the corresponding rows (and columns) or DP , since
the E row (and column) includes counts for both of the E letters that appear in the
key, and we have only swapped one of the them.

Decrypting the ciphertext using the modified key in (12), we obtain the putative
plaintext

IETEHSTEEITSEHESSHRLITSKIEKEHSTHIEEILITRHRLITRTTHESIT.
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From this putative plaintext, we tabulate the digram frequencies to obtain the fol-
lowing array (the affected rows and columns are boxed):

E T I S H R L K

E 2 1 2 2 3 0 0 1

T 2 1 0 2 2 2 0 0

I 3 5 0 0 0 0 1 0

S 1 2 1 1 1 0 0 1

H 2 0 1 2 0 2 0 0

R 0 1 0 0 1 0 2 0

L 0 0 3 0 0 0 0 0

K 1 0 1 0 0 0 0 0

(13)

Note that elements outside of the E and S rows and columns are identical in (11)
and (13). This is as expected, since those letters were not involved in the swapping.
However, if we simply swap the E and S rows (and columns) in (11) we do not obtain
the frequencies in (13). Swapping the appropriate rows and columns of (11), would
give us a 0 in the HE position (i.e., in row H and column E). However, in (13) we find
a 2 in the HE position. Also, swapping, would yield 0 in the upper left EE position,
but in (13) we observe that EE has a count of 2.

To resolve the elements in the swapped rows and columns, we employ the DC

matrix in (9). From the putative key in (10), we note that the swapped elements E

and S correspond to the rows (and columns) labeled 2 and 9, respectively. Consider
the count for HE in matrix DP . Before the swap, the H in HE corresponds to row 8

(since plaintext H is encrypted as ciphertext 8), while the E correspond to either
column 2 or 5. In DC we have a 2 in position 82 (i.e., row 8, column 2) and a 2 in
position 85 giving a total of 4. This agrees with the pre-swap matrix DP in (11),
which has a 4 in position HE.

Swapping columns 2 and 9 of DC , would put a 0 into position 82, leaving the 2
in position 85 unchanged. Therefore, post-swap, the DP matrix will have a 2 in
element HE, which agrees with (13).

In practice, we do not actually perform any swaps in DC . Instead, we can simply
examine the elements that would have been swapped. Since the key elements are
swapped (in cases where the score improves), the correspondence between elements
of the putative key and the rows and columns of DC will be maintained.

The EE case mentioned above is more complex, since we need to consider four
cases, and both the row and column swaps are relevant. We leave the details of this
case to the reader.

The bottom line is that we can use the DC matrix to fill in the elements in the
swapped rows and columns. In the process, we do not perform any swaps on the DC

matrix itself. The elements in the putative key are swapped as appropriate, so the DC

matrix remains valid for subsequent iterations. Also, it is worth noting that there are
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symmetries that can be exploited, which reduce the number of elements that must be
computed using the DC matrix by at least half.1 Finally, note that given any putative
key K, we can use the DC matrix to determine the corresponding DP matrix. That
is, the use of DC to compute DP is not limited to swapping elements of the key—for
arbitrary changes to the key, we can use DC to determine all values of DP . We make
use of this fact in the random initial key layer, which we discuss next.

4.2 Random Initial Key Layer

Recall that for the simple substitution attack, we choose an initial key that gives the
best match between ciphertext and English letter frequencies. Consequently, for the
case of a simple substitution, it is trivial to determine an initial putative key.

For our homophonic substitution attack, the analogous step would be to chose an
initial key that best matches ciphertext letter frequencies of English letter frequencies,
subject to the outer hill climb constraints, na, nb, . . . , nz. However, finding an optimal
solution to this problem is decidedly nontrivial, since there are, in general, a large
number of cases to consider. For simplicity, suppose that all plaintext letters are
mapped to more than one ciphertext symbol. In this case, the number of possible
initial key combinations is given by the multinomial coefficient(

n

na, nb, . . . , nz

)
=

n!

na!nb! · · · nz!
.

In the more general case, where some of the plaintext letters are mapped to a
single ciphertext symbol, the formula is slightly more complicated. Suppose that ` of
the plaintext letters are each mapped to a single ciphertext symbol. For these letters
we can do no better than simply choosing a ciphertext symbol that most closely
matches the expected English frequency. Then each of the remaining n− ` plaintext
letters corresponds to more than one ciphertext symbol. Let m1,m2, . . . ,mn−` be
the elements of the set {na, nb, nc, . . . , nz} that are greater than one. The number of
combinations we must consider is(

n− `

m1,m2, . . . ,mn−`

)
=

(n− `)!

m1!m2! · · · mn−`!
(14)

1When swapping putative key elements, ciphertext is conserved, that is, no characters are inserted or
deleted. Consequently, any differences between the correct DP and the results obtained by simply swapping
elements (as in the simple substitution attack) must sum to zero between “swapped” pairs. For example,
above we noted that if we swap the first E row (and column) with the S row (and column) in (11), then
the HE entry would be 0. However, we see in (13) that the correct value is 2. That is, the correct value
is 2 more than the swapped value. The corresponding element to HE is HS, that is, the values in HE and HS

are swapped in the simple substitution attack. If these values were swapped, then HS would be 4 in DP ,
but it is actually 2, which is 2 less than the number obtained by swapping. In general, these differences in
“swap pairs” must sum to 0. So, once we compute HE, we can determine HS by reference to its swap value
and HE, without any need to reference DC . Similarly, EE is 2 greater than the value obtained by swapping,
and its corresponding element of SS is 1, which is indeed 2 less than we would obtain by swapping.
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Note that in the case of a simple substitution, ` = n and the formula in (14) yields 1.
That is, (14) holds for the simple substitution.

Since we cannot hope to choose an optimal initial key, we use a simple greedy
approach. Specifically, we find subsets that approximate the letter frequencies, be-
ginning with the highest-frequency letters and proceeding to the lower frequency
letters. That is, we first find a subset of size ne that is a reasonable approximation
to the expected frequency of E, followed by a subset of size nt that approximates
the expected frequency of T, followed by a subset of size na that approximates the
frequency of A in English text, and so on.

For example, suppose that ne = nt = 2 and na = 1, and we have the ciphertext
frequencies in Table 6. We see that ciphertext symbols 4 and 5 can be combined to
give a good approximation (12.9%) to the expected frequency of plaintext letter E

(12.7%). Similarly, symbols 6 and 7 together approximate the expected frequency of T
while symbol 1 approximates the expected frequency of A. Note that this approach
will generally find good approximations for the higher frequency letters, but may
not be as accurate for the lower frequency letters. This is a reasonable compromise
between efficiency and accuracy, since the high frequency letters will have the largest
impact on the solution.

Table 6: Initial Key

Ciphertext 0 1 2 3 4 5 6 · · · n

Frequency 8.3% 7.5% 6.7% 6.6% 6.3% 5.5% 4.4% · · · 0.1%
Initial key A O E E I T T · · · Q

As discussed in Section 2.4, a hill climb attack can only find a local maximum.
One way to improve the results of any hill climb is to conduct the attack multiple
times using different initial starting points. Therefore, in the random initial key layer
we generate a series of R distinct initial keys, all of which are consistent with the
outer hill climb layer. That is, given na, nb, . . . , nz with na + nb + · · · + nz = n,
for each of the R iterations of the random initial key layer, we select a subset of ne

ciphertext symbols that map to E, and nt ciphertext symbols that map to T, and so
on. For each case we use a slightly modified greedy algorithm. In practice, it is easy
to find a large number of distinct initial keys.

For each of the R initial putative keys generated at this layer, we first determine
the corresponding DP (using DC , without decrypting the ciphertext), then complete
the inner hill climb. The final result of the random initial key layer is the best-scoring
putative key obtained in any of these R iterations over the inner hill climb.

We conducted experiments to empirically determine a useful value for R. These
experiments are discussed in Section 5.
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4.3 Outer Hill Climb

In Section 4.2 we discussed the method used to generate initial keys that satisfy
the constraint na, nb, . . . , nz where na + nb + · · · + nz = n. The outer hill climb
layer provides these constraints, that is, the outer hill climb specifies the number of
ciphertext symbols that are mapped to each letter.

As the name indicates, this layer uses a hill climb approach. That is, we initially
specify na, nb, . . . , nz with na + nb + · · · + nz = n. Then we iterate, where at each
iteration we modify these subset sizes by “swapping” adjacent pairs (ranked from
high frequency to low). The swapping is somewhat different than in the inner hill
climb, so we explain it in more detail below. But, the point is that for each swap
we compute a score (i.e., the best score obtained via the random key and inner hill
climb layers) and use this score to guide adjustments in the distribution of letters to
symbols. That is, the goal of the outer hill climb is to climb to the correct distribution
of ciphertext symbols to letters.

First, we need to specify an initial distribution to begin the outer hill climb.
We begin by, in a sense, assuming the worst case. Specifically, we assume that
the mapping of letters to ciphertext symbols was chosen to flatten the ciphertext
statistics as much as possible. That is, we assume that about 12% of the symbols
correspond to E, while the letter T corresponds to about 9% of the symbols, and so
on. In addition, we assume that at least one symbol corresponds to each letter of the
alphabet. Examples of such initial distributions for various ciphertext symbol sizes
appear in Table 7.

Table 7: Initial Frequency Distribution

n ne nt na no ni nn ns nr nh nd nl nc nu nm nf nw ng ny np nb nv nk nx nj nq nz

26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
35 4 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
45 5 4 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
55 7 5 4 4 4 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
65 8 6 5 5 5 4 4 4 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
75 9 7 6 6 5 5 5 4 4 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
85 11 8 7 7 6 6 5 5 5 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
95 12 9 8 7 7 7 6 6 5 4 4 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

Next, we discuss the outer hill climb “swapping” process in more detail. Suppose
that n = 35. Then for the initial distribution, as given in Table 7, we have ne = 4
and nt = 2 and so on. Using this distribution, we execute the random initial key
layer which, in turn, calls the inner hill climb. The best score of this entire process
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is saved as the current score. Then we “swap,” starting with ne and nt. However,
instead of simply swapping the values, we increment ne and decrement nt. So, for
this example, the first swap consists of setting ne = 5 and nt = 1, with the remaining
values unchanged. Note that the distribution still satisfies na + nb + · · · + nz = n,
as required. Using this new distribution, we call the random initial key layer, which
calls the inner hill climb. If the best score from this process is less than score, then
we update score and maintain this new distribution; if not, score is unchanged and
we revert to the previous distribution.

If the score does not improve, then we switch the order of the pair and “swap”
again. For the example in the previous paragraph, we would increment the original nt

and decrement the original ne. That is, we let nt = ne = 3 and execute the inner
layers. Then for the next swap, we consider the pair nt and na, and so on.

We first perform this outer swap on all consecutive pairs, then all pairs at dis-
tance 2, then all pairs at distance 3, and so on. The process is analogous to that used
in the inner hill climb and illustrated in (1). However, in this case, the order mat-
ters, since one element is incremented and the other decremented, so we have twice
as many cases to consider. Again, we do not swap the actual values, but instead,
we increment and decrement the counts, subject to the constraint that every count
must be at least 1. Since every count must be at least 1, whenever the count to be
decremented is 1, we skip that step.

4.4 All Together Now

A high level overview of the algorithm appears in Figure 6. This diagram illustrates
the relationship between the three layers.

Pseudo-code for the attack appears in Tables 8, 9 and 10. Specifically, pseudo-
code for the outer hill climb layer is given in Table 8, while Table 9 has pseudo-code
for the random initial key layer, and Table 10 gives the pseudo-code for the inner hill
climb layer.

ciphertext

plaintext �

-

Outer
hill climb

layer

�

-na, nb, . . . , nz

putative key

Random
initial key

layer

�

-initial key

Inner
hill climb

layer
putative key

Figure 6: Block Diagram
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Table 8: Outer Hill Climb Layer

OuterHillClimb
global K = bestInitKey = bestKey = NULL
parse ciphertext to determine DC

initialize na, nb, . . . , nz as in Table 7
(m1,m2, . . . ,m26) = (na, nb, . . . , nz)
bestScore = RandomInitialKey(m1,m2, . . . ,m26)
bestKey = bestInitKey

for i = 1 to 25
for j = 1 to 26− i

(m′1,m
′
2, . . . ,m

′
26) = (m1,m2, . . . ,m26)

outerSwap(m′j,m
′
j+i)

score = RandomInitialKey(m′1,m
′
2, . . . ,m

′
26)

if score < bestScore then
(m1,m2, . . . ,m26) = (m′1,m

′
2, . . . ,m

′
26)

bestScore = score

bestKey = bestInitKey

else
(m′1,m

′
2, . . . ,m

′
26) = (m1,m2, . . . ,m26)

outerSwap(m′j+i,m
′
j)

score = RandomInitialKey(m′1,m
′
2, . . . ,m

′
26)

if score < bestScore then
(m1,m2, . . . ,m26) = (m′1,m

′
2, . . . ,m

′
26)

bestScore = score

bestKey = bestInitKey

end if
end if

next j
next i
return bestKey

For the outer hill climb layer, the “outerSwap” function is defined as

outerSwap(mi,mj)

increment(mi)

decrement(mj)

end outerSwap
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To simplify the pseudo-code for the outer hill climb that appears in Table 8, we
assume that the second argument to outerSwap is greater than one. If not, we skip
that particular step, since we require that at least one ciphertext symbol maps to
each plaintext letter, that is, mi ≥ 1 for all i.

Table 9: Random Initial Key Layer

RandomInitialKey(na, nb, . . . , nz)
bestInitScore =∞
for r = 1 to R

randomly initialize K = (k1, k2, . . . , kn) satisfying na, nb, . . . , nz

DP = digram matrix from DC and K
initScore = InnerHillClimb(DP )
if initScore < bestInitScore then

bestInitScore = initScore

bestInitKey = K
end if

next r
return bestInitScore

Table 10: Inner Hill Climb Layer

InnerHillClimb(DP )
innerScore = d(DP , E)
for i = 1 to n− 1

for j = 1 to n− i
K ′ = K
swap(k′j, k

′
j+i)

D′ = digram matrix for K ′ using DP and DC

if d(D′, E) < innerScore then
innerScore = d(D′, E)
K = K ′

DP = D′

end if
next j

next i
return innerScore
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4.5 Work Factor

As mentioned above, an exhaustive search attack on a homophonic substitution cipher
has a work factor of about 24.7n , where n is the number of ciphertext symbols. The
work factor for our hill climb attack depends on the following:

• The number of key distribution mappings generated in the outer hill climb layer:
For each pair from the set na, nb, . . . , nz for which both counts are greater than 1,
we “swap” the counts by incrementing and decrementing, and the order matters.
At most, this gives us 2

(
26
2

)
iterations of the outer hill climb layer.

• The number of initial starting points generated in the random initial key layer:
Experimentally, we determined that 40 random starts works well in practice.
This experiment is described in the next section.

• The number of score computations performed in the inner hill climb layer: The
precise value is given in (7), but, for simplicity, we use the upper bound

(
n
2

)
.

Combining these results, we find that the work factor is bounded by

80 ·
(

26

2

)
·
(
n

2

)
< 215 n2 (15)

where this work factor is in terms of the number of score calculations of the form

score = d(DP , E).

The work factor in (15) ignores the one-time work of constructing the ciphertext
digram matrix DC . Constructing DC is the only work that depends on the ciphertext
length, since no decryption of the plaintext is required. This is analogous to the fast
simple substitution attack, where one initial decryption is needed, after which the
algorithm has no dependence on the ciphertext length.

Neglecting the (minimal) dependence on the ciphertext length, for the simple
substitution attack, the work factor is

(
26
2

)
< 29, in terms of the number of score

calculations. Consequently, the work for our homophonic substitution attack is on
the order of 64n2 times greater than required for the fast simple substitution attack.
In addition, each score computation for the homophonic substitution is slightly more
complex, since we use the DC matrix, as opposed to simply swapping rows and
columns of the digram matrix DP .

Timing results for our implementation of the homophonic substitution attack
appear in Figure 7. These empirical timings appear to be generally consistent with
the analysis in this section.

5 Experimental Results

We have implemented the fast homophonic substitution attack discussed in the pre-
vious section. The code was written in C++ in a UNIX environment.
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Figure 7: Program Timings

We tested a variety of simple and homophonic substitution ciphers. To test the
accuracy of the implementation, we generated various ciphertexts and compared the
attack results to the actual solutions. For each attack, we calculated the percentage
of recovered plaintext symbols and plotted graphs to display our success rates.

The test cases discussed in this section cover different scenarios involving various
ciphertext sizes, number of ciphertext symbols, and number of initial starting points
provided to the inner hill climb layer. For all test cases, the plaintext is English and
hence the E matrix contains standard English digram statistics. Also, all tests were
conducted twice, once using 27 plaintext symbols (English letters, plus space) and
once using 26 plaintext symbols (English letters without space). The results were
similar, so here we only include test cases using 27 plaintext symbols.

5.1 Simple Substitution

In this section, we briefly consider test cases where our algorithm is applied to a
simple substitution cipher. For each test, we used our inner hill climb algorithm
and the random initial key layer with R = 40 initial starting points. Note that
this algorithm is essentially equivalent to 40 iterations of Jakobsen’s algorithm, with
random initial starting points in each iteration. The plaintext consists of 27 symbols
(26 letters and space), and the following ciphertext length were considered: 300, 500,
700, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, and 10,000 characters. The
graphs in Figure 8 present the results for these test cases.

From the graphs in Figure 8, we clearly see that as the length of the ciphertext
increases, the score improves and the percentage of correct symbols increases. These
results are as expected.
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Figure 8: Simple Substitution Cipher

5.2 Homophonic Substitution

We applied our attack code to more than 1000 homophonic substitution test cases.
For these test cases, ciphertext lengths ranged from 300 to 10,000 characters, cipher
alphabet sizes ranged from 27 to 100, and the numbers of initial starting points ranged
from 1 to 100. For all test cases reported here, the plaintext consists of 27 symbols
(26 English letters plus the space).

In the remainder of this section, we summarize several test cases. These test cases
only present a small subset of the tests that were conducted.

• Case 1: In this case, we test the inner hill climb layer. To do so, we assume that
the outer hill climb generated the correct letter distribution, that is na, nb, . . . , nz

exactly matches the actual key. Also, we use one initial random starting point.

– Number of ciphertext symbols: 27 to 63

– Ciphertext lengths: 300, 500, 700, 1000, 2000, 3000, 4000, 5000, 6000, 7000,
8000, and 10,000

– Results: The graph in Figure 9 presents the final scores and the graph in
Figure 10 presents the success rates. For clarity, a subset of the results
from Figures 9 and 10 are presented in Figures 11 and 12, respectively.
Note that with a success rate of about 80% or more, it is easy to manually
recover the correct plaintext and key.

– Observations: As expected, the scores decrease (i.e., the solutions improve)
as the size of the ciphertext increases, regardless of the number of ciphertext
symbols. However, with limited ciphertext, the scores are poor.

• Case 2: This test case is the same as Case 1, except that we use 40 initial
random starting points. That is, Case 1 tested the inner hill climb layer alone,
while this case tests the inner hill climb and random initial key layers together.
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Figure 9: Homophonic Substitution: Case 1 Scores

Figure 10: Homophonic Substitution: Case 1 Success Rate

– Number of ciphertext symbols: 27 to 63

– Ciphertext lengths: 300, 500, 700, 1000, 2000, 3000, 4000, 5000, 6000, 7000,
8000, and 10,000

– Results: The graph in Figure 13 presents the final scores and the graph in
Figure 14 presents the success rates. In Figures 15 and 16, we duplicate
the results from Figures 13 and 14, and also include some instances with
larger cipher symbol size.

– Observations: Including the random initial key layer greatly improved the
results. It is interesting that for all cipher symbol sizes less than 100, the
scores converge in a fairly similar fashion as the ciphertext size increases.
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Figure 11: Homophonic Substitution: Case 1 (Subset) Scores

Figure 12: Homophonic Substitution: Case 1 (Subset) Success Rate

Also, from the graph is Figure 15, it appears that for homophonic substi-
tutions with 100 or more cipher symbols, our results are likely to be poor,
regardless of the size of the length of the ciphertext message.

• Case 3: Here, we duplicate much of the previous test case, but use 100 random
starting points for the random initial key layer—as opposed to 40 in Case 2.

– Number of ciphertext symbols: 28, 35, 45, 55, and 63

– Ciphertext lengths: 300, 500, 700, and 1000

– Results: The graph in Figure 17 presents the final scores and the graph in
Figure 18 presents the success rates.

– Observations: The results are not significantly improved over the previous
test case, so we conclude that 40 initial starts is sufficient.
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Figure 13: Homophonic Substitution: Case 2 Scores

Figure 14: Homophonic Substitution: Case 2 Success Rate

• Case 4: Inner hill climb layer with random initial key layer (with 40 initial
starting points per iteration) and outer hill climb layer. Note that this is the
first test of our complete algorithm.

– Number of ciphertext symbols: 28, 35, 45, 55, and 63

– Ciphertext lengths: 300, 500, 700, 1000, 2000, 3000, 4000, 5000, 6000, 7000,
8000, and 10,000

– Results: The graph in Figure 19 presents the final scores and the graph in
Figure 20 presents the success rates.

– Observations: Including the outer hill climb layer gives us similar results to
Case 2. This is a very positive finding since, in effect, Case 2 assumes the
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Figure 15: Homophonic Substitution: Case 2 (Superset) Scores

Figure 16: Homophonic Substitution: Case 2 (Superset) Success Rate

optimal output from the outer hill climb layer. The bottom line is that the
results in this test case indicate that the outer hill climb layer is effective.
Also, as with the previous test cases, the scores show a strong dependence
on the ciphertext length.

Finally, we summarize the results for our homophonic substitution attack in the
form of the 3-dimensional graph in Figure 21. The graph shows the success rate
(z-axis) as a function of the ciphertext length (x-axis), and number of ciphertext
symbols (y-axis). As noted above, a success rate of about 80% is sufficient to easily
recover the plaintext
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Figure 17: Homophonic Substitution: Case 3 Scores

Figure 18: Homophonic Substitution: Case 3 Success Rate

6 Zodiac Ciphers

The Zodiac was a serial killer who claimed at least seven victims (five dead, two
injured) in the San Francisco vicinity during the late 1960s and early 1970s [5].
Nobody was prosecuted for the Zodiac killings. During his killing spree, the Zodiac
sent letters to local newspapers and police, often taunting police for their failure to
determine his identity. Some of these letters included ciphers and apparent ciphers.

The “Zodiac 408” cipher—so-called because it has 408 ciphertext symbols—was
a three-part ciphertext, with one part sent to the San Francisco Chronicle, one part
sent to the San Francisco Examiner, and the third part sent to the Vallejo Times-
Herald. The cipher, which is a homophonic substitution, was broken within six days
of its publication by local school teachers, Donald and Bettye Harden [1].
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Figure 19: Homophonic Substitution: Case 4 Scores

Figure 20: Homophonic Substitution Case 4: Success Rate

In addition to the Zodiac 408 cipher, the Zodiac killer sent three more messages
that appear to be ciphertext. Two of these are very brief and therefore not amenable
to cryptanalysis. However, the unsolved “Zodiac 340” (so-called because the cipher-
text is of length 340) appears to offer some prospects for cryptanalysis.

Next, we discuss the solved Zodiac 408 cipher. Then we consider the Zodiac 340
and a related cipher challenge problem.

6.1 Zodiac 408 Cipher

The Zodiac 408 cipher is displayed in Figure 22. Note that each of the three parts of
the ciphertext message is displayed as eight rows of 17 symbols.
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Figure 21: Homophonic Substitution Success Rates

The solution to the Zodiac 408 cipher is given in Table 11, where we display two
rows of the original message per line, with a small gap between the two. Also, we
have left a gap between each of the three parts.

Note that the misspellings appear in the original message. Some of these “mis-
spellings” might be due to the fact that a thick-tipped pen was used, and several of
the symbols are similar. Also, the final 18 symbols appear to be filler used to make
the cipher fit a predetermined grid [6].

The frequency distribution for the Zodiac 408 plaintext is given in Table 12. The
letters J, Q, and Z do not appear in the plaintext.

6.2 Zodiac 340 Cipher

The unsolved Zodiac 340, which appears in Figure 23, is reminiscent of the Zodiac 408.
This apparent ciphertext was mailed to the San Francisco Chronicle on November 8,
1969 [16]. There have been many proposed solutions to the Zodiac 340, but none
of the “solutions” published to date holds up under scrutiny. For recent examples
of proposed solutions, see [18] or [22]. The website [14] gives a good analysis of the
flaws in the supposed solution [18].
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Figure 22: Zodiac 408 Cipher [19]

It is possible that the Zodiac 340 is a homophonic substitution combined with
another encryption technique. Of course, another possibility is that the Zodiac 340 is
not a ciphertext—it could be nothing more than a random collection of symbols. For
the remainder of this paper, we assume the Zodiac 340 is a homophonic substitution.
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Table 11: Zodiac 408 Plaintext

ILIKEKILLINGPEOPL EBECAUSEITISSOMUC

HFUNITISMOREFUNTH ANKILLINGWILDGAME

INTHEFORRESTBECAU SEMANISTHEMOSTDAN

GEROUSANAMALOFALL TOKILLSOMETHINGGI

VESMETHEMOSTTHRIL LINGEXPERENCEITIS

EVENBETTERTHANGET TINGYOURROCKSOFFW

ITHAGIRLTHEBESTPA RTOFITISTHAEWHENI

DIEIWILLBEREBORNI NPARADICEANDALLTH

EIHAVEKILLEDWILLB ECOMEMYSLAVESIWIL

LNOTGIVEYOUMYNAME BECAUSEYOUWILLTRY

TOSLOIDOWNORSTOPM YCOLLECTINGOFSLAV

ESFORMYAFTERLIFEE BEOROETEMETHHPITI

Table 12: Zodiac 408 Plaintext Frequency Counts

letter E I T L O S A N R M H G F U C Y W P B V K D X

count 52 40 35 31 26 23 23 22 16 16 16 12 11 10 10 8 7 7 7 6 6 6 1

We conducted several tests on the Zodiac 340 cipher. Two typical test cases are
summarized below.

• Case 1: Inner hill climb with 40 random starts (no outer hill climb)

– Plaintext symbols: 26 letters (no space)

– Score: 6092

– Putative plaintext:

ssunolldfrhaemert totsthiveiwaneryh

sieagtebeithehast dooilloedroitturr

ongtanttheeftfors ooulelicetorenret

hetrkvareapedaaeh tertythitotwatzen

tngtxtburesaiqjor caledtlttioinesic

etusenshewsoxmgri rnalutheemegatfse

ajndihttheesataou leetlyerexaadentt

ispaeeonosndebect haarasrtiolaygker

uamteerontelishhe tthioaiafidsmstho

hertininsowisecoa ngestordabioqhrat
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Figure 23: Zodiac 340 Cipher [16]

• Case 2: Outer hill climb with inner hill climb and 40 random starts

– Plaintext symbols: 26 letters (no space)

– Score: 5868

– Putative plaintext

passturinytistref otinatlkealdethen

ngidwineraanstmpb atthruetiqtliishe

cowimerfthonintys tesrouletfryoseea

thihakvendoridmst arebertlicolmizso
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fewiaieseondgxjth emuniirbiltheonge

nissheatelntatwhl eedusbtththwdinno

mjoagtiothondaves uroorehehaddiheii

gnoititorasinehei tddqmnhaltrdeware

sdtishereiouantns iinarmadnlaptsant

toyfaehencllnterd swepotyamelexthvi

Obviously, neither of these solutions is particularly impressive. Also, neither score
is indicative of a strong match to English.

6.3 MysterTwister Zodiac Challenge

The MysteryTwister website [11] includes a large number of interesting cipher chal-
lenges, ranging from pencil-and-paper to research-level problems. One of the chal-
lenges posted on the MysterTwister website was inspired by the Zodiac cipher. We
applied our homophonic substitution attack on this challenge problem. Note that the
challenge problem ciphertext has 340 character, with 65 distinct symbols. That is,
the challenge was designed to mimic the Zodiac 340 cipher.

We consider two cases. First, we use English digrams in the target matrix E. That
is, we follow the same procedure as used in all of the examples presented to this point.
Second, we consider a case with the Zodiac 408 plaintext as the expected “language,”
that is, we replace the E matrix based on English, with the digram statistics of the
Zodiac 408 plaintext. Since the Zodiac 408 is known to be the Zodiac’s writing, this
might better model the underlying plaintext than standard English. The results for
these two test cases are summarized below.

• Case 1

– Outer hill climb layer with initial random key layer (40 initial starts per
iteration) and inner hill climb layer

– E matrix: English digrams

– Score: 5567

– Putative plaintext:

orevcochinnoasabe xdeteoghetrytieje

alounleytansismay ankerirntiorftdth

onaholatthgldotes theduosthspattfen

oenassaueperandee livehishectyemoon

segecahetigatyree rontoqqhtsutheles

frioichedcridarme mbendfothanfarily

oeadsconereficehd ithecprgiassseiee

imaloesorhotrmdte dhedstorisineratr

tagrhifainingthap rearestlomthlshes

otniterdithrroncc dcanretopothaqclr
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• Case 2

– Outer hill climb layer with initial random key layer (40 initial starts per
iteration) and inner hill climb layer

– E matrix: Zodiac 408 plaintext digrams

– Score: 4229

– Putative plaintext:

ilidetillingreopl dbecaeseittisomal

ezenitiimofeaunth anjilltngwildgame

inthezorrestbecau semanisthenostdan

gefousaninalosall todillsomethinggi

vesmethemostthril lingexqerenceitis

dteiwillbereborni npafadiceandallth

eieavetilledwillb ecomenrslavesiwil

lnotgiveroemrname belauserouwilltrr

toslowdownofstorn rlollectingozslav

essormraaterlisee beoftetenetheqitt

From the putative plaintext obtained in Case 2, we can complete the solution
manually. The solution is given by (with spaces added):

I like killing people because it is so much fun it is more fun than killing
wild game in the forrest because man is the most dangerous animal of all
to kill something gives me the most thrilling experence it is die I will be
reborn in paradice and all the I have killed will become my slaves I will not
give you my name because you will try to slow down or stop my collecting
of slaves for my afterlife ebeorietemethhpiti

As an additional experiment, we modified the outer hill climb so that it does
a more thorough, but slower, hill climb. In this modified hill climb, we “swap” all
adjacent pairs of elements, and then iterate, that is, we again swap all adjacent pairs of
elements, and again, and so on. This continues until we complete one entire iteration
without any swap improving the score. We refer to this as the “slow” outer hill climb,
as opposed to our standard outer hill climb which we call the “fast” approach. Our
test results comparing the slow versus fast outer hill climb are given in Table 13.

From Table 13 we again see that using the Zodiac 408 statistics for the E matrix
gives much better results than standard English. However, it is interesting to note
that the slow hill climb gives significantly better results when the Zodiac 408 statistics
are used, while it actually yields worse results when English statistics are used. The
explanation appears to be that the slow hill climb does indeed yield “better” results,
in the sense of producing putative plaintext that more closely models the target
matrix E. However, the Zodiac challenge cipher does not fit the standard English
model particularly well. Consequently, as the hill climb better matches the English
matrix E, it match the true plaintext less. In contrast, using the Zodiac 408 statistics
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Table 13: MysteryTwister Zodiac Challenge

Case Description Percentage
1F Fast outer hill climb and English stats 13.00%
1S Slow outer hill climb and English stats 4.00%
2F Fast outer hill climb and Zodiac 408 stats 70.00%
2S Slow outer hill climb and Zodiac 408 stats 84.00%

(which are virtually identical with those of the Zodiac challenge), a stronger match
to the E matrix, as in Case 2S of Table 13, produces more accurate results.

The results in this section strongly indicate that it should be worthwhile to
consider specialized “language” models when trying to break the Zodiac 340. It
might also be useful to employ the slow outer hill climb, but that appears to yield a
more modest improvement. However, for the Zodiac 340, we have a brief ciphertext
(only 340 symbols) and a relatively large alphabet (62 symbols). From Figure 21, we
see that for these parameter values, we will need every possible advantage to have a
reasonable chance of breaking the cipher.

7 Conclusions and Future Work

We designed and implemented an efficient attack on homophonic substitution ciphers.
The attack utilizes a nested hill climb approach, and can be viewed as a generaliza-
tion of the fastest known attack on simple substitution ciphers. The algorithm was
implemented and extensively tested. We were able to recover at least 80% of the
plaintext characters for ciphers having 42 ciphertext symbols or less, provided we
have a ciphertext of 1000 or more characters. If the ciphertext length is at least 3000
characters, then we achieve the same level of success for ciphers with 75 or fewer
ciphertext symbols.

These results indicate that the Zodiac 340 cipher—assuming it is a homophonic
substitution—may be out of range for our attack. However, tests indicate that with a
more accurate plaintext “language” model and a more thorough outer hill climb, we
should have a realistic chance of breaking a cipher such as the Zodiac 340. Therefore,
(again, assuming the Zodiac 340 is actually a homophonic substitution), our best
chance of success is, perhaps, to devise a strong language model for the unknown
plaintext. This would require some degree of insight and luck.

There are several possible improvements to our attack algorithm. The slow outer
hill climb that was briefly discussed in Section 6.3 is one such improvement. Another
possible modification to the outer hill climb is to make multiple “swaps” with a
given pair until the score no longer improves, before moving on to the next pair.
Perhaps a combination of these two modifications to the outer hill climb layer would
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be optimal, with respect to improving the score. However, these modifications would
also significantly increase the cost of the algorithm.

It might seem natural to try to extend the scoring to include, say, trigrams.
However, swapping and scoring would both become extremely complex, and the work
factor would increase exponentially. Dictionary-based attacks also seem tempting,
but have similar drawbacks.

A potentially profitable modification to our algorithm would be to include a “crib”
feature. That is, the user could specify a word that might appear in the plaintext,
and this word could be tried at every offset in the ciphertext. This would be a
straightforward modification of the algorithm.

Various heuristic search techniques could be combined with the general approach
discussed in this paper. For example, the outer hill climb could be replaced by a
genetic algorithm [8]. While genetic algorithms have been applied to homophonic
substitution ciphers [3, 13], they have not been used in a manner similar to the
method suggested here. Other heuristic search techniques could also be considered.
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