
1

Neural Network CAPTCHA Crackers
Geetika Garg, Chris Pollett

Abstract—This paper describes several experiments using deep
neural networks to break character-based image CAPTCHAs. The
goal of our research was to see if one could develop a single neural
network capable of breaking all character-based, image CAPTCHAs.
Our main deep neural net uses convolutional neural network
layers followed by a dense layer, and a recurrent recurrent neural
network layer instead of the conventional method of CAPTCHA
breaking based on segmenting and recognizing individual letters. Our
experiments with these networks were conducted using a synthetically
generated dataset of CAPTCHAs which is independently useful
for future research. We trained on both fixed-and variable-length
CAPTCHAs and our main neural net configuration was able to
achieve accuracy levels of 99.8% and 81%, respectively.

Keywords—Image-based CAPTCHAs, deep neural networks

I. INTRODUCTION

A Completely Automated Public Turing test to tell
Computers and Humans Apart, or CAPTCHA, is a problem
that is very easy for a human to solve, but very difficult for
a computer to solve. [1] Typically, it involves a task like
recognizing a string of characters in an image. In this paper,
we describe our work to make it easier for a computer to solve
string-of-character CAPTCHAs.

When CAPTCHAs were first proposed, there were no AI
programs that could easily perform the tasks necessary to
break them using computer vision techniques. Recently, deep
neural networks have brought major advancements in the field
of AI and computer vision. They have reached state-of-the-art
or better performance as compared to other methods in the
fields of speech recognition [9], computer vision, natural
language processing [17], and language translation [26]. It
is therefore interesting to see to what extent deep neural
networks can be used to break CAPTCHAs to assess how
secure CAPTCHA-based security systems currently are.

Traditionally, for object and character recognition tasks
in computer vision, separate modules were created for
preprocessing (noise reduction), character segmentation,
character recognition, and sequence generation, where the
sequence of characters with the highest probability was
generated. Splitting by character, however, means that the
system cannot easily use information from the whole image
to help in the recognition task. The error rate on the whole
task is at least the error rate for a single character which is
turn at least the error rate of any individual step in the process
of recognizing a character. On the other hand, the system we
describe in this paper is trained on the whole image and can
make use of the information between characters.

Geetika Garg is a Software Engineer with Cisco Systems, 725 Alder Drive,
Milpitas CA (email: geetikagarg07@gmail.com)

Chris Pollett is a professor in the Department of Computer Science, San
Jose State University, 1 Washington Square, San Jose CA 95192 (e-mail:
chris@pollett.org).

The use of whole images is motivated by how humans might
solve CAPTCHAs. We know the human mind is capable of
recognizing strings of characters, and the process by which
this is done has been elucidated over the years by many
remarkable psychological experiments involving timing tests,
brain imaging, etc. [4]. The clearest visual inputs come from
the fovea of the eye as it saccades over a piece text. McConkie
and Rayner [16] have shown that how the eye moves in
its saccades is adapted to the size of the text, and that it
is typically on the order of seven to nine characters – not
single characters. This is also about the length of longest
CAPTCHAs, and suggestive that a CAPTCHA would be
treated as a whole unit by the mind. Typically, when words
are involved the gaze is focussed slightly to the left of the
current word being read, and various differences between the
characters in the word, such as font variants in a letter like ‘r’
are ignored, while other important difference, such as between
e and o are kept. This suggests that a program to break
CAPTCHAs should have units, such as convolutional layers,
capable of computing these invariants and differences.

The system we present is an example of a so-called deep
neural network. That is, it uses an artificial neural network of
consisting of multiple layers where the layers have particular
connection topologies which are less than the full set of
connections between the given layer and the prior layer or
inputs. The fact that the layers are less than fully connected
means that the space of weights that need to be trained for
using back propagation and related algorithms is smaller, so
the rate of convergence of our network will typically be faster
than for a fully connected network, and since the space of
weights is smaller, the risk of overfitting is reduced.

Our work, developed initially as part of the first author’s
master’s writing project, combines the idea of two papers,
[8] and [28], which guided our choice of layers to use in
building our deep neural network. We built a model that
uses convolutional neural network layers to learn CAPTCHA
image features and then uses those features in a recurrent
neural network layer followed by a softmax layer to output
the sequence of characters of an image. The combination of
these layers gives a single deep neural network that performs
end-to-end CAPTCHA recognition. For our recurrent neural
network layer, we used an LSTM (Long Short Term Memory)
layer [11] [12] [13].

The rest of this paper is organized as follows: In the next
section, we briefly discuss the history of CAPTCHAs and
their use in online spam prevention. This is followed by
a section detailing prior work on image-based, CAPTCHA
breaking. After this, we have a section presenting the necessary
background for our results with respect to general neural
networks, network training, and neural network layer types.
We then describe the CAPTCHA dataset we created for our



2

Fig. 1 A Sample image-based CAPTCHA

experiments. We give the neural network models we used in
our CAPTCHA breaking experiments. We then describe our
experiments. In the last section, we draw some conclusions
from our experiments.

II. INTRODUCTION TO CAPTCHAS

In this section we review the important aspects of
CAPTCHAs that are needed to understand our decisions in
designing neural networks to break them. CAPTCHAs were
first mentioned in an unpublished paper by Moni Naor [20]
in 1996, but were popularized by the paper of Von Anh,
et al [1]. CAPTCHAs were first used on an actual website
by AltaVista and were patented by the company that owned
AltaVista, Compaq [2]. A character-based image CAPTCHA
is an image presented on a web page containing a series of
oddly drawn letters or numbers together with a text field in
which a user is required to enter the characters presented in
the image. Correctly, entering the sequence allows the user
to continue carrying out some activity on the given web
page. For example, a CAPTCHA might appear at the end
of a form to sign up for a free email account. Entering
the CAPTCHA correctly would allow the user to sign up,
answering incorrectly would mean no account is set up. If the
CAPTCHA is hard enough for a computer it could be used to
prevent a email spam bot from signing up for an account and
sending out spam emails.

Figure 1 gives an example of a character-based image
CAPTCHA. CAPTCHAs are based on the assumption that the
task required is something that is difficult for a computer to do.
That is, it is a difficult AI problem. Thus, teaching computers
to break CAPTCHAs is work towards solving the associated
AI problem. This results in a win-win situation: So as long
as a CAPTCHA is hard, it can be used to prevent spam, and
when it is broken, the resulting algorithm can be used for other
problems in computer vision. In our particular case, the same
kind of neural nets as we develop to break CAPTCHAs could
be used for word recognition. Breaking more recent kinds of
CAPTCHAs, which involve having the subject click on all
images belonging to some category such as a particular food
type, would further help with image categorization algorithms.

At this point we should clarify what it means to break a
CAPTCHA. In most CAPTCHA systems, a user is allowed
some number of tries to solve the CAPTCHA. After each try,
the time before the next try might be lengthened, or after some
number of tries, the system will refuse any further tries. A

lengthening time out system can easily confuse a bot, so it is
probably easier in this case to say the CAPTCHA is broken if
the system can guess the CAPTCHA on the first try. In a fixed
number of try system, a much lower success rate is needed to
effectively break the CAPTCHA system. For example, suppose
one is allowed only three tries, and one’s CAPTCHA breaker
has a success rate of 50%. Then the odds that the CAPTCHA is
broken after three tries is 1−(1−.5)3×100% = 87.5%, which
is quite high. So a system which has a success rate above a
half is largely compromised in the multiple try scenario.

In the single try scenario, one should take the perspective
of the person using a CAPTCHA-breaking bot in deciding
if the CAPTCHA is broken. If many sites use the same
CAPTCHA system, as may be the case for a popular bulletin
board, then one still might be able to create a fair amount of
spam volume on these sites even with a mediocre CAPTCHA
breaking success rate. For example, suppose one has a spam
bot that discovers 100,000 sites each running the same kind
of bulletin board. It then tries to post a spam message on each
of these sites with a success rate of 50%. This would still
result in 50,000 successful spam messages. The creators of
the bulletin board system should thus view the CAPTCHA as
broken because they would likely receive a lot of complaints
from the sites that were compromised, and they would fear
the impact of these complaints on adoption of their software.

Most bulletin boards are relatively low traffic and have a
more limited impact in terms of likely web-page views than a
top 100 or even top 1000 site. If a CAPTCHA-breaking bot is
targeting a single site, the desire might still be to have as many
successful CAPTCHA entries as possible to spread whatever
message or to acquire as many accounts as one can on a large
site. In this situation, the large site has a better odds against the
CAPTCHA breaker as long as the CAPTCHA breaker is not
running on too many IP addresses. In this setting, the single
site can just monitor CAPTCHA fails from an IP address
and ban that address if that number of failures ever gets too
high, retroactively removing the spam messages or locking the
affected accounts. Unless the CAPTCHA-breaker was coming
from a botnet, this would tend to limit its reach on a major
site except if the success rate was very high. It is in this kind
of hard scenario that we envision our CAPTCHA-breaking
system working. That is, there is a larger incentive to make the
success rate as high as possible, rather than settling for “good
enough”. A large site would typically be trying to determine
bot-like behavior even for an agent that is correctly entering
CAPTCHAs. A spam-bot is a reasonably sophisticated piece of
software with many components, only one of which might deal
with CAPTCHA breaking. Any one of these parts might cause
the bot’s traffic to be flagged by the large site. The goal in
this hard CAPTCHA-breaking setting is to get the CAPTCHA
component to be successful enough that it is not the main
cause of a spam-bot being flagged. If a CAPTCHA-breaker
has at least as good performance as a human at recognizing
the CAPTCHA, then it is unlikely that it will be the component
to cause a flag.

Building a CAPTCHA breaker for any of the particular
problems above does not entail that the concept of
character-based CAPTCHAs has been fully broken.



3

For this, one would have to have a single, character-based,
CAPTCHA-breaker which achieves near human-level
performance on any character-based CAPTCHA problem, not
just the particular problem of a particular kind of website.
We view our work as taking a step towards the goal of fully
breaking the character-based CAPTCHA problem.

III. RELATED WORK

We now turn our attention to previously created CAPTCHA
breaking systems. Since CAPTCHAs first became popular
on the web, several such systems have been developed.
For example, Mori and Malik [19] created a system which
breaks the EZ-Gimpy CAPTCHA with a 92% success rate.
It further breaks the Gimpy CAPTCHA with a 33% success
rate, These systems were hand-tuned and used sophisticated
object recognition algorithms. In comparison to these earlier
works, we trained an end-to-end neural network system that
can extract the features needed for classification with minimal
hand-tuning. Artificial neural networks have shown great
promise in many domains, such as natural language processing
[17], speech [9], and image processing [26] [28]. We will
discuss neural networks later in this paper, however, suffice
it to say they have been used before as a component of
CAPTCHA breaking systems. For now we want to consider
how they have been used previously to distinguish this
previous use from how we used neural nets. A representative
example of how neural nets have been previously used is given
in the paper [3]. In it, they describe the following steps to
determine individual characters in a CAPTCHA:

1) Preprocessing
2) Segmentation
3) Training for individual character recognition
These steps are often very difficult to do because:
1) Segmentation is difficult, as some digits can overlap with

other digits.
2) Understanding individual character deformity is difficult.

For example, a digit “2” can have a larger loop or just
a cusp.

3) Determining the scale of characters is difficult. It is not
known how big a character will be, so it is not known
how big the segmentation boxes should be.

4) Character orientation is difficult. Characters can be
rotated at arbitrary angles, making recognition difficult.

Modules for each of the steps mentioned above are optimized
independently, so systems combining these modules do not
work well in practice.

Our approach is to instead learn a deep neural network,
a single monolithic system for embedding these modules,
and train the entire network together to make sure that that
objectives of all the modules are aligned. To train our system,
we can just provide CAPTCHA images and let it learn image
features and how to use these features for recognition.

An example of using a similar approach to ours, but
in a different context, is given by the paper [26]. There
a convolutional neural network for detecting handwritten
mailing addresses using convolutional neural networks was
given. It achieved a 96% accuracy in recognizing complete

street numbers. Their work suggested our use of convolutional
network layers in our network. However, in [26], they fixed
the length of the street number in an image. If one intends
to build a system that can fully-break, character-based image
CAPTCHAs, then one cannot assume one knows the length
of the CAPTCHA in advance. To tackle this problem, we
incorporated their set up as a layer that feeds into a recurrent
neural network. Such networks have achieved good results
recently, as shown by the “show and tell” paper [28] by
Google, where they generate a caption (of variable length) for
a given image. The challenging task in decoding a CAPTCHA
is to guess all the symbols in the CAPTCHA correctly. If
even one is wrong, we have to discard the result. In view
of the papers [26] and [28], it seems natural to try to use
a neural network combining a convolutional layer with a
recurrent network to try to fully solve the character-based,
image CAPTCHA problem. From the research mentioned in
the introduction about the number of characters in focus in
a human-eye saccade, one would expect that one would not
need to be able to handle arbitrary variations in CAPCTHA
length to achieve human-level performance on this problem.
Instead, one would expect to need to only handle variation up
to around seven to nine characters.

IV. NEURAL NETWORK BACKGROUND

Our CAPTCHA-breaker makes use of artificial neural
networks so in this section we give a brief introduction to
this topic. Artificial neural networks are inspired by the brain
where the base computing units are cells called neurons which
form various connections between each other. Computation
is mainly carried out by these cells by electrical signals
sent between them. In 1943, McCulloch and Pitts [15]
abstracted out the key features of the biology-based neurons
and considered networks built out of these artificial neurons.

A basic unit in an artificial neural network typically consists
of some kind of activation function, g : R −→ R, applied
to a weighted sum of input values. Nonrecurrent networks,
usually known as feedforward networks, of such neurons are
directed, acyclic graphs, G = (V,E). In these graphs, source
nodes, nodes of indegree 0, are inputs and sinks, nodes of
outdegree 0, are outputs. Each internal nodes is labeled with
a gate equation. Nodes are allowed to have multiple outgoing
edges. Sometimes rather than using a weighted sum, gates that
compute other simple functions of the inputs such as products
or maxes are also considered. Given an assignment ν of a value
to each input vertex, the value of the output of the network
can be computed in a bottom up fashion from the inputs
applying the gate equation of each node for which its inputs
have already been computed. Let in(vj) = {vi|(vi, vj) ∈ E}.
That is, if the gate equation was a weighted sum, the value of
node vi is

ν(vi) = g(
∑

vj∈in(vi)

wji · ν(vj)).

Here wji is a real-valued weight for the edge between
node vj and vi. An example activation function g is
a step function, which takes one value for inputs less



4

than or equal to the threshold and a different value for
values larger than this threshold. Often it is useful to
have continuous and differentiable activation functions whose
behavior approximates a step function. A popular choice of
such a function is the sigmoid function, a type of logistic
function, g(t) = 1

1+e−t . Another popular choice of activation
function, and the one we used in our experiments, is the
rectifier function g(t) = max(0, t) which is continuous for
all reals, and differentiable everywhere except the origin.

Typically, when designing artificial neural networks,
neurons are arranged into layers, the 0th layer being the
inputs and the last layer being the output, and where only
neurons in the j layer serve as inputs to the j + 1st layer.
If the sigmoid function is used, and the gate equations are
all weighted-sums, than a single layer artificial network, a
perceptron layer, computes a relatively simple, differentiable
vector-valued function of its inputs. For these networks, one
can use gradient-descent methods to find the “closest” such
function to a set of training data. Unfortunately, it was shown
by Marvin Minsky and Seymour Papert [18] that for training
data coming from the output of the parity function, this
“closest” perceptron layer might be correct on only half of
the inputs. Because of this result, and because multi-layer
networks were computationally expensive and there were no
good learning algorithm for this harder setting, artificial neural
networks experienced a decline in popularity in the 1960s.

In the seventies, Werbos [29] developed the backpropagation
algorithm for training multi-layer neural networks based on
earlier work coming from control theory. In 1986, Rumelhart,
et al [23] performed experiments which showed this method
produced useful internal weights in neural networks. This led
to renewed interest in neural networks. As the number of
layers, and so weights in these layers, grows in an artificial
neural network, the amount of data needed to effectively train
an artificial neural network increases. This again caused a
gradual decline in popularity of neural nets as it was often
difficult to obtain such large data sets.

From about 2005 onwards, several trends converged that
resulted in a second resurgence of popularity of neural nets.
Firstly, computers continued to get faster, both chips with
many cores and graphics cards being used as general compute
platforms, allowed larger problems to be effectively tackled.
Secondly, computer memory also got cheaper, which allowed
larger data sets to be held closer to the faster chips. Further,
with the advent of the web, larger-scale, training data sets
became more readily available. Finally, better models for
recurrent networks, networks which relax the condition that
our networks be acyclic, were developed. It has been argued
that artificial neural nets are currently the hottest area in the
field of machine learning [21]. Recent impressive applications
of artificial neural networks include facial recognition as used
by Facebook to tag photos [27] and image captioning [28] by
Google.

A. Training Neural Networks

For this paper we use a variant of the Stochastic Gradient
Descent (SGD) method to learn the edge-weights of neurons

in an artificial neural network according to training data.
We assume that the training data consists of a sequence of
input-output vectors (~x, ~y). The basic SGD algorithm starts
by initializing weights for each neuron in the network to
random real values within a bounded range. In the case of
our networks, we set this range to [−Wbd,Wbd] where Wbd

is a function determined by the number of input and output
edges of the given neuron, num edges, such as

Wbd =
( 12

num edges
)1/2

.

A motivation for this choice of Wbd can be found in
Section 4.6 of Haykin [10]. Let ~W0 denote these randomly
chosen initial weights. The algorithm proceeds in steps k ≥ 0.
During the kth step, the network’s weights will be denoted,
~Wk, one training pair (~xk, ~yk) is considered, and a new set of
weights ~Wk+1 is computed. Once we have cycled through
all the training vectors, we say an epoch has ended, we
check a stopping condition, such as the number of epochs is
greater than some value, that a loss function is less than some
value, or that the loss function is changing less than some
value. If the condition is met the algorithms stops outputting
the current weights, otherwise, it begins cycling through the
training vectors again from the beginning to compute the next
~Wk.

In the case of a single layer network, to compute ~Wk+1

from ~Wk, first let ~f(~x, ~W ) denote the output of this layer
as a function of its inputs and weights. A loss function
Loss(~y, ~x, ~W ) = E(~y, ~f(~x, ~W )) measures the discrepancy
between the desired output ~y on input ~x and the actual
~f(~x, ~W ). A simple choice for E(~y, ~z) might be ||~y − ~z||2,
in which case, Loss(~y, ~x, ~W ) is ||~y− ~f(~x, ~W )||2 ≥ 0. For our
experiments in this paper, we chose E to be the cross entropy
loss function for its better convergence properties. The cross
entropy is defined as

E(~y, ~z) =
∑
m

[−ymlnzm].

Except at the origin, our activation function is differentiable
and easy to compute, so the Jacobian ∂

∂ ~W
Lossk(~yk, ~xk, ~W )

is well-defined except for inputs which trigger the origin as
value, and points in a direction to minimize the loss. So the
algorithm computes

~Wk+1 = ~Wk − λ
∂Loss(~y, ~x, ~W )

∂ ~W

∣∣∣∣∣ ~y = ~yk,
~x = ~xk,
~W = ~Wk

.

Here λ is the learning rate. By the chain rule,

∂Loss(~y, ~x, ~W )

∂ ~W
=
∂E

∂~z
· ∂

~f

∂ ~W

where ~z = ~f . The gradient with respect to components of ~z is
straightforward to compute for our loss function, and as ~f is
either activation functions applied to a weighted sum, or some
other easy to compute function of inputs, the partials on the
right above are straightforward to compute and evaluate, thus,
allowing us to compute our update rule. The variant of SGD
used in this paper, SGD with Nestorov momentum, adds to



5

this update rule a “momentum-like” correction, which tends to
yield better convergence rates [25]. Let ~∆k+1 = ~Wk+1− ~Wk.
Then our update rule is instead

~Wk+1 = ~Wk − λ
∂Loss(~y, ~x, ~W )

∂ ~W

∣∣∣∣∣ ~y = ~yk,
~x = ~xk,

~W = ~Wk + µ~∆k

+ µ~∆k

for some momentum value µ. At the activation function origin,
the gradients used in our algorithm are ill-defined and can
become large. To prevent overshooting caused by excessively
large values for the gradient, in our experiments for this
project, we clipped the gradient to the range [−5, 5] where
we chose the value 5 through trial and error.

Backpropagation [29] is a technique to extend the SGD
algorithm just discussed for single layer networks to
multi-layer, artificial neural networks. Suppose we have a
layered neural network computing some function ~f(~x, ~W ).
We write ~Wi to denote the weights used in ith layer of
this network. When training we write ~Wk,i to denote the
weights of the ith layer after k many training items have
been considered and set ~∆k+1,i = ~Wk+1,i − ~Wk,i. Define
~x0 = ~x as the inputs into a layered neural network, and for
i > 0, let ~xi = ~fi(~xi−1, ~Wi) denote the function computed
by the ith layer of our network as a function of its input
lines and weights. Let ~xk,i be the ith layer values after we
have trained for k data items. Note we are slightly abusing
notation: When we write ~xi we mean the outputs of the ith
layer of our network; whereas, when we write ~xk we mean
the kth training data inputs to our network. We next group the
weights in our loss functions from before as

Loss(~y, ~x, ~W ) = Loss(~y, ~x, ~W1, . . . , ~W`)

and in analogy with our update rule for the single layer case
define ~Wk+1,i as

~Wk,i − λ
∂Loss(~y, ~x, ~W )

∂ ~Wi

∣∣∣∣∣ ~y = ~yk,
~x = ~xk,

~Wi = ~Wk,i + µ~∆k,i

+ µ~∆k,i.

Backpropagation is used to compute ∂Loss(~y,~x, ~W )

∂ ~Wi
. To do this

we use that Loss(~y, ~x, ~W ) = E(~y, ~f(~x, ~W )), so by the chain
rule, recalling ~xi = ~fi(~xi−1, ~Wi), we have

∂Loss(~y, ~x, ~W )

∂ ~Wi

∣∣∣∣∣ ~y = ~yk,
~x = ~xk,

~Wi = ~Wk,i + µ~∆k,i

=

∂E

∂~xi

∣∣∣∣∣ ~y = ~yk,
~xi = ~xk,i

· ∂
~fi

∂ ~Wi

∣∣∣∣∣ ~xi−1 = ~xk,i−1,

~Wi = ~Wk,i + µ~∆k,i

.

and

∂E

∂~xi−1

∣∣∣∣∣ ~y = ~yk,
~xi−1 = ~xk,i−1

=

∂E

∂~xi

∣∣∣∣∣ ~y = ~yk,
~xi = ~xk,i

· ∂ ~fi
∂~xi−1

∣∣∣∣∣ ~xi−1 = ~xk,i−1,

~Wi = ~Wk,i + µ~∆k,i

.

Given that our neural gates are simple activation functions
applied to weighted sums, or some other easy to compute
function of its inputs, the derivative ∂ ~fi

∂ ~Wi
and ∂ ~fi

∂~xi−1
are also

easy to compute. When i = `, ∂E
∂~xi

will be the same as ∂E
∂~z in

our single layer case. The second equation above then gives
us the necessary recurrence to compute ∂E

∂~xi
for layers where

i < `.
Our description of network training so far suffices to handle

feedforward networks. The Backpropagation Through Time
(BPTT) algorithm [30] extends our algorithm above to handle
certain kinds of simple recurrent networks such as those used
in this paper. Suppose the inputs to ~fi is a function of ~xi−1,
~xi+m, and ~Wi, giving a recurrence between the outputs of
layer i + m and the inputs to layer i. Assume also that
there no other recurrences among the layers from i to i+m.
Assume if there are other disjoint layers with recurrences
they involve fewer than m layers, and we carry out a similar
procedure on them as that which we are about to describe. Let
~g(~xi−1, ~xi+m, ~W

′
i ) be the composition of the layers involved

in the recurrence starting with ~fi where ~W ′i = ~Wi, . . . , ~Wi+m.
Rather than training on single example, (~xk, ~yk) at the kth
training step, in BPTT, we train on t input examples and one
output example, written as (~xk, ~xk+1, . . . , ~xk+t−1, ~yk+t−1),
together with a randomly initialized ~z0. The m layers to
compute g are replace with t×m layers computing

~z1 = g(~xk,i, ~z0), ~z2 = g(~xk+1,i, ~z1), . . . , ~zt = g(~xk+t−1,i, ~zt−1)

where ~zt is then fed in as inputs into i + mth layer of our
network. This t-wise unfolding of g is used to approximate
the behavior of the recurrence, but the modified network is
now feedforward so can be trained with backpropagation.

Notice in our description above of how we combined the
original data pairs into a vector to present to our recurrent
network, we combined the data items in a forward direction:
~xi−1, ~xi, . . . , ~xi+m. It is also possible to present the training
sequence in a backwards direction or to train on both forwards
and backwards directions (bidirectional). In the literature, all
three possibilities have been considered [5]. Although we tried
different variants, for this report we are presenting results for
forward only BPTT training which seemed to give the best
results for our problem.

B. Neural Network Layer Types

In this subsection, we describe the various kind of neural
network layers we use to build up our CAPTCHA-breaker.
Again, as we have said earlier in this paper, we are choosing
specific types of layer topologies geared toward the task at
hand to reduce the number of weights that need to be trained
for.

The first kind of neural network layer we consider
is a convolutional layer. Convolutional layers were
first introduced by Yann LeCun, et al. [14] as part
of their convolutional neural network (CNN) system to
perform handwritten character recognition. The inputs to a
convolutional layer are assumed to be data of some fixed
dimensionality, in our case two dimensional arrays derived
from image data from one or more sources, the outputs are



6

one or more feature maps. For the rest of this discussion,
we assume we are dealing with two dimensional data, but the
concept can easily be generalized to a k-dimensional setting,
with more tweakable parameters than we need. For us, each
feature map has two tunable parameters: a filter shape, which
is a t × t-sized region, and a bias. If an input consists of
n × m arrays of real data from k many sources, a feature
map will contain (n − t + 1) × (m − t + 1) neurons each
of which will use the same t × t × k+1 weights. The ‘+1’
is the bias weight. The inputs to the (i, j) neuron of the
feature come from each source 1, . . . , k from the rectangle
with top left (i, j) and bottom right (i + t, j + t) in the
inputs. The weighted sum of these inputs with the bias added
is fed into the activation function to compute the value of
such a neuron. Intuitively, one feature map allows us to train
for a t × t-sized feature that appears somewhere at the same
locations in the original images. Neurons which output the
largest values in the feature map correspond to appearances of
that t×t feature in the original images, allowing us to find any
translations of that feature. If we have multiple convolutional
layers, then lower layers learn low-level features and higher
layers learn high-level features. In particular, a first layer might
have feature maps that take care of detecting edges and use
just one source, and following layers might have feature maps
that use multiple sources but can detect different shapes built
out of edges.

When building a neural network to recognize shapes,
convolutional layers are often immediately followed by
so-called maxpool layers. A maxpool layer consists of a set of
max units each taking r×r many inputs. A max unit computes
the maximum value among these inputs. When used together
with a convolutional layer, the output lines from each s × s
dimensional feature map are divided into ds/re×ds/re many
non-overlapping rectangles and each rectangle is fed into a
max unit. If s is not divisible by r than some of the max-units
might have some of their inputs padded by 0’s. If one did
not use maxpool layers, and one had a network with several
convolutional layers, than the number of weights could grow
quickly unmanageable. To see this just note that n×m inputs
in a first convolutional layer might result in many features
maps of close to the same size. Then in a second layer each
of those feature map outputs could serve as inputs to several
more features maps, and so on. Having a maxpool layer after
each convolutional layer reduces the sizes of the features maps
in deeper layers preventing the number of weights that need
to trained from growing too unmanageable. Having a maxpool
also tends to prevent features from being trained too exactly
to the input data, that is, features which are overfitted to the
inputs. For example, suppose we had two features related to
parts of a character extracted in a first convolutional layer.
A maxpool layer would reduce the importance of the exact
positions of these features relative to each other when these
features are fed into an additional convolutional layer that is
extracting something closer to whole character features.

After several higher-order features have been extracted from
image data it is often useful to have a fully connected layer,
a dense layer, to synthesize these features. A dense layer
consist of units each of which takes as inputs all the unit

outputs of the previous layer. Since a dense layer might have
many weights that need to be trained, it is prone to overfitting.
In order to control for this, the drop out method is used: At
each training step, nodes are dropped out of this layer with a
probability p leaving a reduced network with fewer weights.
During a given training step, the training is done with respect
to this reduced network. After the step is over, the “dropped”
nodes are reinserted in the network, and the process is repeated
for the next training data item. This helps in preventing units
co-adapting, and hence, helps in overcoming overfitting. For
our results, we used a drop out probability of 0.5.

To handle variable length CAPTCHAs our network models
will make use of an LSTM (Long Short Term Memory)
layer, a type of recurrent neural network (RNN) layer. Units
in an LSTM layer are built out of several subcomponents.
LSTMs were first defined as in [12] [13]. These versions did
not have forget gates and peephole connections common today
in the literature. Greff, et al. [7] has a good survey and analysis
of LSTM variants. The version of LSTM unit used for our
results is based on Graves [6]. The recurrent aspect of these
units means that one talks about values of subcomponents
at a given time step t. At the heart of an LSTM unit is a
vector-valued memory cell which is useful to exploit long
range dependencies in the data. Let ~ct denote the memory
cell state of the unit we are describing at time t. Similarly,
let ~xt denote the inputs to the LSTM unit at time t and ~yt its
outputs. Three internal gate vectors control how the memory
cell is updated and the influence of the memory cell and the
inputs on the output values of the LSTM unit: the input gate
vector ~it, the forget gate vector ~ft, and the output gate vector
~ot. The rough idea of how the gates operate is: If ~ft is close to
~0, then in the next time step the memory cell will have value
close to zero. The degree to which the inputs ~xt get written into
the memory cell in the next time step is otherwise controlled
by the input gates value ~it. Similarly, the output gate vector,
~ot, and the current memory cell vector, ~ct, are used to compute
the output. As we will see, ~ft, ~it, ~ot are dependent ~yt−1 and
so the unit will be recurrent.

To give the formal definition of how the vectors above
are computed from inputs ~xt and prior values, we need to
introduce some notation. LSTMs make use of two different
activation functions: the sigmoid function g(x) = (1+e−x)−1

and tanh(x) = ex−e−x
ex−e−x . Given a k-dimensional vector ~u, we

write ~g(~u), ~tanh(~u) to denote the component-wise application
of these functions. So is ~g(~u) = 〈g(u1), . . . , g(uk)〉. We write
~u � ~v for 〈u1 · v1, . . . uk · vk〉. Given these preliminaries the
vectors ~it, ~ft, ~ot, and ~yt are defined as:

~it = σi( ~Wxi~xt + ~Wyi~yt−1 + ~Wci � ~ct−1 +~bi)

~ft = g( ~Wxfxt +Wyf~yt−1 + ~Wcf � ~ct−1 +~bf )

~ct = ~ft � ~ct−1 +~it � ~tanh( ~Wxc~xt + ~Wyc~yt−1 +~bc)

~ot = g( ~Wox~xt + ~Woy~yt−1 + ~Woc~ct +~bo)

~yt = ~ot � ~tanh(~ct).

In the above, ~bi, ~bo, ~bc are trainable bias weights, and matrices
of the form ~W−i, ~W−o, ~W−c, ~W−f where ‘-’ is x,y, or c



7

are trainable weight matrices for the input, forget, cell, output
gates for the respective vectors ~x, ~y, or ~c.

As we mentioned before, LSTMs are recurrent layers, and
so are trained using BPTT, and this can be done in either
a forward, backward, or bidirectional fashion. To develop
some intuition about how the memory cell might be used,
we look at an example from speech recognition. Consider a
sentence like: “I a girl” that a network wants to complete.
In this case, we can make use the word “I” to predict that
the next word should be am. So having a memory of the
previous word “I” could be useful in predicting the next word.
A forward LSTMs first predicts “I, and then “am, and so
on. Backward LSTMs predict backwards. For example, in
the above example, it will predict “girl” first, then “a”, then
“am” and lastly “I”. In bidirectional LSTMs, both forward
and backward LSTMs training is combined. An LSTM trained
this way tries to predict given both the forward and backward
contexts. For example: “She lives in . She speaks French.”
In this sentence, we know that because of “lives”, we need
to fill the name of a place. But by only looking at French,
could we make a prediction that it would be France. In these
scenarios, bidirectional LSTMs are useful. We also expect
bidirectionally-trained LSTMs to be useful in the CAPTCHA
recognition problem. For instance, in problems like “rrn”, the
output could be [‘r’, ‘m’] or [‘r’, ‘r’, ‘n’], so it is useful to
predict if the last character is ‘m’ or ‘n’ first and then predict
the previous characters.

The last kind of layer used in our artificial neural network
models is a softmax layer. A softmax layer with k inputs and
m outputs has m units each of which compute weighted sums
of all k inputs, the m outputted sums s1, . . . , sm are then fed
into the softmax function which computes:

~f(~s) =
〈 es1∑m

i=1 e
si
,

es2∑m
i=1 e

si
, . . . ,

esm∑m
i=1 e

si

〉
I.e., the coordinates of ~f are the m outputs of the softmax
layer. Notice the softmax layer outputs will all be in the range
[0, 1] and the sum of these outputs will be 1, so these outputs
can be viewed as a probability distribution over the classes
represented by each output line.

V. DATASET

Even using the various kinds of layers of the last sections,
which were specifically developed to reduce the number of
weights needed to train neural network models, the number
of weights we need to train to handle CAPTCHA breaking
is still large. So we needed a large dataset of CAPTCHAs
to train these weights. A standard dataset for CAPTCHAs
is not publicly available, so we developed one prior to
conducting our CAPTCHA training experiments. We used the
BSD-licensed, Simple CAPTCHA Java library [24] to create
our CAPTCHAs. It has various functions to create noise and
backgrounds in a CAPTCHA image. We wrote a Java module
that generates a random string of 4 to 7 characters in length
and then randomly adds noise to this image. The background
of an image was chosen with the same randomness. Figure 2
and Figure 3 are example simple and complex CAPTCHA
images we generated with our program.

Fig. 2 A simple CAPTCHA example

Fig. 3 A complex CAPTCHA example

All the images generated are of same size, 200 × 50
pixels. We trained our model using simple CAPTCHA images,
complex CAPTCHA images, and a combination of both.
Simple images are those that have very little noise, as shown
in Figure 2, and complex images contain more noise and
clutter, as shown in Figure 3. We created four datasets: a set
consisting of 1 million simple images of fixed length 5, a
set consisting of 2 million complex images of fixed length
5, a set consisting of 13 million images of variable length
chosen with equal frequency to use the simple or complex
CAPTCHA generation, and a set of a million “live” images
based on a CAPTCHA system found on the web. We used the
text that was contained in the CAPTCHA image as part of
its filename when saving it to disk. The ordered pair, (image,
text from filename), then served as a training data item when
we did neural network training. Before supplying images for
training, we converted them to grayscale using a PIL library
[22] function to reduce a RGB color images to grayscale image
via the following formula:

L = R · 299/1000 +G · 587/1000 +B · 114/1000.

VI. OUR MODELS

There are many publicly available frameworks to train
artificial neural network models. Some of them are: Torch7,
Caffe, and Theano. We chose Theano because we found
Theano to be more flexible and because it has GPU support.
At its core, Theano is a numerical computation library written
in Python for multi-dimensional arrays. An additional library,
Lasagne, lets one easily define neural network layers as
Theano expressions which can then be trained using Theano
function calls. Since Theano is written in Python, we wrote
our system in Python to easily make use of it. We created two
kinds of CAPCTHA-breaking artificial neural network models:
a multiple Softmax layer model and an LSTM-based model.
For the LSTM model, we trained on both fixed length and
variable length CAPTCHAs. The code for all of our models as
well as the code to generate our datasets is available on GitHub
at https://github.com/bgeetika/CAPTCHA-Decoder. We also
created a website to perform CAPTCHA breaking online at
http://cp-training.appspot.com/ .

At the bottom of all of our models, we had 200×50 inputs
which were intended to come from grayscale image pixels,



8

where each pixel represented a nonnegative float. The first
layer of all of our models is a convolutional layer that takes
these inputs and produces 32 feature maps. Each feature map is
computed based on a 5×5-sized filter. After this convolutional
layer, we had a maxpool layer which used a 2×2 matrix to get
the max of neighboring pixel values. The next layer was again
a convolutional layer. This layer also outputs 32 feature maps,
but in this case the feature maps used 5 × 5-sized filters and
all 32 feature map output from the previous maxpool layer as
sources. This second convolutional layer was again followed
by 2× 2 matrix maxpool layer. The outputs from this second
maxpool layer correspond to 32 two dimensional array of size
50 × 12. The remainder of the network depended on which
particular model was being considered.

Figure 4 shows our multiple softmax model. In it the outputs
from the last maxpool layer just described are fed to five
parallel dense layers each made up of 256 units. The 256
outputs from each of these five layers are then each sent to a
softmax layer with 256 inputs and 62 outputs. Here the number
62 is based on the number of character classes we are training
for: 26 upper case characters, 26 lower case characters, 10
digit characters. This model was trained using a sequence of
tuples

(~x1, ~y1,1, ~y1,2, . . . , ~y1,5), (~x2, ~y2,1, ~y2,2, . . . , ~y2,5), . . .

where ~xi was one 200 × 50 pixel CAPTCHA from one of
our datasets, and ~yi,1, ~yi,2, . . . , ~yi,5 were five 62-dimensional
vectors with only 1 coordinate set to 1. The coordinate position
set to 1 in ~yi,j indicates the character that was supposed to
be at the jth position in that CAPTCHA. It is an all 0 vector
except for a 1 in the coordinate corresponding to the desired
character class. When testing our trained model, a CAPTCHA
image was fed in as inputs and the five length 256 vectors
were computed as outputs. Each vector was then decoded into
a character based on which coordinate in that vector had the
largest value. Notice in this model, and this will also be in the
case in our later models, each character is computed based on
the whole image.

The second model we considered was a fixed-length
CAPTCHA for training, LSTM model. In this model, the
outputs of the final maxpool layer were fed to a dense layer
with 256 units. All the outputs of these units are then each fed
into 256 LSTM units. The 256 outputs of these units are then
fed into a softmax layer. At training time, we used a BPTT to
train this network using a 5-way unfolding in a forward fashion
of the LSTM layer as illustrated by Figure 5. The unfoldings
in this figure are shown horizontally. A training tuple was
again of the form (~xi, ~yi,1, ~yi,2, . . . , ~yi,5) with the ~xi image
data fed as inputs and the expected character vectors ~yi,j used
as outputs in the unfolded network during backpropagation.
At testing time, an input image was fed into the network, and
the output values of the network were computed for five steps
through the recurrent LSTM layer. Each output was decoded
as we did above.

To modify our second model so that it could handle variable
length CAPTCHAs, we introduced a new possible output
vector code, ‘stop’, in addition to our codes for upper case,
lower case, and digit characters. This code was used to

Fig. 4 CNN with multiple softmax

Fig. 5 RNN architecture

represent that the CAPTCHA string was done. I.e., that it
had no more characters. To test how well this worked, we
trained our network with a 7-wise unfolding of the LSTM
layer on fixed-length length 5 CAPTCHAs. A training tuple
in this setting was of the form

(~xi, ~yi,1, ~yi,2, . . . , ~yi,5, stop, stop).

As our initial tests seemed successful, we then trained our
model on CAPTCHAs of randomly chosen lengths from four
to seven characters using the same idea of the stop vector to
indicate in a training tuple when the CAPTCHA was done.

VII. EXPERIMENTS AND RESULTS

We used the datasets described in Section V to train the
neural network models just described. To make training our
models more efficient, we packaged 20,000 images at a time
into single numpy files. We coded our training script so that
one could specify this batch size. Our results are given in
Table I and Table II.

Type of model Character Accuracy
Multiple Softmax fixed length(Simple dataset) 99.8%

Multiple Softmax fixed length(Complex dataset) 98.96%
LSTM fixed length (Simple Dataset) 100%

LSTM fixed length (Complex dataset) 98.48%
LSTM with “live” data 99.2%

LSTM variable length with fixed length data 99.5%
LSTM variable length with variable length data 97.31%

TABLE I Individual character accuracy for different models

VIII. CONCLUSION

In this paper, we have described our experiments in trying to
decode character-based image CAPTCHAs using deep neural



9

Type of model Sequence Accuracy
Multiple Softmax fixed length(Simple dataset) 99%

Multiple Softmax fixed length(Complex dataset) 96%
LSTM fixed length (Simple Dataset) 99.8%

LSTM fixed length (Complex dataset) 91%
LSTM with “live” data 97%

LSTM variable length with fixed length data 98%
LSTM variable length with variable length data 81%

TABLE II Likelihood whole captcha decoded correctly for different models

networks. We used convolutional layers and recurrent layers
instead of using the conventional approach of first cleaning
a CAPTCHA image, segmenting the image, and recognizing
the individual characters. For machine learning problems,
we need a large amount of data, so we have generated
a dataset of 13 million character-based image CAPTCHAs.
Our models were trained on both simple CAPTCHAs and
complex CAPTCHAs. The accuracy achieved on fixed-length
CAPTCHAs was impressive (99% for simple images and
96% for complex images) for the multiple softmax model.
We tried both fixed length and variable length CAPTCHAs.
These gave 99% and 81% accuracies respectively. Gradient
clipping helped speed up the training of our LSTMs, which
was otherwise very slow. It is clear that the more kinds of
CAPTCHAs we include in our training set, the more robust
our model will become. We have tried to demonstrate this
by using a real dataset in our training set, and were able
to achieve 99% accuracy. While it is still in early stage,
our model performs better than previous work that relies
on manually-generated segmentation oriented models. For
example, our model beats the accuracy of [19]’s model using
comparably-hard CAPTCHA generator.

REFERENCES

[1] L. von Ahn, M. Blum. N. J. Hopper, and J. Langford. CAPTCHA:
Using Hard AI Problems for Security. EUROCRYPT 2003: International
Conference on the Theory and Applications of Cryptographic
Techniques. 2003. pp. 294–311.

[2] M. D. Lillibridge, M. Abadi, K. Bharat, A. Z. Broder. U.S. Patent
6,195,698. Method for selectively restricting access to computer systems.
Filed on Apr 13, 1998 and granted on Feb 27, 2001.

[3] K. Chellapilla and P. Y. Simard. Using Machine Learning to
Break Visual Human Interaction Proofs (HIPs). Advances in Neural
Information Processing Systems. Volume 17. NIPS 2004. pp. 265–272.
2004.

[4] S. Dehaene. Reading in the Brain. Penguin Books. 2010.
[5] A. Graves and J. Schmidhuber. Framewise phoneme classification with

bidirectional LSTM and other neural network architectures. Neural
Networks. Volume 18. Issues 5–6. pp. 606–610. July 2005.

[6] A. Graves. Generating sequences with recurrent neural networks. The
Computing Research Repository. CoRR abs/1308.0850. 2013.

[7] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and
J. Schmidhuber. LSTM: A Search Space Odyssey. The Computing
Research Repository. CoRR abs/1503.04069. 2015.

[8] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, V. Shet.
Multi-digit Number Recognition from Street View Imagery using Deep
Convolutional Neural Networks. International Conference on Learning
Representations 2014. arXiv:1312.6082. 2014.

[9] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, A. Y. Ng. Deep Speech:
Scaling up end-to-end speech recognition. The Computing Resource
Repository. CoRR abs/1412.556717. 2014.

[10] S. O. Haykin. Neural Networks and Learning Machines. 3rd Ed.
Pearson. 2011.

[11] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
Long short term memory. Technische Univ. Munich, 1991.

[12] S. Hochreiter and J. Schmidhuber. Long Short Term Memory. Technical
Report FKI-207-95. Technische Universität Mu nchen, München. August
1995.

[13] S. Hochreiter and J. Schmidhuber. Long Short Term Memory. Neural
Computation. Volume 9. Issue 8. pp 1735–1780. November 1997.

[14] Y. LeCun, B. Boser, J. S. Denke, D. Henderson, R. E. Howard,
W. Hubbard and L. D. Jackel. Handwritten digit recognition with a
back-propagation network. Advances in Neural Information Processing
Systems. Volume 2. NIPS 1989. pp. 396–404. 1989.

[15] S. McCulloch and W. H. Pitts. Resource Description for A logical
calculus of the ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics. Volume 5. pp. 115–133. 1943.

[16] G. W. McConkie, and K. Rayner. The Span of the Effective Stimulus
during a Fixation in Reading. em Perception and Psychophysics. Volume
17. pp. 578–586. 1975.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed Representations of Words and Phrases and their
Compositionality. Advances in Neural Information Processing Systems.
Volume 26. NIPS 2013. pp. 3111–3119. 2013.

[18] M. S. Minsky and S. Papert. em Perceptrons: An Introduction to
Computational Geometry. MIT Press, 1969.

[19] G. Mori and J. Malik. Recognizing Objects in Adversarial Clutter:
Breaking a Visual CAPTCHA. IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2003. Vol. 1. IEEE Computer Society.
pp.134–141. 2003.

[20] M. Naor. Verification of a Human in the Loop, or Identification via the
Turing Test. Unpublished Manuscript. 1996.

[21] G. Templeton. Artificial neural networks are changing the world. What
are they?
http://www.extremetech.com/extreme/
215170-artificial-neural-networks-are-changing-the-world-what-are-they.
Extremetech.com. Oct.12, 2015.

[22] Python Imaging Library. Retrieved June 2016 from
http://www.pythonware.com/products/pil/.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” in em Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Volume 1.
Bradford Books. pp. 318–362. 1986.

[24] SimpleCAPTCHA. Retrieved June, 2016 from
http://simplecaptcha.sourceforge.net/.

[25] I. Sutskever, J. Martens, G. E. Dahl, G. E. Hinton. On the importance of
initialization and momentum in deep learning. Proceedings of the 30th



10

International Conference on Machine Learning. ICML 2013. Volume 3.
pp. 1139–1147. 2013.

[26] I. Sutskever, O. Vinyals, and Q, V. Le. Sequence to Sequence Learning
with Neural Networks. Advances in Neural Information Processing
Systems. Volume 27. NIPS 2014. pp. 3104–3112. 2014.

[27] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf. DeepFace: Closing
the Gap to Human-Level Performance in Face Verification. IEEE
Conference on Computer Vision and Pattern Recognition. CVPR 2014.
IEEE Computer Society. pp. 1701–1708. 2014.

[28] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and Tell: A
Neural Image Caption Generator. IEEE Conference on Computer Vision
and Pattern Recognition. pp. 3156–3164. 2015.

[29] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Science. em PhD thesis. Harvard University.1974.

[30] P. J. Werbos (1988). Generalization of backpropagation with application
to a recurrent gas market model. Neural Networks Volume 1 Issue 4.
pp. 339–356. 1988.


